考点集训26几何作图
- 格式:doc
- 大小:406.50 KB
- 文档页数:5
几何图形初步考点训练1.如图 C 、D 是线段AB 上两点 M 、N 分别是线段AD 、BC 的中点 下列结论:①若AD=BM 则AB=3BD ;②若AC=BD 则AM=BN ;③AC -BD=2(MC -DN );④2MN=AB -CD .其中正确的结论是( )A .①②③B .③④C .①②④D .①②③④【答案】D【详解】解:∵M N 分别是线段AD BC 的中点 ∴AM=MD CN=NB. ①∵AD=BM ∴AM+MD=MD+BD ∴AM=BD. ∵AM=MD AB=AM+MD+DB ∴AB=3BD. ②∵AC=BD ∴AM+MC=BN+DN.∵AM=MD CN=NB ∴MD+MC=CN+DN ∴MC+CD+MC=CD+DN+DN ∴MC=DN ∴AM=BN.③AC -BD=AM+MC -BN -DN=(MC -DN)+(AM -BN)=(MC -DN)+(MD -CN)=2(MC -DN); ④AB -CD=AC+BD=AM+MC+DN+NB=MD+MC+DN+CN=MD+DN+MC+CN=2MN. 综上可知 ①②③④均正确 故答案为:D2.已知 点C 在直线 AB 上 AC =a BC =b 且 a ≠b 点 M 是线段 AB 的中点 则线段 MC 的长为( ) A .2a b+ B .2a b- C .2a b +或2a b- D .+2a b 或||2a b -∵AC =a BC =b ∴AB =AC +BC =a +b .∵AC =a BC =b ∴AB =AC +BC =a +b .∵AC =a BC =b ∴AB =BC -AC =b -a . BOD ∠ 下列结论:①180DOG BOE ∠+∠=︒; ②45AOE DOF ∠-∠=︒; ③180EOD COG ∠+∠=︒; ④90AOE DOF ∠+∠=︒ 其中正确的个数有( )A .1个B .2个C .3个D .4个.如图直线AB 与CD 相交于点60 一直角三角尺的直角顶点与点重合 OE 平分AOC ∠ 现将三角尺EOF 以每秒3的速度绕点O 顺时针旋转 同时直线CD 也以每秒9的速度绕点O 顺时针旋转 设运动时间为t 秒(040t ≤≤) 当CD 平分EOF ∠时 t 的值为( )A .2.5B .30C .2.5或30D .2.5或32.5【答案】D【详解】解:分两种情况:①如图OC 平分EOF ∠时 45AOE ∠=︒即930345t t +︒-=︒ 解得 2.5t =;②如图OD 平分EOF ∠时 45DOE ∠=︒即918030345t t -︒+︒-=︒ 解得32.5t =.综上所述 当CD 平分EOF ∠时 t 的值为2.5或32.5. 故选:D .5.在锐角AOB ∠内部由O 点引出3种射线 第1种是将AOB ∠分成10等份;第2种是将AOB ∠分成12等份;第3种是将AOB ∠分成15等份 所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595 B .406C .35D .666∠的大小为()射线OD将∠BOE分成了角度数之比为2:1的两个角则COFA.45︒B.60︒C.72︒或45︒D.40︒或60︒故选:C.7.如图点O是钟面的中心射线OC正好落在3:00时针的位置.当时钟从2:00走到3:00 则经过___________分钟时针分针与OC所在的三条射线中其中一条射线是另外两条射线所夹角的角平分线.240EOF=100° OE平分∠AOP现将三角形EOF以每秒6°的速度绕点O逆时针旋转至三角形E′OF′ 同时直线PQ也以每秒9°的速度绕点O顺时针旋转至P′Q′ 设运动时间为m秒(0≤m≤20)当直线P′Q′平分∠E′OF′时则∠COP′=___.【详解】AOP∠=1 2AOP=∠AB OC⊥90AOC∴∠=︒EOF△以每秒6︒的速度绕点①如图1中当OP(69)Q OE m EOQ ''∠=︒+︒⨯-∠ 14m914COP '=︒⨯(AOC -∠-(9040-︒-50︒-︒76=︒故答案为:32︒或我们知道在9点整时 经过__________分钟后 时钟的时针与分针的夹角为105°.30此时∠AOC=0.5x∠BOD=6x此时∠AOC=0.5x∠BOD=360°-6x【答案】38°【详解】如下图设∠MCD=x° ∠MAD=y°∵AM 、CM 平分∠BAD 和∠BCD ∴∠BAF=y° ∠MCF=x° ∵∠B=34° ∠D=42°∴在△ABF 中 ∠BFA=180°-34°-y°=146°-y° 在△CED 中 ∠CED=180°-42°-x°=138°-x°∴∠CFM=∠AFB=146°-y° ∠AEM=∠CED=138°-x° ∴在△AME 中 y°+∠M+138°-x°=180° 在△FMC 中 x°+146°-y°+∠M=180° 约掉x 、y 得 ∠M=38° 故答案为:38°11.如图所示:已知5cm AB = 10cm BC = 现有P 点和Q 点分别从A B 两点出发相向运动 P 点速度为2cm/s Q 点速度为3cm/s 当Q 到达A 点后掉头向C 点运动 Q 点在向C 的运动过程中经过B 点时 速度变为4cm/s P Q 两点中有一点到达C 点时 全部停止运动 那么经过____s 后PQ 的距离为0.5cm .4753由题意得:5-2t -3t=0.5 解得:t=0.9s5⎛⎫5⎛⎫1010⎛⎫点D 从点B 出发 以每秒4cm 的速度在线段OB 上运动.在运动过程中满足4OD AC = 若点M 为直线OA 上一点 且AM BM OM -= 则ABOM的值为_______.由AM-BM=OM得m-a-(m-b)=m 即:m=b-a;由AM-BM=OM得m-a-(b-m)=m 即:m=a+b;4+-a b a a由AM-BM=OM得a-m-(b-m)=-m 即:m=b-a=-5a;13.已知:如图1 30AOB ∠=︒ 34BOC AOC ∠=∠.(1)求AOC ∠的度数;(2)如图2 若射线OP 从OA 开始绕点O 以每秒旋转10︒的速度逆时针旋转 同时射线OQ 从OB 开始绕点O 以每秒旋转6︒的速度逆时针旋转;其中射线OP 到达OC 后立即改变运动方向 以相同速度绕O 点顺时针旋转 当射线OQ 到达OC 时 射线OP OQ 同时停止运动.设旋转的时间为t 秒 当10POQ ∠=︒时 试求t 的值;(3)如图3 若射线OP 从OA 开始绕O 点逆时针旋转一周 作OM 平分AOP ∠ ON 平分COP ∠ 试求在运动过程中 MON ∠的度数是多少?(请直接写出结果)由OP OQ 的运动可知 ∠AOP =10°t ∠BOQ =6°tOP OQ相遇前如图(3)∠BOC=∠COP+∠BOQ+∠POQ即90°=10°t-120°+6°t+10°③∠CON=180°前如图3(3)∵OM 平分∠AOP ON 平分∠COP(1)如图1 当∠C OD 在∠AOB 的内部时 若∠AOD =95° 求∠BOC 的度数;(2)如图2 当射线OC 在∠AOB 的内部 OD 在∠AOB 的外部时 试探索∠AOD 与∠BOC 的数量关系 并说明理由;(3)如图3 当∠COD 在∠AOB 的外部时 分别在∠AOC 内部和∠BOD 内部画射线OE OF 使∠AOE =23∠AOC ∠DOF =13∠BOD 求∠EOF 的度数.【答案】(1)85°(2)AOD ∠与BOC ∠互补 理由见解析(3)当060BOC <∠<︒或120180BOC <∠<时 80EOF ∠=︒;当60120BOC ︒<∠<︒时40EOF ∠=︒;当60BOC ∠=︒或120BOC ∠=︒时 40EOF ∠=︒或80EOF ∠=︒【解析】(1)解:∵120AOB ∠=︒ 95AOD ∠=︒ ∴25BOD AOB AOD ∠=∠-∠=︒ ∵60COD ∠=︒ ∴85BOC BOD COD ∠=∠+∠=︒; (2)AOD ∠与BOC ∠互补;理由如下:∵120AOD AOB BOD BOD ∠=∠+∠=︒+∠ 60BOC COD BOD BOD ∠=∠-∠=︒-∠ ∴12060AOD BOC BOD BOD ∠+∠=︒+∠+︒-∠180=︒ ∴AOD ∠与BOC ∠互补.120AOC n ∠=︒+︒ 60BOD n ∠=︒+︒则180AOC ∠=︒ 120AOD AOB ∠=∠=︒ 120BOD ∠=︒240AOC n ∠=︒-︒ 60BOD n ∠=︒+︒则180BOD ∠=︒ 120AOC AOD DOC ∠=∠+∠=︒111尺的直角顶点放在点O处直角边OM在射线OB上另一边ON在直线AB的下方.【操作一】:将图1中的三角尺绕着点O以每秒15︒的速度按顺时针方向旋转.当它完成旋转一周时停止设旋转的时间为t秒.∠的度数是___________ 图1中与它互补的角是___________.(1)BOC(2)三角尺旋转的度数可表示为___________(用含t的代数式表示):当t=___________⊥.时MO OC【操作二】:如图2将一把直尺的一端点也放在点O处另一端点E在射线OC上.如图3 在三角尺绕着点O以每秒15︒的速度按顺时针方向旋转的同时直尺也绕着点O以每秒5︒的速度按顺时针方向旋转当一方完成旋转一周时停止另一方也停止旋转设旋转的时间为t秒.(3)当t为何值时OM OE⊥并说明理由?(4)试探索:在三角尺与直尺旋转的过程中当623t≤≤是否存在某个时刻使得COM∠与COE∠中其中一个角是另一个角的两倍?若存在请求出所有满足题意的t的值;若不存在请说明理由.∵OM OE⊥∵OM OE⊥265252。
几何作图一.基本作图:(1)作一条线段等于已知线段,以及线段的和、差 (2)作一个角等于已知角,以及角的和、差. 1.已知线段a ,画一条线段CD 等于a 2.已知∠α,求作∠AOB=∠α(3)作一个角的平分线 (4)作一条线段的垂直平分线. (5)过一点作已知直线的垂线. 3.已知∠AOB ,求作∠AOB 的 4.已知线段AB ,求作线段AB 5.已知直线AB 和直线外一点C 平分线OC. 的中垂线 过点C 作直线AB 的垂线3.利用基本作图作三角形:(1)已知三边作三角形. (2)已知两边及其夹角作三角形.(3)已知两角及其夹边作三角形. (4)已知底边及底边上的高作等腰三角形. (5)已知一直角边和斜边作直角三角形. 4.与圆有关的尺规作图:(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆. (3)作圆内接正方形和正六边形题型一 应用角平分线、线段中垂线的性质作图【例1】 (2016·衢州)如图,已知BD 是矩形ABCD 的对角线.(1)用直尺和圆规作线段BD 的垂直平分线,分别交AD ,BC 于点E ,F (保留作图痕迹,不写作法和证明).(2)连结BE ,DF ,问:四边形BEDF 是什么四边形?请说明理由.题型二 作三角形【例2】 (2014·无锡)(1)如图①,在Rt △ABC 中,∠B =90°,AB =2BC ,现以点C 为圆心,CB 长为半径画弧交边AC 于点D ,再以点A 为圆心,AD 长为半径画弧交边AB 于点E .求证:AE AB =5-12(这个比值5-12叫做黄金比). 2)如果一个等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形.请你以图②中的线段AB 为腰,用直尺和圆规,作一个黄金三角形ABC .(注:作图不要求写作法,但要求保留作图痕迹,并对作图中涉及的点用字母进行标注.)题型三 通过画图确定圆心【例3】 (2016·南京)如图,在▱ABCD 中,E 是AD 上一点,延长CE 到点F ,使∠FBC =∠DCE . (1)求证:∠D =∠F .(2)用直尺和圆规在AD 上作出一点P ,使△BPC ∽△CDP (保留作图痕迹,不写作法).题型四 利用基本作图进行方案设计【例4】 某小区现有一块等腰直角三角形形状的绿地,腰长为100 m ,直角顶点为A .小区物业管委会准备把它分割成面积相等的两块,有如下的分割方法:方法一:在底边BC 上找一点D ,连结AD 作为分割线; 方法二:在腰AC 上找一点D ,连结BD 作为分割线; 方法三:在腰AB 上找一点D ,作DE ∥BC ,交AC 于点E ,DE 作为分割线;方法四:以顶点A 为圆心,AD 为半径作弧,交AB 于点D ,交AC 于点E ,DE ︵作为分割线.这些分割方法中分割线最短的是( )A.方法一 B .方法二 C .方法三 D .方法四 题型五 利用网格进行作图【例5】.(2016·黑龙江哈尔滨·7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.(1)如图1,点P 在小正方形的顶点上,在图1中作出点P 关于直线AC 的对称点Q ,连接AQ 、QC 、CP 、PA ,并直接写出四边形AQCP 的周长;(2)在图2中画出一个以线段AC 为对角线、面积为6的矩形ABCD ,且点B 和点D 均在小正方形的顶点上.基础巩固题组一、选择题1.(2015·福州)如图,C ,D 分別是线段AB ,AC 的中点,分别以点C ,D 为圆心,BC 长为半径画弧,两弧交于点M ,测量∠AMB 的度数,结果为( ) A .80° B .90° C .100° D .105°2.(2015·深圳)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得P A +PC =BC ,则下列选项正确的是( )A. B. C. D.3.(2015·衢州)数学课上,老师让学生尺规作图画Rt △ABC ,使其斜边AB =c ,一条直角边BC =a .小明的作法如图所示,你认为这种作法中判断∠ACB 是直角的依据是( ) A .勾股定理 B .直径所对的圆周角是直角 C .勾股定理的逆定理D .90°的圆周角所对的弦是直径 4.(2016·河北)如图,已知钝角△ABC ,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C 为圆心,CA 为半径画弧①;步骤2:以B 为圆心,BA 为半径画弧②,交弧①于点D ; 步骤3:连接AD ,交BC 延长线于点H . 下列叙述正确的是( ) A .BH 垂直平分线段AD B .AC 平分∠BAD C .S △ABC =BC ·AHD .AB =AD5.(2016·丽水)用直尺和圆规作Rt △ABC 斜边AB 上的高线CD ,以下四个作图中,作法错误的是( )A. B. C. D.二、填空题6.(2016·吉林)如图,已知线段AB ,分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于C 、D 两点,作直线CD 交AB 于点E ,在直线CD 上任取一点F ,连接F A ,FB .若F A =5,则FB = .7.(2015·潍坊)如图,在△ABC 中,AD 平分∠BAC ,按如下步骤作图:第一步,分别以点A 、D 为圆心,以大于12AD 的长为半径在AD 两侧作弧,交于两点M 、N ;第二步,连接MN 分别交AB 、AC 于点E 、F ; 第三步,连接DE 、DF .若BD =6,AF =4,CD =3,则BE 的长是________.8.(2016·深圳)如图,在▱ABCD 中,AB =3,BC =5,以点B 为圆心,以任意长为半径作弧,分别交BA 、BC 于点P 、Q ,再分别以P 、Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠ABC 内交于点M ,连接BM 并延长交AD 于点E ,则DE 的长为________. 9.(2015·北京)阅读下面材料: 在数学课上,老师提出如下问题:小芸的作法如下: 如图,(1)分别以点A 和点B 为圆心,大于AB 的长为半径作弧,两弧相交于C 、D 两点; (2)作直线CD .所以直线CD 就是所求作的线段AB 的垂直平分线.老师说:“小芸的作法正确.”请回答:小芸的作图依据是________________________________________________ 三、解答题10.(2016·陕西)如图,已知△ABC ,∠BAC =90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法).11.(2016·达州)如图,在▱ABCD 中,已知AD >AB .(1)实践与操作:作∠BAD 的平分线交BC 于点E ,在AD 上截取AF =AB ,连接EF (要求:尺规作图,保留作图痕迹,不写作法); (2)猜想并证明:猜想四边形ABEF 的形状,并给予证明.12.已知△ABC 中,∠A =25°,∠B =40°.(1)求作:⊙O ,使得⊙O 经过A 、C 两点,且圆心O 落在AB 边上(要求尺规作图,保留作图痕迹,不必写作法);(2)求证:BC 是(1)中所作⊙O 的切线.尺规作图:作一条线段的垂直平分线. 已知:线段AB .求作:线段AB 的垂直平分线.13、(2014•江西,第17题6分)已知梯形ABCD,请使用无刻度直尺画图。
画法几何及工程制图复习题含答案Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#“画法几何及工程制图”复习资料复习重点:1制图基本知识与技术掌握制图基本知识:制图标准、图纸幅面、字体、绘图比例、图线、尺寸的标注形式。
2 投影法和点的多面正投影1.掌握投影法的基本知识:投影的形成及分类、工程上常用的四种图示方法2.掌握二面投影图和三面投影图的投影规律3.掌握作辅助正投影的方法3平面立体的投影及线面投影分析1.掌握基本平面立体的三面投影图的投影特性2.掌握立体上直线的投影特性3.掌握立体上平面的投影特性4.掌握点、线、面间的相对几何关系4平面立体构形及轴测图画法1.掌握基本平面体的叠加、切割、交接2.掌握平面立体的尺寸标注方法3.掌握轴测投影原理及平面立体的轴测投影画法5 规则曲线、曲面及曲面立体1.了解曲线的形成与分类2.掌握圆的投影的画法,了解圆柱螺旋线投影的画法3.了解曲面的形成、分类4.掌握曲面投影的表达方法,主要是圆柱面、圆锥面、球面投影的画法5.掌握基本曲面立体(圆柱、圆锥)的投影特性6.掌握平面与曲面体或曲表面相交的投影画法7.了解两曲面体或曲表面相交的投影画法8.掌握圆柱与圆锥的轴测图画法6 组合体1.学会使用形体分析法对组合体的形成进行分析2.掌握根据实物绘制组合体的三视图的方法3.掌握组合体的尺寸注法4.掌握组合体三视图的阅读方法,根据组合体的两视图作第三视图5.掌握组合体轴测图的画法7 图样画法1.掌握六个基本视图的画法2.掌握剖视图的表达方法3.掌握断面图的表达方法4.掌握在组合体轴测图中进行剖切的画法5.了解常用的简化画法6.了解第三角画法的概念8 钢筋混凝土结构图(了解)1.了解钢筋混凝土结构的基本知识2.掌握钢筋混凝土结构的图示方法3.掌握钢筋混凝土结构图的阅读方法9 房屋建筑图(了解)1.了解房屋的组成和各部分的作用,了解房屋的一般设计方法2.了解房屋施工图的分类及有关规定3.了解房屋总平面图的绘制方法4.掌握建筑平面图、建筑立面图、建筑剖面图的绘制方法5.了解建筑详图的绘制方法10 桥梁、涵洞工程图(了解)了解桥涵工程图的基本知识,了解桥墩图、桥台图、涵洞图的图示方法题1:单项选择题,将正确答案填写在括号内1. 制图标准是在全国范围内使图样标准化、规范化的统一准则。
考点集训26几何作图
一、选择题
1.(2014·安顺)如图,用直尺和圆规作一个角等于已知角,能得出∠A′O′B′=∠AOB的依据是( B )
A.SAS B.SSS C.ASA D.AAS
2.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,FG是( D )
A.以点C为圆心,OD为半径的弧
B.以点C为圆心,DM为半径弧
C.以点E为圆心,OD为半径的弧
D.以点E为圆心,DM为半径的弧
3.(2013·河北)如图,已知线段AB,BC,∠ABC=90°. 求作:矩形ABCD. 以下是甲、乙两同学的作业:
对于两人的作业,下列说法正确的是( A )
A.两人都对B.两人都不对
C.甲对,乙不对D.甲不对,乙对
4.(2014·台湾)如图,有一△ABC,今以B为圆心,AB长为半径画弧,交BC于D点,以C为圆心,AC长为半径画弧,交BC于E点.若∠B=40°,∠C=36°,则关于AD,AE,BE,CD的大小关系,下列何者正确?( D )
A.AD=AE B.AD<AE
C.BE=CD D.BE<CD
5.(2014·河北)如图,已知△ABC(AC <BC),用尺规在BC 上确定一点P ,使PA +PC =BC ,则符合要求的作图痕迹是( D )
6.(2013·遂宁)如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于MN 的长为半
径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( D ) ①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的垂直平分线上;④S △DAC ∶S △ABC =1∶3.
A .1
B .2
C .3
D .4
二、填空题
7.在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于1
2BC 的长为半径作
弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连结CD . 若CD =AC ,∠B =25°,则∠ACB 的度数为__105°__.
,第7题图) ,第8题图)
8.(2013·长春)如图,以△ABC 的顶点A 为圆心,以BC 长为半径作弧;再以顶点C 为圆心,以AB 长为半径作弧,两弧交于点D ,连结AD ,CD.若∠B =65°,则∠ADC 的大小为__65__度.
三、解答题
9.尺规作图,已知顶角和底边上的高,求作等腰三角形.
已知:∠α,线段a .求作:△ABC ,使AB =AC ,∠BCA =α,AD ⊥BC 于D ,且AD =a .
如图,(1)作∠EAF=∠α;(2)作AG平分∠EAF,并在AG上截取AD =a;(3)过D作MN⊥AG,MN与AE,AF分别交于B,C,则△ABC即为所求作的等腰三角形
10.(2014·玉林、防城港)如图,已知BC与CD重合,∠ABC=∠CDE=90°,△ABC ≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法),并直接写出旋转角度是__90°__.
如图,旋转角度是90°
11.(2013·兰州)如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA,OB的距离相等,且到两工厂C,D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)
如图,作CD的垂直平分线,∠AOB的角平分线的交点P即为所求
12.(2014·白银)如图,△ABC中,∠C=90°,∠A=30°.
(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E;(保留作图痕迹,不要求写作法和证明)
(2)连结BD,求证:BD平分∠CBA.
(1)图略(2)∵DE是AB边上的垂直平分线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°-∠A=60°,∴∠CBD=∠ABC-∠ABD=60°-30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA。