初中数学复习提纲(山东)
- 格式:doc
- 大小:329.50 KB
- 文档页数:15
青岛版七年级上册数学提纲数学是让许多同学头疼的科目,想要提高数学成果,必须要找对数学学习方法,下面我给大家共享一些青岛版七年级上册数学提纲,盼望能够协助大家,欢送阅读!青岛版七年级上册数学提纲(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.肯定值:正数的肯定值是它本身,负数的肯定值是它的相反数;0的肯定值是0,两个负数,肯定值大的反而小。
(四)有理数的加减法1.先定符号,再算肯定值。
2.加法运算法那么:同号相加,到一样符号,并把肯定值相加。
异号相加,取肯定值大的加数的符号,并用较大的肯定值减去较小的肯定值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.a?b=a+(?b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把肯定值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab=ba4.乘法结合律:(ab)c=a(bc)5.乘法安排律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最终求结果。
青岛版七年级下册数学复习提纲数学是比较难学的一个科目,很多人都不知道怎么才能学好数学,你知道数学提纲怎么做吗?下面小编给大家分享一些青岛版七年级下册数学复习提纲,希望能够帮助大家,欢迎阅读!青岛版七年级下册数学复习提纲【知识点一】实数的分类1、按定义分类: 2.按性质符号分类:注:0既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.2.绝对值|a|≥0.3.倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作 .5.立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.【知识点三】实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.【知识点四】实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.无理数的比较大小:【知识点五】实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法:减去一个数等于加上这个数的相反数.3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数【知识点六】有效数字和科学记数法1.有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.2.科学记数法:把一个数用(1≤ <10,n为整数)的形式记数的方法叫科学记数法.初中数学成绩提高建议想要学好数学,光靠听讲是没有用的,还要进行练习,提高运用能力。
2022鲁教版七年级下册数学提纲鲁教版七年级下册数学提纲考点一、平移(3~5分)1、定义把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。
2、性质(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动(2)连接各组对应点的线段平行(或在同一直线上)且相等。
考点二、轴对称(3~5分)1、定义把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
2、性质(1)关于某条直线对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
3、判定如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4、轴对称图形把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
考点三、旋转(3~8分)1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
考点四、中心对称(3分)1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
山东初中数学知识点总结一、数与代数1. 数的基本概念- 自然数、整数、有理数和无理数的认识与区分。
- 正数、负数的意义及其在数轴上的表示。
- 绝对值的概念及计算方法。
- 整数的四则运算规则及其应用。
- 分数的基本性质、约分与通分。
- 小数的意义、性质及与分数的互化。
2. 代数表达式- 字母表示数的概念。
- 单项式和多项式的定义及运算。
- 代数式的简化和变形。
- 同类项与合并同类项的方法。
- 因式分解的基本概念及方法。
3. 一元一次方程与不等式- 一元一次方程的建立、解法及应用。
- 不等式的概念及基本性质。
- 不等式的解集表示法。
- 一元一次不等式及其解法。
- 一元一次方程与不等式的综合应用。
4. 函数的初步认识- 函数的概念及表示方法。
- 正比例函数、反比例函数的图像和性质。
- 函数的简单应用问题。
二、几何1. 几何基本概念- 点、线、面、体的认识。
- 直线、射线、线段的基本性质。
- 角的概念、分类及度量。
- 角的比较、和差、倍数关系。
2. 平面图形- 平行线的性质及判定。
- 三角形的分类、性质及内角和定理。
- 特殊三角形(等腰、等边、直角三角形)的性质。
- 四边形的分类及特殊四边形(矩形、菱形、正方形、平行四边形)的性质。
- 圆的基本性质、圆周角定理、垂径定理等。
3. 空间图形- 立体图形的基本概念。
- 常见立体图形(长方体、正方体、圆柱、圆锥、球)的表面积和体积计算。
- 立体图形的展开图及制作。
4. 几何变换- 平移、旋转、轴对称等基本几何变换。
- 几何图形的对称性质及对称轴的确定。
- 利用几何变换解决实际问题。
三、统计与概率1. 统计- 数据的收集、整理和描述。
- 统计图表(条形图、折线图、饼图)的绘制和解读。
- 平均数、中位数、众数的计算和意义。
2. 概率- 随机事件的概念及分类。
- 概率的初步认识和计算。
- 简单事件的概率求解。
- 利用概率解决实际问题。
四、解题方法与技巧1. 解题思路的培养- 分析问题、寻找条件与结论之间的联系。
鲁教版七年级上册数学知识提纲数学是短期内快速提分的关键学科,也是中考拉分的关键学科,所以平时就应该多下功夫。
这次小编给大家整理了鲁教版七年级上册数学知识提纲,供大家阅读参考。
鲁教版七年级上册数学知识提纲正数与负数①大于0的数叫正数。
②在正数前面加上“-”号的数,叫做负数。
③0既不是正数也不是负数。
0是正数和负数的分界,是的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。
⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。
整数和分数统称有理数。
⑥非负数就是正数和零;非负整数就是正整数和0。
⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。
数轴①通常用一条直线上的点表示数,这条直线叫数轴。
②数轴三要素:原点、正方向、单位长度。
③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
④只有符号不同的两个数叫做互为相反数(和为零)。
(例:2的相反数是-2,如:2+(-2)=0;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离(无方向性,有两个点)。
⑥数轴上两点间的距离=|M—N|⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
⑦两个负数,绝对值大的反而小。
⑧|a|≥0(即非负性);绝对值等于一个正数的值有两个(两个互为相反数)如:|a|=5,a=5或a=-5有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。
②负数小于零,零小于正数,负数小于正数。
③两个负数的比较大小,绝对值大的反而小。
有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。
青岛版八年级数学重点学问提纲千里之行,始于足下。
学习数学要从数学最基础的学问学起,扎扎实实,踏实向前,一步一个脚印,下面给大家共享一些青岛版((八班级)数学)重点学问提纲,希望能够帮助大家,欢迎阅读!青岛版八班级数学重点学问提纲一、轴对称图形1.把一个图形沿着一条直线折叠,假如直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2.把一个图形沿着某一条直线折叠,假如它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区分与联系4.轴对称的性质①关于某直线对称的两个图形是全等形。
②假如两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④假如两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:1.在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)学问点回顾1.等腰三角形的性质①.等腰三角形的两个底角相等。
(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
(三线合一)2、等腰三角形的判定:假如一个三角形有两个角相等,那么这两个角所对的边也相等。
(等角对等边)五、(等边三角形)学问点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。
初三复习资料山东数学初三复习资料山东数学初三学习是一个非常重要的阶段,对于学生来说,数学是其中最具挑战性的科目之一。
为了帮助山东的初三学生更好地复习数学知识,我整理了一些复习资料,希望对大家有所帮助。
一、数学基础知识回顾在复习数学之前,我们首先需要回顾一些基础知识。
数学基础知识是我们学习更高级数学的基石,只有打牢基础,才能在后续学习中更好地理解和应用知识。
在这一部分,我们可以回顾整数、分数、小数、百分数等基本概念,以及四则运算、约分、化简等基本运算方法。
二、代数与方程代数与方程是初中数学的重点内容之一。
在这一部分,我们可以复习代数的基本概念,如变量、常数、系数等。
同时,我们还需要掌握解一元一次方程的方法,包括等式的加减消元、变量的移项等。
此外,还需要了解二元一次方程的解法,如代入法、消元法等。
三、几何与图形几何与图形也是初中数学的重要内容。
在这一部分,我们可以复习平面图形的性质和计算方法,如三角形的内角和为180度、正方形的对角线相等等。
同时,还需要掌握计算平行线之间的夹角、相交线之间的夹角等几何问题的方法。
四、函数与图像函数与图像是初中数学的难点内容之一。
在这一部分,我们可以复习函数的定义和性质,如定义域、值域、单调性等。
同时,还需要学习如何绘制函数的图像,了解常见函数的图像特征,如线性函数、二次函数、指数函数等。
五、统计与概率统计与概率是初中数学的应用内容。
在这一部分,我们可以复习统计学中的基本概念和方法,如频数、频率、平均数等。
同时,还需要了解概率的基本概念和计算方法,如事件的概率、互斥事件的概率等。
六、解题技巧与方法在复习数学的过程中,我们还需要掌握一些解题技巧和方法。
例如,对于选择题,我们可以通过排除法来找到正确答案;对于解答题,我们可以通过画图、列式等方法来解决问题。
此外,还需要注意题目中的关键词和条件,合理运用已学知识来解答问题。
七、练习与模拟最后,为了巩固所学知识,我们需要进行大量的练习和模拟。
青岛版八年级数学重点知识提纲千里之行,始于足下。
学习数学要从数学最基础的知识学起,扎扎实实,踏实向前,一步一个脚印,下面小编给大家分享一些青岛版八年级数学重点知识提纲,希望能够帮助大家,欢迎阅读!青岛版八年级数学重点知识提纲一、轴对称图形1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系4.轴对称的性质①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:1.在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回顾1.等腰三角形的性质①.等腰三角形的两个底角相等。
(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(等角对等边)五、(等边三角形)知识点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。
鲁教版七年级上册数学学问提纲书目鲁教版七班级上册数学学问提纲数学学习技巧数学解题技巧鲁教版七班级上册数学学问提纲正数与负数①大于0的数叫正数。
②在正数前面加上“-”号的数,叫做负数。
③0既不是正数也不是负数。
0是正数和负数的分界,是的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;凹凸;增长削减等。
⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。
整数和分数统称有理数。
⑥非负数就是正数和零;非负整数就是正整数和0。
⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学学问解答);“非基准”题:无固定的基准数,如明天和今日比,后天和明天比。
数轴①通常用一条直线上的点表示数,这条直线叫数轴。
②数轴三要素:原点、正方向、单位长度。
③数轴上的点和有理数的关系:全部的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
④只有符号不同的两个数叫做互为相反数(和为零)。
(例:2的相反数是-2,如:2+(-2)=0;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的肯定值,记作|a|。
从几何意义上讲,数的肯定值是两点间的距离(无方向性,有两个点)。
⑥数轴上两点间的距离=|M—N|⑥正数的肯定值是它本身;负数的肯定值是它的相反数;0的肯定值是0。
⑦两个负数,肯定值大的反而小。
⑧|a|≥0(即非负性);肯定值等于一个正数的值有两个(两个互为相反数)如:|a|=5,a=5或a=-5有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。
②负数小于零,零小于正数,负数小于正数。
③两个负数的比较大小,肯定值大的反而小。
有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把肯定值相加。
2.肯定值不相等的异号两数相加,取肯定值较大的加数的符号,并用较大的肯定值减去较小的肯定值。
数学复习提纲第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念1.数的分类及概念 数系表: 说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)7.绝对值:①定义(两种):代数定义: 几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │=b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。
第二章 代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类: 1.代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
数学复习提纲第一章实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。
4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a实数无理数(无限不循环小数) 正分数负分数正整数0负整数(有限或无限循环性数) 整数分数正无理数负无理数0 实数负数整数分数无理数有理数正数整数分数无理数有理数│a│2aa(a≥0)(a为一切实数)a(a≥0)-a(a<0)│a│=在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │=b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。
第二章 代数式★重点★代数式的有关概念及性质,代数式的运算 ☆内容提要☆一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式没有加减运算的整式叫做单项式。
(数字与字母的积—包括单独的一个数或字母)几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
如,单项式多项式 整式 分式有理式无理式代数式xx 2=x,2x =│x │等。
4.系数与指数区别与联系:①从位置上看;②从表示的意义上看 5.同类项及其合并条件:①字母相同;②相同字母的指数相同 合并依据:乘法分配律 6.根式表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:3、7是根式,但不是无理式(是无理数)。
7.算术平方根⑴正数a 的正的平方根(a [a ≥0—与“平方根”的区别]); ⑵算术平方根与绝对值① 联系:都是非负数,2a =│a │②区别:│a │中,a 为一切实数;a 中,a 为非负数。
8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
9.指数(na —幂,乘方运算)⑴① a >0时,na >0;②a <0时,na >0(n 是偶数),na<0(n 是奇数) ⑵零指数:0a =1(a ≠0) 负整指数:p a-=1/pa (a ≠0,p 是正整数)二、运算定律、性质、法则1.分式的加、减、乘、除、乘方、开方法则 2.分式的性质⑴基本性质:a b =am bm (m ≠0) ⑵符号法则:aba b a b -=-=-⑶繁分式:①定义;②化简方法(两种)3.整式运算法则(去括号、添括号法则) 4.幂的运算性质:①ma ·na =nm a+;②m a ÷n a =nm a-;a ·a …a=n a n 个③n m a )(=mna;④nab )(=n a nb ;⑤n nn ba b a =)(技巧:p pba ab)()(=- 5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
6.乘法公式:(正、逆用)2222)(b ab a b a +±=± (a+b )(a-b )=22b a -(a ±b))(22b ab a + =33b a ±7.除法法则:⑴单÷单;⑵多÷单。
8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
9.算术根的性质:2a =a ;)0()(2≥=a a a ;b a ab ⋅=(a ≥0,b ≥0);ba ba =(a ≥0,b >0)(正用、逆用)10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.a1;B.a ab a b =;C.bn a m -1. 11.科学记数法:na 10⨯(1≤a <10,n 是整数= 三、应用举例(略) 四、数式综合运算(略)第三章 统计初步★重点★☆ 内容提要☆一、重要概念1.总体:考察对象的全体。
2.个体:总体中每一个考察对象。
3.样本:从总体中抽出的一部分个体。
4.样本容量:样本中个体的数目。
5.众数:一组数据中,出现次数最多的数据。
6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)二、计算方法1.样本平均数:⑴)(121n x x x nx +++=;⑵若a x x -=1'1,a x x -=2'2,…,a x x n n-=',则a x x +='(a —常数,1x ,2x ,…,n x 接近较整的常数a);⑶加权平均数:)(212211n f f f nf x f x f x x k k k =++++++= ;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。
通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:⑴])()()[(1222212x x x x x x n s n -++-+-= ;⑵若ax x -=1'1,a x x -=2'2,…,a x x n n-=',则])[(12'2'2'22'12x n x x x ns n -+++= (a —接近1x 、2x 、…、n x 的平均数的较“整”的常数);若1x 、2x 、…、n x 较“小”较“整”,则])[(12222212x n x x x ns n -+++=;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
3.样本标准差:2s s =三、应用举例(略)第四章 直线形★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。
☆ 内容提要☆一、直线、相交线、平行线1.线段、射线、直线三者的区别与联系 从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)4.两点间的距离(三个距离:点-点;点-线;线-线)5.角(平角、周角、直角、锐角、钝角) 6.互为余角、互为补角及表示方法 7.角的平分线及其表示8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)9.对顶角及性质10.平行线及判定与性质(互逆)(二者的区别与联系) 11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
12.定义、命题、命题的组成 13.公理、定理 14.逆命题二、三角形 分类:⑴按边分;⑵按角分1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。
⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。
⑶角与边:在同一三角形中,3.三角形的主要线段讨论:①定义②××线的交点—三角形的×心③性质①高线②中线③角平分线④中垂线⑤中位线⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质5.全等三角形⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)⑵特殊三角形全等的判定:①一般方法②专用方法6.三角形的面积⑴一般计算公式⑵性质:等底等高的三角形面积相等。
7.重要辅助线⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线8.证明方法⑴直接证法:综合法、分析法⑵间接证法—反证法:①反设②归谬③结论⑶证线段相等、角相等常通过证三角形全等⑷证线段倍分关系:加倍法、折半法⑸证线段和差关系:延结法、截余法⑹证面积关系:将面积表示出来三、四边形分类表:1.一般性质(角)⑴内角和:360°⑵顺次连结各边中点得平行四边形。
推论1:顺次连结对角线相等的四边形各边中点得菱形。
推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。
⑶外角和:360°2.特殊四边形⑴研究它们的一般方法:大边大角小边小角角线积称性轴对称中心对称⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定⑶判定步骤:四边形→平行四边形→矩形→正方形┗→菱形──↑⑷对角线的纽带作用:3.对称图形⑴轴对称(定义及性质);⑵中心对称(定义及性质)4.有关定理:①平行线等分线段定理及其推论1、2②三角形、梯形的中位线定理③平行线间的距离处处相等。
(如,找下图中面积相等的三角形)5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。
6.作图:任意等分线段。