Ordering phenomena in cooling granular mixtures
- 格式:pdf
- 大小:499.73 KB
- 文档页数:4
ubbelohde method 乌伯娄德法ubbelohde viscometer 乌伯娄德粘度计ubiquinone 乌比醌类udex process 伍德克思法ullmann reaction 乌尔曼反应ultimate analysis 元素分析ultimate effect 后效应ultimate vacuum 极度真空ultra accelerator 超促进剂ultra high molecular weight polymer 超高分子量聚重物ultra red ray drying 红外线干燥ultracentrifuge 超离心机ultracentrifuge method 超离心法ultrafilter 超滤器ultrafilter membrane 超过滤膜ultrafiltration 超细过滤ultrafine fiber 超细纤维ultrafine particle 超细粒子ultrafine powder 超细粉ultramarine 群青ultramicro analysis 超微分析ultramicrochemistry 超微量化学ultramicron 超微粒子ultramicroscope 超倍显微镜ultrasonic flowmeter 超声波量计ultrasonic fractography 超声波断层显微分析ultrasonic wave 超声波ultraviolet absorber fixative 紫外线吸收固定剂ultraviolet photography 紫外线照相ultraviolet radiation 紫外辐射ultraviolet ray microscope 紫外线显微镜ultraviolet ray transmitting glass 紫外线透过玻璃ultraviolet rays 紫外线ultraviolet spectrophotometry 紫外线分光光度测定法ultraviolet stabilizer 紫外线稳定剂umber 棕土umpire analysis 仲裁分析unbleached pulp 未漂白纸浆unbranched molecule 无支链分子unburned brick 砖坯uncertainty principle 测不准原理uncertainty relation 测不准关系uncharged species 无电荷化学种undecanal 十一醛undecane 十一烷undecanoic acid 十一酸undecyl alcohol 十一醇undecylenic acid 十一碳烯酸undecylenic alcohol 十一碳醇undecylic acid 十一酸undercoat 底涂undercooling 过冷undercure 欠硫化underexposure 照射不足underglaze color 釉底颜料underground gasification 地下气化underground water 地下水undervulcanization 欠硫化uneven dyeing 染色不匀unhairing 去毛uniaxial crystal 单轴晶体uniaxial orientation 单轴取向uniform convergence 均匀收敛uniform motion 等速运动uniformity 均质性uniformity coefficient 均匀系数unimolecular layer 单分子层unimolecular reaction 单分子反应uninflammability 不燃性union colorimeter 联合比色计union yarn 混纺纱unit cell 单位晶格unit matrix 单位矩阵unit of heat 热量单位unit operation 单元操作unit process 单元过程unit time 单位时间unitary matrix 幺正矩阵univalent 一价的univariant system 单变系universal bridge 万用电桥universal constant 通用常数universal developer 万用显影剂universal gas constant 通用气体常数universal indicator 通用指示剂unpaired electron 不成对电子unsaponifiable matter 不皂化物unsaturated bond 不饱和键unsaturated compound 不饱和化合物unsaturated hydrocarbon 不饱烃unsaturated solution 不饱和溶液unsaturation 不饱和unshared electron pair 未共享电子对unstable compound 不稳定化合物unstable equilibrium 不稳定平衡unsteady state 非稳定态untreated oil 未处理油料unusual valency 异常原子价unvulcanized rubber 未硫化橡胶upflow 上流上升气流uramil 乌拉米尔uranate 铀酸盐uranic acid 铀酸uranic oxide 三氧化铀uranine 荧光素钠uraninite 晶质铀矿uranium 铀uranium dioxide 二氧化铀uranium fluoride 氟化铀uranium glass 铀玻璃uranium oxide 氧化铀uranium series 铀系uranium tetrafluoride 四氟化铀uranium trioxide 三氧化铀uranyl acetate 醋酸双氧铀uranyl chloride 氯化双氧铀uranyl compound 铀酰化合物uranyl nitrate 硝酸双氧铀uranyl salt 铀酰盐uranyl sulfate 硫酸双氧铀uranyl uranate 八氧化三铀urate 尿酸盐urea 尿素urea adduct 尿素加合物urea anhydride 氨基氰urea chloride 氨基甲酰氯urea formaldehyde resin 脲醛尸urea nitrate 硝酸脲urea resin 尿素尸urea resin varnish 尿素尸清漆urease 尿素酶ureide 酰脲urethane 尿烷urethane resin 尿烷尸uric acid 尿酸uridine 尿核甙uridine diphosphate glucose 尿甙二磷酸葡糖甙uridylic acid 尿甙酸urobilin 尿胆素urobilinogen 尿胆素原urocanic acid 尿刊酸urochrome 尿色素urokinase 尿激酶uronic acid 糖羰酸uropepsin 尿胃蛋白酶uroporphyrin 尿卟啉urotropine 乌洛托品ursodeoxycholic acid 胆烷酸ursolic acid 乌酸urushiol 漆酚used oils 废油usnic acid 松萝酸uviol glass 透紫外线玻璃uzarigenine 乌沙甙元vacancy 空格点vacant lattice point 空格点vaccine 菌苗vacuole 液泡vacuum apparatus 真空装置vacuum condensing point 真空冷凝点vacuum crystallizer 真空结晶器vacuum desiccator 真空干燥器vacuum distillation 真空蒸馏vacuum dryer 真空干燥器vacuum drying 真空干燥vacuum evaporation 真空蒸发vacuum evaporation coating 真空镀膜vacuum evaporator 真空蒸发器vacuum filter 真空过滤器vacuum filtration 真空过滤vacuum flask 真空瓶vacuum forming 真空成型vacuum gage 真空计vacuum plating 真空镀膜vacuum pump 真空泵vacuum pump oil 真空泵油vacuum technique 真空技术vacuum tube glass 真空管玻璃vacuum type insulation 真空式绝缘vadose water 渗廉vagotonine 迷走紧张素valence 价valence angle 价角valence bond 价键valence bond method 价键法valence electron 价电子valence fluctuation 原子价起伏valence force field 价力场valence isomerism 价异构性valence state 价态valence valence 离子价valency 价valency angle 价角valency control 原子价控制valentinite 锑华valeraldehyde 戊醛valeramide 戊酰胺valerianic acid 戊酸valeric acid 戊酸valerolactam 戊内酸胺valerolactone 戊内酯valeronitrile 戊腈valine 缬氨酸value of isotope mixture 同位素混合物价值valve oil 润阀油vamidothion 蚜灭多van der waals' equation of state 范德瓦耳斯状态方程van der waals' force 范德瓦耳斯力van der waals' molecule 范德瓦耳斯分子van slyke method 范斯莱克测定法vanadate 钒酸盐vanadic acid 钒酸vanadinite 钒铅矿vanadium 钒vanadium carbide 碳化钒vanadium compound 钒化合物vanadium dichloride 二氯化钒vanadium oxide 氧化钒vanadium oxytrichloride 三氯氧化钒vanadium sulfide 硫化钒vanadyl chloride 氯化氧钒vanillin 香草醛vapor bath 蒸汽浴vapor liquid equilibrium 气液平衡vapor lock 汽封vapor loss 蒸汽损失vapor nozzle 蒸汽喷嘴vapor phase 汽相vapor phase cracking 汽相热裂vapor phase polymerization 汽相聚合vapor phase reactor 汽相反应器vapor pressure 蒸汽压vapor pressure curve 蒸气压力曲线vapor pressure thermometer 蒸汽压式温度计vaporization 蒸发vaporization heat 蒸发热vaporizer 汽化器variable resistance 变阻器variational method 变分法variational principle 变分原理variety 变种varnish 清漆vaseline 凡士林vaseline oil 凡士林油vasotocin 加压催产素vat acid 隐色酸vat color 瓮染料vat dye 瓮染料vat dyeing 瓮染vector product 矢积vegetable acid 植物酸vegetable casein 植物性酪素vegetable dye 植物染料vegetable fiber 植物纤维vegetable gum 植物胶vegetable oil 植物油vegetable parchment 植物羊皮纸vegetable wax 植物蜡vehicle 载色料vellum 羊皮纸vellum paper 羊皮纸velocimeter 临仪velocity constant 速度常数velocity indicator 速度指示器veneer 胶合板vent hole 通气孔ventilation 换气ventilator 风扇venturi meter 文丘里测量计venturi scrubber 文丘里除尘器veratrine 藜芦碱veratrole 藜芦醚verdigris 铜绿verification 检验vermiculite 蛭石vermilion 银珠veronal 佛罗那vertical boiler 竖式锅炉very low temperature 超低温vesicant agent 糜烂性毒气vesicant gases 糜烂性毒气vessel 容器vetiver oil 香根草油vibrating screen 振动筛vibrating sieve 振动筛vibration 振动vibration separation 振动分级vibration viscometer 振动粘度计vibrational energy 振动能vibrational quantum number 振动量子数vibronic coupling 振动耦合vickers hardness tester 维克硬度试验机victoria green 维多利亚绿vinalon 维尼龙vinegar 醋vinometor 酒度计vinyl acetate 醋酸乙烯酯vinyl alcohol 乙烯醇vinyl chloride 氯乙烯vinyl chloride copolymer 氯乙烯共聚物vinyl cyanide 丙烯腈vinyl ester 乙烯基酯vinyl ester resin 乙烯基酯尸vinyl ether 乙烯醚vinyl fluoride 氟乙烯vinyl formate 甲酸乙烯酯vinyl isobutyl ether 乙烯基异丁基醚vinyl polymer 乙烯基聚合物vinyl resin 乙烯基尸vinyl salicylate 水杨酸乙烯酯vinylacetylene 乙烯基乙炔vinylamine 乙烯胺vinylation 乙烯化vinylidene chloride 偏二氯乙烯vinylon 维尼纶vinyltoluene 甲苯乙烯vinyon 维尼昂vioform 氯碘喹啉violanthrone 蒽酮紫violet pigment 紫色颜料viomycin 紫霉素virial 维里virial coefficient 维里系数virial expansion 维里展开virtual memory 虚存储virus 病毒visbreaking 减粘裂化viscoelasticity 粘弹性viscoelastometer 粘弹计viscometer 粘度计viscometric degree of polymerization 粘度法聚合度viscose 粘胶液viscose process 粘胶法viscose rayon 粘胶法人造丝viscose yarn 粘胶丝viscosity 粘度viscosity breaking 减粘裂化viscosity gravity constant 粘度比重常数viscosity index 粘度指数viscosity index improver 粘度指数改善剂viscosity law 粘度法则viscosity stabilization 粘度稳定化viscous flow 滞流粘性流viscous fluid 粘滞铃viscous force 粘力viscous liquid 粘性液体visible rays 可见光线visual colorimeter 目测比色计visual method 目视法visual pigment 视色素vitamin 维生素vitamin b26 潘氨酸vitamin b3 核黄素vitamin d 钙化醇vitamin k2 叶绿醌vitamin k4 甲萘醌vitamin pp 烟酰胺vitamine b2 硫胺素vitellin 卵黄磷朊vitrain 镜煤vitreous state 玻璃态vitrification 玻璃化vitrification range 瓷化温度范围vitrified brick 烧结砖vitrit 镜煤型vivianite 蓝铁矿void 空隙voidage 空隙度volatile acid 挥发酸volatile matter 挥发物volatile oil 精油volatile solvent 挥发性溶剂volatility 挥发度volatility product 挥发度积volatilization 挥发volcanic ash 火山灰volcanic rock 火山岩volta cell 电池voltage 电压voltage drop 电压降voltage stabilizer 电压稳定器voltammetry 伏安测量法voltmeter 电压表voltol oil 高压电油volume 容积volume density 体积密度volume elasticity 体积弹性volume fraction 体积分率volume percent 容积百分数volume resistance 体积阻力volume viscosity 体积粘性volumeter 体积计volumetric analysis 容量分析volumetric factor 容量因数volumetric flask 量瓶volumetric solution 滴定液vomiting gas 呕吐性毒气vortex 涡流vorticity 涡度vulcanite 硬橡胶vulcanizate 硫化橡胶vulcanization 硫化vulcanization accelerator 硫化促进剂vulcanization coefficient 硫化系数vulcanization curve 硫化曲线vulcanization rate 硫化速率vulcanization retarder 阻硫化剂vulcanized fiber 硬化纸板vulcanized oil 硫化油vulcanized rubber 硫化橡胶vulcanizer 硫化器硫化装置vulcanizing agent 硫化剂vulcanizing apparatus 硫化器硫化装置vulcanizing press 加压硫化机vultex 硫化橡浆wagner meerwein rearrangement 瓦米重排酌wagner reagent 瓦格纳试剂wake 尾流walden's inversion 瓦耳登转化walden's law 瓦尔登规则wall friction 墙面摩擦wall lining 墙衬wall paint 墙漆wall plaster 刷墙粉wallach reaction 瓦拉赫反应wallach rearrangement 瓦拉赫换位wallantoin 尿囊素walnut oil 核桃油wandering of zero point 零点偏移war gas 毒气战剂warfarin 杀鼠灵wash oil 洗油washed coal 洗煤washed ore 洗矿washer 洗涤器washing 洗涤washing agent 去垢剂washing bottle 洗涤瓶washing effect 洗涤效应washing liquid 洗涤液washing powder 洗涤粉washing soap 洗衣皂washing soda 苏打晶体waste 废物waste acid 废酸waste gas 废气waste heat 废热waste heat boiler 废热锅炉waste lye 废液waste oil 废油waste oil regeneration 废油再生waste paper 废纸waste product 废产物waste rubber 废橡胶waste water 废水watch glass 表面皿watch oil 钟表油water absorbing capacity 吸水本领water absorbing power 吸水能力water absorption 吸水率water absorption tube 吸水管water analysis 水分析water bacteria 水生细菌water bath 水浴water cement ratio 水灰比water circulation 水循环water color 水合颜料water content 含水量water cooler 水冷却器water cooling 水冷却water coulombmeter 水解电量计water electrolyser 水电解槽water electrolysis 水电解water equivalent 水当量water gage 水位指示器water gas 水煤气water gas generator 水煤气发生器water gas reaction 水煤气反应water glass 水玻璃water jacket 水冷套water level 水准water line paint 水线涂料water measuring tube 量水管water meter 水量计water of crystallization 结晶水water of hydration 水合水water paint 水性漆water permeability 渗水性water pipe 水管water purification 水的净化water purifier 净水器water purifying plant 净水设备water repellent 防水剂water resistance 抗水性water seal 水封water separator 水分离器water softener 软水剂water softening 水的软化water softening apparatus 水软化器water soluble oil 水溶性油water soluble vitamin 水溶性维生素water solution 水溶液water tank 水槽water test 水的试验water tube boiler 水管锅炉water vapor 水蒸汽water vapor permeability 水蒸汽渗透性waterproof agent 防水剂waterproof paint 防水涂料watt 瓦wave equation 波动方程wave function 波动函数wave height 波高wave number 波数wave optics 波动光学wavelength 波长wavellite 银星石wax 蜡wax bleaching 蜡漂白wax candle 蜡烛wax cement 蜡胶粘剂wax fractionation 蜡分馏wax paper 蜡纸waxing 上蜡weak acid 弱酸weak base 弱碱weak complex compound 弱络合物weak electrolyte 弱电解质wear 磨耗weatherability 耐气候性weathering 风化酌weathering test 风化试验weaving 编织weed killer 除草剂weighing 称量weighing accuracy 称量准确度weighing bottle 称瓶weighing buret 量滴定管weight distribution curve 重量分布曲线weight loss on heating 加热失重weight percent 重量百分数weights 法码weissenberg effect 韦森堡效应welding 焊接welding process 焊接法wernerite 方柱石weston normal cell 韦斯顿标准电池wet analysis 湿法分析wet and dry bulb hygrometer 干湿球湿度表wet assay 湿分析法wet blending 湿掺和wet box 湿气箱wet bulb thermometer 湿球温度表wet cell 湿电池wet collodion process 湿珂珞酊法wet gas 湿气wet grinder 湿磨机wet grinding 湿磨wet grinding mill 湿磨机wet process 湿法wet purification 湿式提净wet quenching 湿淬火wet rotary mill 湿式转磨碎机wet spinning 湿法纺丝wet steam 湿蒸汽wet sterilization 蒸汽杀菌wet strength 湿强度wet vapor 湿蒸汽wettability 可湿性wetting 润湿wetting agent 湿润剂wetting power 润湿力whale oil 鲸油wheat starch 小麦淀粉wheel ore 车轮矿whey 乳清whirepool elutriation 涡液洗浮分析法white arsenic 砒霜white bole 瓷土white cement 白水泥white discharge 拔白印花white factice 白油膏white garnet 白榴石white gold 白金white heat 白热white lead 铅白white lead ore 白铅矿white liquor 白液white oil 白油white pigment 白色颜料white precipitate 白降汞white spirit 石油溶剂white sugar 白糖whiting 白垩whole milk 全乳whole pipet 移液吸管wide mouthed bottle 广口瓶wild rubber 野生橡胶wild yeast 野生酵母willemite 硅锌矿williamson's synthesis 威廉逊合成wilson cloud chamber 威尔逊云室wine vinegar 葡萄酒醋winkler gas generator 温克勒煤气发生器winkler gasifier 温克勒煤气发生器winkler titraion 温克勒滴定winter oil 耐冻油wintergreen oil 冬青油wire 金属丝wire brush 钢丝刷wire gauze 铁丝网wire glass 铁丝网玻璃wire screen 网筛wire sieve 网筛witherite 碳酸钡矿witt theory 威特理论wohl ziegler reaction 沃尔齐格勒反应wolfram 钨wolframate 钨酸盐wolframic acid 钨酸wolframite 钨锰铁矿wollastonite 硅灰石wood adhesive 木材胶粘剂wood alcohol 木精wood ash 木灰wood cellulose 木纤维素wood charcoal 木炭wood chemistry 木材化学wood distillation 木材干馏wood fiber 木纤维wood flour 木粉wood gas 木气wood meal 木粉wood oil 桐油wood pitch 木沥青wood preservative 木材防腐剂wood pulp 木浆wood stain 木染料wood sugar 木糖wood tar 木焦油wood turpentine oil 木材松节油wood vinegar 木醋酸wood's alloy 伍德合金wood's metal 伍德合金woodward hoffmann rule 伍德沃德霍夫曼定则wool 羊毛wool fat 羊毛脂wool grease 羊毛脂wool washing 洗毛wool wax 羊毛脂woolen yarn 粗纺毛纱work hardening 加工硬化workability 和易性working electrode 工诅极working temperature 操茁度working voltage 工诅压wormwood oil 苦艾油wort 麦芽汁woulff's bottle 沃尔夫瓶wrapping 包装wrapping machine 包装机wrapping paper 包装纸writing paper 书写纸wulfenite 钼铅矿wulff process 伍尔夫法wurtz reaction 孚兹反应wurtzite 纤维锌矿x ray analysis x 射线分析x ray astronomy x 射线天文学x ray crystallography x 射线晶体学x ray diagram x 射线图x ray diffraction x 射线衍射x ray diffraction analysis x 射线衍射分析x ray diffraction camera x 射线衍射照相机x ray diffractometer x 射线衍射仪x ray diffration pattern x 射线衍射图x ray flourescence analysis x 射线荧光分析x ray goniometer x 射线测角仪x ray intensity x 射线辐射强度x ray interferometer x 射线干涉仪x ray microanalyser x 射线微区分析器x ray protected glass 防 x 射线玻璃x ray spectrograph x 射线摄谱仪x ray spectrometer x 射线分光计x ray spectrometry x 射线光谱分析法x ray spectrophotometer x 射线分光光度计x ray spectroscopic analysis x 射线光谱分析x ray spectroscopy x 射线分光术x ray spectrum x 射线光谱x ray tube x 射线管x rays x 射线xanthation 黄原酸化xanthene 口山烃xanthine 黄质xanthineoxidase 黄嘌呤氧化酶xanthogenate 黄原酸盐xanthogenic acid 氧荒酸xanthone 氧杂蒽酮xanthophyll 叶黄素xanthoprotein 黄朊xanthoprotein reaction 黄色蛋白反应xanthopterin 黄蝶呤xanthotoxin 黄原毒xanthurenic acid 黄尿酸xanthydrol 口山吨氢醇xenocryst 捕获晶xenon 氙xenon lamp 氙灯xerogel 干凝胶xylan 木聚糖xylene 二甲苯xylenol 二甲苯酚xylenol blue 二甲酚蓝xylenol orange 二甲酚橙xylenol resin 二甲苯酚尸xylidine 二甲代苯胺xylitol 木糖醇xylol 二甲苯xylose 木糖yarn 纱线yeast 酵母yeast strain 酵母菌株yellow enzyme 黄酶yellow mercuric oxide 黄色氧化汞yellow phosphorus 黄磷yellow pigment 黄色素yellow precipitate 黄降汞yellow prussiate 亚铁氰化钾yellow wax 黄蜡yellow wood 黄颜木yellowing 黄色化yield 收得率yield phenomenon 屈服现象yohimbine 育亨宾yolk 蛋黄yperite 芥子气ytterbium 镱ytterbium chloride 氯化镱ytterbium hydroxide 氢氧化镱ytterbium metaphosphate 偏磷酸镱ytterbium nitrate 硝酸镱ytterbium oxide 氧化镱ytterbium oxychloride 氯氧化镱ytterbium sulfate 硫酸镱yttrium 钇yttrium bromide 溴化钇yttrium carbonate 碳酸钇yttrium chloride 氯化钇yttrium fluoride 氟化钇yttrium hydroxide 氢氧化钇yttrium iodide 碘化钇yttrium nitrate 硝酸钇yttrium oxide 氧化钇yttrium phosphate 磷酸钇yttrium sulfate 硫酸钇yttrium sulfide 硫化钇zaffer 花绀青zeeman effect 塞曼效应zein 玉米朊zeolite 泡沸石zeotrope 非共沸混合物zero adjustment 零点蝶zero group 零族zero method 零位法zero order reaction 零级反应zero point energy 零点能zero position 零位zero potential 零电势zerogel 零凝胶zeta potential 界面动电势ziegler catalyst 齐格勒催化剂zinc 锌zinc acetate 醋酸锌zinc acid 锌酸zinc arsenate 砷酸锌zinc blende 闪锌矿zinc bromide 溴化锌zinc carbonate 碳酸锌zinc chlorate 氯酸锌zinc chloride 氯化锌zinc chromate 铬酸锌zinc dust 锌粉zinc fume 锌蒸汽zinc iodide 碘化锌zinc nitrate 硝酸锌zinc oxide 氧化锌zinc oxide paper 氧化锌纸zinc peroxide 过氧化锌zinc phosphate 磷酸锌zinc phosphide 磷化锌zinc plate 锌板zinc powder 锌粉zinc sulfide 硫化锌zinc sulfite 亚硫酸锌zinc vitriol 锌矾zinc white 锌白zincate 锌酸盐zincing 镀锌zincite 红锌矿zineb 代森锌zinkenite 辉锑铅矿zircon 锆石zircon porcelain 锆英石瓷zircon refractory 锆英石耐火材料zirconate 锆酸盐zirconia 氧化锆zirconium 锆zirconium carbide 一碳化锆zirconium chloride 氯化锆zirconium dioxide 二氧化锆zirconium hydroxide 氢氧化锆zirconium nitrate 氢氧化锆zonal structure 带状构造zoochemistry 动物化学zoosterol 动物甾醇zwitter ion 两性离子zymase 酶zymogen 酶原zymology 酶学zymometer 发酵计zymosterol 霉菌甾醇。
下游答案1.平衡分离过程:建⽴在相平衡关系上的,利⽤相的组成差别进⾏混合物体系的分离。
2.拟平衡分离过程:混合物体系之外加⼀个势能场,在它的作⽤下,形成分离场。
使被分离物在分离场的端⾯上浓缩,或者在分离场内形成⼀个稳定的浓度分布。
3.传递通量:流体在分离场内的传递现象可⽤经典流体⼒学中动量(通量)传递、热量(通量)传递和质量(通量)传递规律和作⽤于分离场的外加势能场来描述。
4.特异性结合:主要以蛋⽩质为代表的⽣物⾼分⼦,能分辩特定的物质,再与其可逆性结合。
这种现象是⾮常排他性的,特异性的结合,或称为特异性相互作⽤。
有时也被称为⽣物亲和⼒。
第六章1.临界点:状态超过⽓液共存时的最⾼压⼒和最⾼温度下物质特有的点。
2.拖带剂:添加拖带剂即辅助溶剂以增加物质的溶解度和萃取选择性,是实际运⾏中常⽤的⽅法之⼀。
第九章1.不对称膜:是由很薄的较致密的起分离作⽤的表层(0.1~lµm)和起机械⽀撑作⽤的多孔⽀撑层(100~200µm)构成。
2.复合膜:⼀般是指在多孔的⽀撑膜上复合⼀层很薄的致密的、有特种功能的另⼀种材料的膜层。
3.浓差极化:膜分离过程中的⼀种现象,会降低透⽔率,是⼀个可逆过程。
是指在膜分离过程中,由于⽔透过膜⽽使膜表⾯的溶质浓度增加,在浓度梯度作⽤下,溶质与⽔以相反⽅向向本体溶液扩散,在达到平衡状态时,膜表⾯形成⼀溶质浓度分布边界层,它对⽔的透过起着阻碍作⽤。
4.膜污染:指由于在膜表⾯上形成了附着层或膜孔堵塞等外部因素导致了膜性能变化,根据其具体原因采⽤某种清洗⽅法,可以使膜性能得以恢复。
5. 截留分⼦量:截留分⼦量的定义和测定条件不很严格,⼀般⽤分⼦量差异不⼤的溶质在不易形成浓差极化的操作条件下测定脱除率,将表观脱除率为90%~95%的溶质分⼦量定义为截留分⼦量。
第⼗⼆章1.分配⾊谱:是利⽤混合物中各组分在两种互不相溶的溶剂中的分配系数不同⽽得以分离,其过程相当于连续性的溶剂抽提。
小分子脂水分配系数最优值的计算机模拟
高军晖;刘飞;吴桂强
【期刊名称】《数理医药学杂志》
【年(卷),期】2009(022)004
【摘要】首先建立了药物小分子进入体内到达细胞内受体表面的数学模型,然后通过计算机模拟,计算药物小分子达到受体表面的浓度,最后比较了不同脂水分配系数下的情况.结果表明,拥有最优脂水分配系数的药物小分子,才能更多的到达受体表面.【总页数】2页(P383-384)
【作者】高军晖;刘飞;吴桂强
【作者单位】上海生物信息技术研究中心,上海,200235;上海生物信息技术研究中心,上海,200235;上海生物信息技术研究中心,上海,200235
【正文语种】中文
【中图分类】R311
【相关文献】
1.自来水、长寿村水和小分子水 [J], 陆江
2.SO2在水和有机溶剂中的化学形态及其脂/水分配系数:SO2生理学研究新模式[J], 孟紫强;郭掌珍
3.了人造小分子水,优于长寿村水——卓康小分子团离子水杯探秘 [J], 陆江
4.人造小分子水,优于长寿村水——卓康小分子团离子水杯探秘 [J], 陆江
5.人造小分子水,优于长寿村水——卓康小分子团离子水杯探秘 [J], 陆江
因版权原因,仅展示原文概要,查看原文内容请购买。
分子离子峰英语全文共四篇示例,供读者参考第一篇示例:分子离子峰英语(Molecular Ion Peak English)是指在质谱分析中出现的一种特殊峰,其代表了被分析化合物的分子离子。
质谱分析是一种广泛应用于化学、生物学和环境科学等领域的手段,能够准确地测定化合物的结构和组成。
分子离子峰是质谱图中的主要峰之一,其出现位置和强度可以提供有关被分析样品的重要信息。
质谱是一种通过将化合物转化为离子、然后通过质谱仪分析离子的技术。
在质谱仪中,化合物首先被电离成离子,然后在磁场或电场的作用下根据质量/电荷比大小被分离并检测。
在质谱图中,不同离子的峰表示了不同的分子或碎片离子,其中分子离子峰是其中一个最具代表性和重要的峰。
分子离子峰通常在质谱图中呈现为一个单一的峰,代表了被分析化合物的分子离子。
分子离子是化合物中原子组成的总和,也可以理解为化合物中一个整体的正离子。
分子离子的质荷比和出现位置可以提供有关被分析化合物的分子量和化学结构等信息。
在质谱分析中,分子离子峰的出现是确定化合物结构和组成的重要依据。
除了分子离子峰外,质谱图中还常见其他类型的峰,如碎片离子峰和基质离子峰等。
碎片离子峰是由化合物在质谱仪中发生裂解导致的离子,其可以提供关于化合物结构和分子信息的补充。
而基质离子峰则是由仪器或矩阵等外部原因引起的信号,需要进行区分和排除。
在实际的质谱分析中,分子离子峰的识别和分析是一个关键步骤。
通过比对样品与标准品的质谱图谱,可以确定分子离子峰的出现位置和强度,从而确定化合物的结构和组成。
还可以通过质谱技术的定量分析方法,利用分子离子峰的强度进行化合物的定量测定和分析。
分子离子峰在质谱分析中具有重要的意义,可以为化合物的结构鉴定、定量分析和质谱谱图解释提供有力支持。
通过对分子离子峰的识别和分析,可以准确快速地获得化合物的信息,为化学、生物学和环境科学等领域的研究提供有力的分析手段。
【字数不足,继续】第二篇示例:分子离子峰英语(Molecular Ion Peak English)是质谱学中的一个术语,它通常出现在质谱仪的质谱图谱中。
Oxidation of bisphenol A by ozone in aqueous solutionMarie Deborde a ,b ,*,Sylvie Rabouan a ,b ,Patrick Mazellier a ,b ,Jean-Pierre Duguet c ,Bernard Legube a ,baUniversite´de Poitiers,Laboratoire de Chimie et Microbiologie de l’Eau UMR 6008,Ecole Supe ´rieure d’Inge ´nieurs de Poitiers,Faculte ´de Me ´decine et de Pharmacie,86022Poitiers Cedex,France bCNRS,Laboratoire de Chimie et Microbiologie de l’Eau,UMR CNRS 6008,Poitiers Cedex,France cEAU DE PARIS,Direction Qualite´et Environnement,9,rue Victor Schoelcher,75675Paris Cedex 14,France a r t i c l e i n f oArticle history:Received 11April 2008Received in revised form 3July 2008Accepted 10July 2008Available online 19July 2008Keywords:Endocrine disruptors Bisphenol A By-products LC–MS OzonationReaction pathwaysa b s t r a c tBased on the literature data,an efficient removal of bisphenol A (BPA)during ozonation can be expected under water treatment conditions.However,up to now,the degradation products have not been identified.This has been the main point of this study.Aqueous solutions of BPA have been analyzed by LC–UV,LC–MS or MS/MS at different ozone doses.Under our experimental conditions,up to five major transformation products were evi-denced.According to UV,MS and MS/MS spectra characteristics,chemical structures are consistent with catechol,orthoquinone,muconic acid derivatives of BPA,benzoquinone and 2-(4-hydroxyphenyl)-propan-2-ol.Moreover,three additional minor transformation products have been observed for which chemical structures have been tentatively proposed.In the case of major transformation products,the reaction pathway may involve an initial ozone reaction by electrophilic substitution or 1,3-dipolar cycloaddition.In the presence of ozone,these primary transformation products were shown to be unstable.Further transformation products,with smaller molecular weight and more polar character such as aliphatic acids or aldehydes,are then expected during ozonation.The identifica-tion of minor transformation products was more complex to assess.However,oligomeric structures have been evidenced,certainly arising from secondary reaction between various oxidation products of BPA.The formation of these latter products would not be favored under water treatment conditions.ª2008Elsevier Ltd.All rights reserved.1.IntroductionIn recent years,there has been a growing concern about thepresence of endocrine disruptors in the aquatic environment.The presence of several endocrine disruptors (EDC)in surface waters is nowadays very well-documented (e.g.European Commission,1996;Kolpin et al.,2002).Endocrine disruptors include (i)natural compounds such as steroid hormones natu-rally secreted by humans and animals and (ii)anthropogeniccompounds such as synthetic hormones or agricultural and industrial chemicals (pesticides,alkylphenols,bisphenol A,phthalates plasticizers,etc.).The presence of these EDC is supposed to cause the feminization of male fish observed in several countries over the past 10years (Jobling et al.,1998;Larsson et al.,1999).Bisphenol A (BPA)belongs to the numerous anthropogenic compounds considered as endocrine disruptors.Although less estrogenic toward aquatic organisms than natural hormones,BPA has been reported to be able to induce*Corresponding author .Universite´de Poitiers,Laboratoire de Chimie et Microbiologie de l’Eau UMR 6008,Ecole Supe ´rieure d’Inge ´nieurs de Poitiers,Faculte´de Me ´decine et de Pharmacie,86022Poitiers Cedex,France.Tel.:þ33549454326;fax:þ33549453768.E-mail address:marie.deborde@univ-poitiers.fr (M.Deborde).A v a i l a b l e a t w w w.s c i e n c e d i r e c t.c o mj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /w a t r e s0043-1354/$–see front matter ª2008Elsevier Ltd.All rights reserved.doi:10.1016/j.watres.2008.07.015w a t e r r e s e a r c h 42(2008)4299–4308feminization phenomena in various species of animals(Lind-host et al.,2000;Metcalfe et al.,2001).BPA is commonly used for the production of polycarbonate plastics and epoxy resins (Staples et al.,1998).It is also used as stabilizer or antioxidant for many types of plastics such as polyvinyl chloride(PVC) (Ash and Ash,1995).BPA is detected with a high frequency in surface waters(Kolpin et al.,2002;Stackelberg et al.,2004). However,concentration of BPA is often lower than the pre-dicted no effect concentration of64m g LÀ1(Staples et al.,1998; Heemken et al.,2001)because BPA is quite efficiently degraded by microorganisms(Klecka et al.,2001;West et al.,2001).More-over,leaching of BPA from PVC,polycarbonate and epoxy resins has been observed(Yamamoto and Yasuhara,1999;McNeal et al.,2000).The concentration of BPA in landfill leachates has been reported to be up to12.3m g LÀ1(Yamamoto and Yasuhara, 1999).During drinking-water production and transport,BPA migration from plastic to water can represent a significant source of human exposure to this micropollutant.Hence,before assessing the human health impact of this micropollutant, a good knowledge of BPA fate during water treatment is required.Beside classical kinetic investigated,a more complex issue consists of in the identification of degradation products of emerging pollutants,especially during oxidative treatment. Numerous studies on BPA fate during disinfection by chlorine reagent have been performed.From a kinetic point of view,an apparent second-order rate constant of61.8MÀ1sÀ1at pH7 and20 C has been recently reported(Gallard et al.,2004).For a total chlorine concentration of1mg LÀ1,the half-life of BPA has been evaluated to be13min.The reaction of BPA with chlo-rine leads to the formation of numerous by-products(Hu et al., 2002;Yamamoto and Yasuhara,2002),mainly corresponding to the polychlorination of the aromatic rings.It is worth noting that halogenated derivatives of BPA have been recently charac-terized in detail by ion trap mass spectrometry and NMR spectroscopy(Gallart-Ayala et al.,2007).Additionally,Hu et al. (2002)demonstrated that most of chlorinated BPA by-products react less efficiently with chlorine than BPA does.Therefore, they may accumulate in the solution.Moreover,the estrogenic activity has been observed for more than1h during BPA chlori-nation(Hu et al.,2002;Lee et al.,2004).This demonstrates that chlorination does not consist of in an efficient process to remove estrogenic activity.Few studies concerning BPA ozona-tion have been performed.An efficient removal of BPA by reaction with ozone has been demonstrated(Huber et al., 2003;Lee et al.,2003;Deborde et al.,2005).At pH7and20 C, the apparent second-order rate constant of2.7Â106MÀ1sÀ1 has been reported(taking into account the difference of second-order reaction rate constant between ozone and molec-ular BPA and anionic BPA,i.e.1.68104MÀ1sÀ1,1.06Â109MÀ1sÀ1 and1.11Â109MÀ1sÀ1,respectively,for BPA,BPAÀand BPA2À). Therefore,for an ozone concentration of1mg LÀ1,the half-life of BPA can be evaluated to be lower than15ms(Deborde et al.,2005).This demonstrates the high importance of knowl-edge requirement concerning degradation products.In this work,a mechanistic study of BPA ozonation has been undertaken.In thefirst part,oxidation products of BPA ozona-tion have been tentatively identified by LC coupled with a UV diode array detector and a mass spectrometer.The formation of each degradation compounds has been rationalized by taking into account the knowledge concerning ozone reactivity and the structure of BPA.In a second part,the stability of the oxida-tion products has been studied.2.Materials and methods2.1.Standards and reagentsBPA was supplied by Aldrich(purity!97%).Others reagents (tert-butanol,indigo trisulfonate,methanol,phosphate salts) were of analytical grade and used without further purification.All stock solutions were prepared with purified water (18M U cm,DOC<0.5mg/L)obtained from a Milli-Q Millipore system.Ozone stock solutions were produced by bubbling with O3-containing oxygen through Milli-Q water cooled at 4 C(Bader and Hoigne´,1981).2.2.BPA ozonation experimentsOzonation experiments were performed with Milli-Q purified water,in Pyrex batch reactors of125mL,at20Æ2 C and with an initial pH z6.5.For all experiments,tert-butanol (83.0mM)was added as a OH radical scavenger.Two different types of ozonation experiments have been performed:-Some experiments were performed in presence of BPA in excess to study the chemical structure of the primary trans-formation products(low ozone doses).For this purpose, adequate volumes of ozone aqueous solution(15–400m M) have been added to solutions of BPA(100m M–100mL)witha glass syringe.Under these initial experimental condi-tions,BPA was systematically in excess with respect to ozone.The reaction mixtures were vigorously stirred.The mixtures have been kept in the dark and analyzed by LC after a reaction time of24h.It has been verified that no ozone remained in the mixtures.-Some other experiments were performed with different excess of ozone to determine the stability of the degrada-tion products under these experimental conditions.As above described,volumes of ozone aqueous solution (>400m M)have been added to solutions of BPA.The mixtures have been kept in the dark and analyzed by LC after a reaction time of24h.It has been verified that no ozone remained in the mixtures.2.3.Analytical methodsThe dissolved ozone concentration has been determined according to the indigo method(Bader and Hoigne´,1981). The absorptivity of the different samples at600nm was measured with a SAFAS320UV-visible spectrometer.Aqueous solutions of BPA reacting mixtures have directly been injected without any sample treatment.BPA concentra-tions have been determined by high-performance liquid chromatography(LC)using an automatic Waters717plus autosampler and a Waters600E pump.Isocratic reversed-phase chromatography was optimized using a Kromasil C18 column(4.6Â250mm)packed with5-m m spherical particles.A methanol/water mixture(55/45v/v)was used as the mobilew a t e r r e s e a r c h42(2008)4299–4308 4300phase with aflow-rate of1mL/min.For each sample,the injected volume was200m L.Column effluent was monitored with UV-visible spectrometer(Waters2487)at270nm.Similarly,as above mentioned,aliquots(2mL)for degrada-tion products identification have been analyzed without any sample treatment.Transformation products in ozonated BPA solution were characterized by LC–UV and mass spectrometry analyses(LC–MS and MS/MS).A Thermo chromatographic system(pumpþthermostated autosampler Surveyor)equip-ped with a diode array detector(Surveyor)and an ion trap mass spectrometer DECA XP Ion max was used.The column was an Uptispher HDO C18column(3Â250mm)packed with 5-m m spherical particles.A methanol/water mixture was used as the mobile phase with aflow-rate of0.3mL/min in gradient mode.The initial mobile phase composition was15/ 85(methanol/water).This composition linearly changed to 30/70in15min,then to90/10in30min and the composition remained constant for10min.The injected volume was 100m L.The UV-visible spectra of the products separated by the column have been recorded between200and700nm with the diode array detector.Total scan UV chromatogram (200–700nm)were plotted.Mass spectrometry has been per-formed with atmospheric pressure chemical ionization(APCI) in negative mode with the following parameters:mass range TIC50–550uma,ion transfer capillary temperature250 C; APCI vaporizer temperature450 C;Sheath gasflow9L minÀ1; Corona discharges5m A.MS/MS experiments were performed with the following working conditions:isolation width 3uma,activation time30ms,trapping radio-frequency voltage was set at0.4and the normalized collision energy at40%of the voltage amplitude applied to the end-cap electrode.3.Results and discussionPreliminary BPA ozonation experiments in purified water have shown that the pH of the solution significantly decreased from6.5to about4.5at the end of the experiments.As we will see later,this may be due to the formation of carboxylic acids. Fig.1shows that ozone doses about4–4.5times higher than initial BPA concentrations were necessary for a complete BPA removal under our experimental conditions.3.1.Transformation product identificationFig.2represents an example of LC–UV and LC–MS chromato-grams of ozonated BPA solution(33%BPA removal)in Milli-Q water(initial pH z6.5and T¼20Æ2 C).In addition to BPA peak,six major peaks of product(B0–B5)have been observed. As it is expected during oxidation processes,more polar degra-dation products were formed leading thus to lower retention times than that of BPA.Among these peaks,it is worth noting that the one labeled B2(14.2Æ0.1min)in the UV chromatogram was not observed in the MS chromatogram.The overall UV,MS and MS/MS characteristics corresponding to the peaks are gathered in Table1.For all compounds,a common ion frag-ment at m/z133was observed in the MS spectra.Fig.3shows the mass spectra and the chemical structures of BPA and those that were attributed to peaks B1,B3,B4,and B5.The MS spectra have been recorded in negative APCI mode.Therefore,deprotonated ions are supposed to be observed.3.1.1.Starting compound BPA(Fig.3a)The MS spectrum showed a deprotonated molecular ion at m/z 227and a minor fragment at m/z133.This minor fragment probably results from the cleavage of the tertiary carbon–phenolic ring bond(isopropylidene chain fragmentation)in the ion source.A similar fragmentation is observed for each product B1,B3,B4,and B5.The MS/MS fragmentation spectra showed additional peaks at m/z212(methyl loss)and93 (phenolic fragment).3.1.2.Products B1(Fig.3b)A peak at m/z275certainly corresponding to the deprotonated molecular ion is observed.In addition to the fragment at m/z 133,two other peaks at m/z231(À44)and187(À2Â44)were present.In the MS/MS fragmentation spectra,four fragment ions at m/z231,187,172and93can be observed,beside the already described m/z133.The two fragment ions at m/z231 and187,i.e.two successive mass differences of44,certainly corresponded to the loss of two CO2groups.The peak at m/z 172may arise from the187by methyl loss and the m/z93 corresponded to the phenol moiety.A chemical structure including two acid functions has thus been proposed for this compound.3.1.3.Product B2As previously stated,product B2is not detected by mass spec-trometry.However,some information can be obtained from the UV spectrum recorded by the diode array detector.A compa-rable UV spectra to1,4-benzoquinone with a major absorption band at244nm followed by a weaker absorption plateau until 330nm was obtained for this compound(Patai and Rappoport, 1988)(Fig.4a).In order to confirm the chemical structure of compound B2,an aqueous solution of benzoquinone was then analyzed under similar LC–UV/MS conditions,leading to iden-tical retention time and UVspectrum.102030405060708090100[O3] µM%remainingBPAFig.1–Bisphenol A removal(initial[BPA][100.0±1.4m M) as a function of the applied ozone dose at20±28C,in Milli-Q purified solution(initial pH z6.5).w a t e r r e s e a r c h42(2008)4299–430843013.1.4.Product B 3(Fig.3c)The MS spectrum showed a deprotonated molecular ion at m /z 151.The common fragment at m /z 133is observed in the MS spectrum and the MS/MS fragmentation only showed an addi-tional fragment at m /z 93,already described.Therefore,H 2O elimination from the peak at m /z 151certainly led to m /z 133.The chemical structure of 2-(4-hydroxyphenyl)-propanol-2-ol was then proposed for compound B 3.The deshydratation process is strongly in favor of the presence of an alkyl alcohol function.3.1.5.Product B 4(Fig.3d)Two main fragments at m /z 241(deprotonated molecular ion)and 213are shown in addition to that at m /z 133in the MS spectrum.The MS/MS fragmentation spectrum of m /z 241additionally showed a peak at m /z 226.This ion should corre-spond to a methyl loss.Carbonyl group elimination would lead to fragment at m /z 213but the abundance of this fragment demonstrated that the initial structure is very stable.Accord-ingly,an orthoquinone derivative has then been supposed for this product (Fig.3).Such a chemical structure is strongly in agreement with the UV spectrum of peak B 4(Fig.4b).Actually,a typical feature is observed for this UV spectrum,including three absorption bands at 250–300,370–470and 500–580nm for this kind of compound (Patai and Rappoport,1988)(Fig.4b).3.1.6.Product B 5(Fig.3e)Three additional fragment ions at m /z 243,149and 109are shown beside that at m /z 133.Fragment at m /z 243corre-sponds to deprotonated molecular ion.Similarly to m /z 133Fig.2–(a)LC–MS (TIC 50–550uma)and (b)LC–UV (total scan 200–700nm)chromatograms of ozonated BPA solution (33%BPA removal)under water Milli-Q conditions and 20±28C.w a t e r r e s e a r c h 42(2008)4299–43084302Fig.3–Mass spectra and proposed chemical structure of BPA and transformation product peaks B 1,B 3,B 4and B 5.w a t e r r e s e a r c h 42(2008)4299–43084303ion,fragments at m/z109and149could result from an isopro-pylidene chain fragmentation in an ion source.A catechol derivative was then proposed for compound B5.Concerning the chromatographic peak labeled B0,it certainly corresponded to a mixture of other ozonation products of bisphenol A.Even when the polarity of the eluent was changed,it was not possible to obtain a better separation for the corresponding compounds.However,because of the very low retention time,these compounds certainly corre-sponded to smaller and more polar molecules such asacids Fig.5–Mass spectra and proposed chemical structures of minor transformation products(a)b2and(b)b3.Fig.4–UV spectra and proposed chemical structures of transformation products(a)B2and(b)B4.w a t e r r e s e a r c h42(2008)4299–43084304or aldehydes as previously proposed as final ozonation prod-ucts of aromatic compounds (Legube et al.,1980;Bailey,1982).In addition to the previously described degradation prod-ucts,few minor chromatographic peaks were also observed in Fig.2.Among them,the mass spectra obtained for peaks b 1,b 2and b 3indicated that these compounds were more likely of higher molecular weights than those previously described(294,326and 460g mol À1,respectively).The attribution of precise chemical structure was more difficult since several structures might be possible.However,in the case of compounds b 2and b 3,oligomeric structures resulting from secondary reactions between oxidation products of BPA could be expected.As shown in Fig.5,some chemical structures were proposed for these compounds according to theirmassFig.6–Proposed reaction pathways for the formation of products B 1–B 5.w a t e r r e s e a r c h 42(2008)4299–43084305spectra and in agreement with data from MS/MS fragmenta-tions spectra(Table1).In the case of compound b2, deprotonated molecular ion fragmentation resulting in m/z 217ion in MS/MS analyses is in agreement with the two proposed chemical structures.However,the MS/MS fragmen-tation spectrum indicated a possible CO2loss(À44)from the m/z325ion and the MS/MS fragmentation spectrum of the m/z 217ion likely presented CO2(À44)and CO(À28)loss which would rather be in favor of the chemical structure2in Fig.5a. In the case of compound b3,the MS/MS fragmentation of the m/z243ion was comparable to that observed for the deproto-nated molecular ion of compound B5,which supports our hypothesis.However,the absence of fragment ions between the deprotonated molecular ion(m/z459)and m/z243does not give enough information to define the chemical structure of this compound.As a conclusion,five main oxidation products of BPA were identified under experimental conditions at20Æ2 C.These compounds B1,B2,B3,B4and B5,described in Figs.3and4, seem to be dominant transformation products under our exper-imental conditions.In addition to these apparently major products,other transformation products were also observed. Some of them,with high molecular weight and long retention times,could result from secondary reactions betweenfirst ozonation products of BPA.3.2.Proposed reaction pathway for BPA ozonationDue to its electrophilic character,ozone commonly reacts with aromatic rings by electrophilic substitution or1,3-dipolar cycloaddition(Legube et al.,1980;Bailey,1982;Mvulva and Von Sonntag,2003).Accordingly,similar ozonation mecha-nisms are expected in the case of BPA.The reaction pathways shown in Fig.6can be proposed to explain major transforma-tion products(compounds B1–B5).It is also worth to note that similar structures of degradation products have been recently described for the reaction between ozone and ethinylestradiol (Huber et al.,2004).Concerning minor compounds b2and b3,a definitive attribu-tion of chemical structure is more complicated.However,due to likely high molecular weights of these compounds,oligomeric structures have been proposed(Fig.5).Secondary reactions between oxidation products of BPA in acidic solution(decrease of pH during ozonation)can be proposed(Volhardt,1990)(Fig.7). In the case of compound b2and b3,as shown in Fig.7,these reac-tions would occur between compound B5or hydroquinone and a‘‘3-formylacrylic acid derivative’’leading from compound B1 ozonation(Legube et al.,1980;Bailey,1982)(Fig.6).3.3.Formation of transformation productsas a function of ozone doseFig.8shows the formation of major transformation product according to the ozone dose for an initial BPA concentration of100m M under our experimental conditions.For each major compounds observed,a progressive formation is observed when applying ozone.First,the amount of each degradation products increased with increasing ozone dose.Then,for each major transformation product identified,a progressive decreasing in formation is observed before complete BPA removal.Thus,from these results,a low stability of products B1–B5in the presence of ozone is expected:Actually,in Milli-Q water and for a initial BPA concentration of100m M,an ozone dose!570m M(i.e.slightly superior to ozone dose needed for complete BPA removal)is sufficient to remove all major transformation products.Therefore,compounds B1–B5represent initial transforma-tion products during BPA ozonation.Similar to phenol ozona-tion(Legube et al.,1980;Bailey,1982),further transformations of these products giving smaller and more polar compounds (such as acids or aldehydes)are then expected during ozonation.As previously mentioned,under water treatment condi-tions,i.e.with ozone exposition(‘‘C t’’)<10mg min LÀ1,BPA would be completely degraded.The primary degradation prod-ucts identified in this study present a similar structurethan Fig.7–Proposed reaction pathways for the formation of products b2and b3.w a t e r r e s e a r c h42(2008)4299–43084306BPA with an aromatic ring.Accordingly,ozonation rate constants about 109M À1s À1with ionized forms of phenolic BPA by-products can be expected based on literature data(Hoigne´and Bader,1983;Deborde et al.,2005).The degradation of these products will therefore be as rapid as that of BPA under water treatment conditions.From a different point of view,in agreement with Fig.8,a small increase of ozone dose would lead to a complete degradation of primary aromatic BPA by-products.4.ConclusionIn this work,we investigated the transformation products arising from bisphenol A reaction with ozone.Additionally,we rely on literature data for the mechanism pathways of the reaction.Under our experimental conditions (Milli-Q purified water),five major transformation products were identified according to the mass and UV spectra information.The reaction of ozone would lead,as primary transformation products,to the formation of either catechol,orthoquinone and muconic acid derivative,or benzoquinone and 2-(4-hydroxyphenyl)-propan-2-ol,according to already well-described ozone reaction modes.In addition to these major transformation products,other transformation products were also observed.Chemical struc-tures of these minor compounds are still unclear.However,it was suggested that some of them,with high molecular weight and long retention times,could result from secondary reactions between first ozonation products of bisphenol A.Under water treatment conditions,the formation of the observed minor transformation products is probably negligible due to low initial bisphenol A concentrations.Concerning the major transformation products (catechol,orthoquinone and muconic acid derivative,benzoquinone and 2-(4-hydroxy-phenyl)-propan-2-ol),a low stability of these compounds is expected by considering their variation according to the ozone dose applied.For all these compounds,further transformationsgiving smaller and more polar compounds (such as acids or aldehydes)are then expected.AcknowledgmentsThe authors gratefully thank EAU DE PARIS for the financial support.r e f e r e n c e sAsh,M.,Ash,I.,1995.Handbook of Plastic and Rubber Additives.Gower,Hampshire,UK.Bader,H.,Hoigne´,J.,1981.Determination of ozone in water by the indigo method.Water Research 15,449–456.Bailey,P.S.,1982.Ozonation in Organic Chemistry,vol.39-II.Academic Press,New York.Deborde,M.,Rabouan,S.,Duguet,J.P.,Legube,B.,2005.Kinetics ofaqueous ozone-induced oxidation of some endocrine disruptors.Environmental Science and Technology 39,6086–6092.European Commission,1996,European Workshop on the Impactof Endocrine Disrupters on the Human Health and Wildlife,Report EUR 17549.Report of the Proceedings,December 2–4,1996,Weybridge,U.K.Gallard,H.,Leclercq,A.,Croue´,J.P.,2004.Chlorination of bisphenol A:kinetics and by-products formation.Chemosphere 56,465–473.Gallart-Ayala,H.,Moyano,E.,Galceran,M.T.,2007.Liquidchromatography/multi-stage mass spectrometry of bisphenol A and its halogenated derivatives.Rapid Communications in Mass Spectrometry 21,4039–4048.Heemken,O.P.,Reincke,H.H.,Stachel,B.,Theobald,N.,2001.Theoccurrence of xenoestrogens in the Elbe river and North sea.Chemosphere 45,245–259.Hoigne´,J.,Bader,H.,1983.Rate constants of reactions of ozone with organic and inorganic compounds –II.Water Research 17,185–194.Hu,J.Y.,Aizawa,T.,Ookubo,S.,2002.Products of aqueouschlorination of bisphenol A and their estrogenic activity.Environmental Science and Technology 36,1980–1987.Huber,M.M.,Canonica,S.,Park,G.Y.,Von Gunten,U.,2003.Oxidation of pharmaceuticals during ozonation and advanced oxidation processes.Environmental Science and Technology 37,1016–1024.Huber,M.M.,Ternes,T.A.,Von Gunten,U.,2004.Removal ofestrogenic activity and formation of oxidation products during ozonation of 17a -ethinylestradiol.Environmental Science and Technology 38,5177–5186.Jobling,S.,Nolan,M.,Tyler,C.R.,Brighty,G.,Sumpter,J.P.,1998.Widespread sexual disruption in wild fish.Environmental Science and Technology 32,2498–2506.Klecka,G.M.,Gonsior,S.J.,West,R.J.,Goodwin,P.A.,Markham,D.A.,2001.Biodegradation of bisphenol A in aquaticenvironments:rivers die-away.Environmental Science and Technology 20,2725–2735.Kolpin,D.W.,Furlong,E.T.,Meyer,M.T.,Thurman,E.M.,Zaugg,S.D.,Barber,L.B.,Buxton,H.T.,2002.Pharmaceuticals,hormones and other organic wastewater contaminants in U.S.streams,1999–2000:a national reconnaissance.Environmental Science and Technology 36,1202–1211.Larsson,D.G.J.,Adolfsson-Erici,M.,Parkkonen,J.,Pettersson,M.,Berg,A.H.,Olsson,P.E.,Fo ¨rlin,L.,1999.Ethinyloestradiol-an undesired fish contraceptive?Aquatic Toxicology 45,91–97.[O 3] µM[B P A ] a n d [B 2] µM010203040506070B 1, B 3, B 4 and B 5 abundance relative to initial BPA areaFig.8–Transformation product variation according to the ozone dose applied.w a t e r r e s e a r c h 42(2008)4299–43084307。
专利名称:具有功能化栅电极和基电极的纳米柱场效应和结型晶体管
专利类型:发明专利
发明人:阿迪蒂亚·拉贾戈帕,杰峰·常,奥利佛·普拉特布格,斯蒂芬·彼得里,阿克塞尔·谢勒,查尔斯·L·奇尔哈特
申请号:CN201380039616.3
申请日:20130712
公开号:CN105408740A
公开日:
20160316
专利内容由知识产权出版社提供
摘要:描述了用于分子感测的系统和方法。
描述的分子传感器基于场效应晶体管或双极结型晶体管。
这些晶体管具有带有与基电极或栅电极接触的功能化层的纳米柱。
该功能化层能够结合分子,这会在传感器中引发电信号。
申请人:加州理工学院,赛诺菲美国服务公司
地址:美国加利福尼亚州
国籍:US
代理机构:北京安信方达知识产权代理有限公司
更多信息请下载全文后查看。
概述1.药剂学(Pharmaceutics )是研究药物制剂的基本理论、处方设计、制备工艺、质量控制与合理应用等内容的综合性应用技术科学。
2. 药物剂型(Dosage form )将药物制备成适合某种给药途径的适宜形式,3. 药物制剂 (Preparations) 以剂型体现的药物的具体品种,简称制剂 。
药剂学宗旨:制备安全、有效、稳定、使用方便的药物制剂药物制剂的设计制剂设计的基本原则1、安全性(safety )2、有效性(effectiveness )3、稳定性(stability )4、可控性(controllability )5、顺应性(compliance )片剂、胶囊、颗粒剂、口服液哪个吸收快? 口服液❖ 溶出速率:包衣片﹤片剂﹤胶囊剂﹤散剂﹤混悬剂Handerson-Hasselbach 公式油/分配系数(P )=油相中药物浓度/水相中药物浓度越趋近于1,最易透过生物膜吸收多晶型:药物常存在有一种以上的晶型,称为多晶型药物制剂的稳定性药物制剂的稳定性包括化学、物理和生物学稳定性三个方面(考区分) [][]HA A pK pH a -+=log [][]++=HB B pK pH a log一级反应半衰期:反应物消耗一半所需的时间k t 693.021=一级反应有效期:对于药物降解,常用降解10%所需的时间来表示,记作t0.9k t 1054.09.0=一级反应的t1/2 和t0.9在恒温时与反应物浓度无关水解和氧化是药物降解的主要途径一、水解(一)酯类药物的水解酯类药物水解后往往使溶液PH 下降,有些药物灭菌后PH 下降,首先考虑有水解反应的可能代表物:盐酸普鲁卡因(二)酰胺类药物的水解代表物:氯霉素、青霉素类、头孢菌素类、巴比妥类影响药物制剂降解的因素及稳定化方法(一)处方因素1、PH 值的影响2、广义酸碱催化的影响3、溶剂的影响4、离子强度的影响5、表面活性剂的影响6、辅料的影响(二)外界因素1、温度的影响(阿伦尼乌斯公式RT E Ae k/-= )2、光线的影响3、空气的影响4、金属离子的影响5、包装材料的影响6、湿度和水分的影响稳定性试验包括影响因素试验、加速试验与长期试验(一)影响因素试验1、高温试验60︒C温度下放置10天,于第5天、第10天取样,不稳定改为40︒C2、高湿试验在25℃分别于RH75% ±5%及RH90%±5%条件下放置10天,在第5天和第10天取样。
Alevel基础化学常用英语词汇1.The Ideal-Gas Equation 理想气体状态方程2. Partial Pressures 分压3. Real Gases: Deviation from Ideal Behavior 真实气体:对理想气体行为的偏离4. The van der Waals Equation 范德华方程5. System and Surroundings 系统与环境6. State and State Functions 状态与状态函数7. Process 过程8. Phase 相9. The First Law of Thermodynamics 热力学第一定律10. Heat and Work 热与功11. Endothermic and Exothermic Processes 吸热与发热过程12. Enthalpies of Reactions 反应热13. Hess’s Law 盖斯定律14. Enthalpies of Formation 生成焓15. Reaction Rates 反应速率16. Reaction Order 反应级数17. Rate Constants 速率常数18. Activation Energy 活化能19. The Arrhenius Equation 阿累尼乌斯方程20. Reaction Mechanisms 反应机理21. Homogeneous Catalysis 均相催化剂22. Heterogeneous Catalysis 非均相催化剂23. Enzymes 酶24. The Equilibrium Constant 平衡常数25. the Direction of Reaction 反应方向26. Le Chatelier’s Principle 列·沙特列原理27. Effects of Volume, Pressure, Temperature Changes and Catalysts体积,压力,温度变化以及催化剂的影响28. Spontaneous Processes 自发过程29. Entropy (Standard Entropy) 熵(标准熵)30. The Second Law of Thermodynamics 热力学第二定律31. Entropy Changes 熵变32. Standard Free-Energy Changes 标准自由能变33. Acid-Bases 酸碱34. The Dissociation of Water 水离解35. The Proton in Water 水合质子36. The pH Scales pH值37. Bronsted-Lowry Acids and BasesBronsted-Lowry 酸和碱38. Proton-Transfer Reactions 质子转移反应39. Conjugate Acid-Base Pairs 共轭酸碱对40. Relative Strength of Acids and Bases 酸碱的相对强度41. Lewis Acids and Bases 路易斯酸碱42. Hydrolysis of Metal Ions 金属离子的水解43. Buffer Solutions 缓冲溶液44. The Common-Ion Effects 同离子效应45. Buffer Capacity 缓冲容量46. Formation of Complex Ions 配离子的形成47. Solubility 溶解度48. The Solubility-Product Constant Ksp 溶度积常数49. Precipitation and separation of Ions 离子的沉淀与分离50. Selective Precipitation of Ions 离子的选择沉淀51. Oxidation-Reduction Reactions 氧化还原反应52. Oxidation Number 氧化数53. Balancing Oxidation-Reduction Equations 氧化还原反应方程的配平54. Half-Reaction 半反应55. Galvani Cell 原电池56. V oltaic Cell 伏特电池57. Cell EMF 电池电动势58. Standard Electrode Potentials 标准电极电势59. Oxidizing and Reducing Agents 氧化剂和还原剂60. The Nernst Equation 能斯特方程61. Electrolysis 电解62. The Wave Behavior of Electrons 电子的波动性63. Bohr’s Model of The Hydrogen Atom 氢原子的波尔模型64. Line Spectra 线光谱65. Quantum Numbers 量子数66. Electron Spin 电子自旋67. Atomic Orbital 原子轨道68. The s (p, d, f) Orbital s(p,d,f)轨道69. Many-Electron Atoms 多电子原子70. Energies of Orbital 轨道能量71. The Pauli Exclusion Principle 泡林不相容原理72. Electron Configurations 电子构型73. The Periodic Table 周期表74. Row 行75. Group 族76. Isotopes, Atomic Numbers, and Mass Numbers 同位素,原子数,质量数77. Periodic Properties of the Elements 元素的周期律78. Radius of Atoms 原子半径79. Ionization Energy 电离能80. Electronegativity 电负性81. Effective Nuclear Charge 有效核电荷82. Electron Affinities 亲电性83. Metals 金属84. Nonmetals 非金属85. Valence Bond Theory 价键理论86. Covalence Bond 共价键87. Orbital Overlap 轨道重叠88. Multiple Bonds 重键89. Hybrid Orbital 杂化轨道90. The VSEPR Model 价层电子对互斥理论91. Molecular Geometries 分子空间构型92. Molecular Orbital 分子轨道93. Diatomic Molecules 双原子分子94. Bond Length 键长95. Bond Order 键级96. Bond Angles 键角97. Bond Enthalpies 键能98. Bond Polarity 键矩99. Dipole Moments 偶极矩100. Polarity Molecules 极性分子101. Polyatomic Molecules 多原子分子102. Crystal Structure 晶体结构103. Non-Crystal 非晶体104. Close Packing of Spheres 球密堆积105. Metallic Solids 金属晶体106. Metallic Bond 金属键107. Alloys 合金108. Ionic Solids 离子晶体109. Ion-Dipole Forces 离子偶极力110. Molecular Forces 分子间力111. Intermolecular Forces 分子间作用力112. Hydrogen Bonding 氢键113. Covalent-Network Solids 原子晶体114. Compounds 化合物115. The Nomenclature, Composition andStructure of Complexes 配合物的命名,组成和结构116. Charges, Coordination Numbers,and Geometries 电荷数、配位数、及几何构型117. Chelates 螯合物118. Isomerism 异构现象119. Structural Isomerism 结构异构120. Stereoisomerism 立体异构121. Magnetism 磁性122. Electron Configurations in OctahedralComplexes 八面体构型配合物的电子分布123. Tetrahedral and Square-planar Complexes 四面体和平面四边形配合物124. General Characteristics 共性125. s-Block Elements s区元素126. Alkali Metals 碱金属127. Alkaline Earth Metals 碱土金属128. Hydrides 氢化物129. Oxides 氧化物130. Peroxides and Superoxides 过氧化物和超氧化物131. Hydroxides 氢氧化物132. Salts 盐133. p-Block Elements p区元素134. Boron Group (Boron, Aluminium, Gallium, Indium, Thallium) 硼族(硼,铝,镓,铟,铊)135. Borane 硼烷136. Carbon Group (Carbon, Silicon, Germanium, Tin, Lead) 碳族(碳,硅,锗,锡,铅)137. Graphite, Carbon Monoxide, Carbon Dioxide 石墨,一氧化碳,二氧化碳138. Carbonic Acid, Carbonates and Carbides 碳酸,碳酸盐,碳化物139. Occurrence and Preparation of Silicon 硅的存在和制备140. Silicic Acid,Silicates 硅酸,硅酸盐141. Nitrogen Group (Phosphorus, Arsenic,Antimony, and Bismuth) 氮族(磷,砷,锑,铋)142. Ammonia, Nitric Acid, Phosphoric Acid 氨,硝酸,磷酸143. Phosphorates, phosphorus Halides 磷酸盐,卤化磷144. Oxygen Group (Oxygen, Sulfur, Selenium,and Tellurium) 氧族元素(氧,硫,硒,碲)145. Ozone, Hydrogen Peroxide 臭氧,过氧化氢146. Sulfides 硫化物147. Halogens (Fluorine, Chlorine, Bromine,Iodine) 卤素(氟,氯,溴,碘)148. Halides, Chloride 卤化物,氯化物149. The Noble Gases 稀有气体150. Noble-Gas Compounds 稀有气体化合物151. d-Block elements d区元素152. Transition Metals 过渡金属153. Potassium Dichromate 重铬酸钾154. Potassium Permanganate 高锰酸钾155. Iron Copper Zinc Mercury 铁,铜,锌,汞156. f-Block Elements f区元素157. Lanthanides 镧系元素158. Radioactivity 放射性159. Nuclear Chemistry 核化学160. Nuclear Fission 核裂变161. Nuclear Fusion 核聚变162. analytical chemistry 分析化学163. qualitative analysis 定性分析164. quantitative analysis 定量分析165. chemical analysis 化学分析166. instrumental analysis 仪器分析167. titrimetry 滴定分析168. gravimetric analysis 重量分析法169. regent 试剂170. chromatographic analysis 色谱分析171. product 产物172. electrochemical analysis 电化学分析173. on-line analysis 在线分析174. macro analysis 常量分析175. characteristic 表征176. micro analysis 微量分析177. deformation analysis 形态分析178. semimicro analysis 半微量分析179. systematical error 系统误差180. routine analysis 常规分析181. random error 偶然误差182. arbitration analysis 仲裁分析183. gross error 过失误差184. normal distribution 正态分布185. accuracy 准确度186. deviation偏差187. precision 精密度188. relative standard deviation相对标准偏差(RSD)189. coefficient variation 变异系数(CV)190. confidence level 置信水平191. confidence interval 置信区间192. significant test 显著性检验193. significant figure 有效数字194. standard solution 标准溶液195. titration 滴定196. stoichiometric point 化学计量点197. end point滴定终点198. titration error 滴定误差199. primary standard 基准物质200. amount of substance 物质的量201. standardization 标定202. chemical reaction 化学反应203. concentration浓度204. chemical equilibrium 化学平衡205. titer 滴定度206. general equation for a chemical reaction化学反应的通式207. proton theory of acid-base 酸碱质子理论208. acid-base titration 酸碱滴定法209. dissociation constant 解离常数210. conjugate acid-base pair 共轭酸碱对211. acetic acid 乙酸212. hydronium ion水合氢离子213. electrolyte 电解质214. ion-product constant of water 水的离子积215. ionization 电离216. proton condition 质子平衡217. zero level零水准218. buffer solution缓冲溶液219. methyl orange 甲基橙220. acid-base indicator 酸碱指示剂221. phenolphthalein 酚酞222. coordination compound 配位化合物223. center ion 中心离子224. cumulative stability constant 累积稳定常数225. alpha coefficient 酸效应系数226. overall stability constant 总稳定常数227. ligand 配位体228. ethylenediamine tetraacetic acid乙二胺四乙酸229. side reaction coefficient 副反应系数230. coordination atom 配位原子231. coordination number 配位数232. lone pair electron 孤对电子233. chelate compound 螯合物234. metal indicator 金属指示剂235. chelating agent 螯合剂236. masking 掩蔽237. demasking 解蔽238. electron 电子239. catalysis 催化240. oxidation氧化241. catalyst 催化剂242. reduction 还原243. catalytic reaction 催化反应244. reaction rate 反应速率245. electrode potential 电极电势246. activation energy 反应的活化能247. redox couple 氧化还原电对248. potassium permanganate 高锰酸钾249. iodimetry碘量法250. potassium dichromate 重铬酸钾251. cerimetry 铈量法252. redox indicator 氧化还原指示253. oxygen consuming 耗氧量(OC)254. chemical oxygen demanded 化学需氧量(COD) 255. dissolved oxygen 溶解氧(DO)256. precipitation 沉淀反应257. argentimetry 银量法258. heterogeneous equilibrium of ions多相离子平衡259. aging 陈化260. postprecipitation 继沉淀261. coprecipitation 共沉淀262. ignition 灼烧263. fitration 过滤264. decantation 倾泻法265. chemical factor 化学因数266. spectrophotometry 分光光度法267. colorimetry 比色分析268. transmittance 透光率269. absorptivity 吸光率270. calibration curve 校正曲线271. standard curve标准曲线272. monochromator 单色器273. source 光源274. wavelength dispersion 色散275. absorption cell吸收池276. detector 检测系统277. bathochromic shift 红移278. Molar absorptivity 摩尔吸光系数279. hypochromic shift 紫移280. acetylene 乙炔281. ethylene 乙烯282. acetylating agent 乙酰化剂283. acetic acid 乙酸284. adiethyl ether 乙醚285. ethyl alcohol 乙醇286. acetaldehtde 乙醛287. β-dicarbontl compound β–二羰基化合物288. bimolecular elimination 双分子消除反应289. bimolecular nucleophilic substitution双分子亲核取代反应290. open chain compound 开链族化合物291. molecular orbital theory 分子轨道理论292. chiral molecule 手性分子293. tautomerism 互变异构现象294. reaction mechanism 反应历程295. chemical shift 化学位移296. Walden inversio 瓦尔登反转n297. Enantiomorph 对映体298. addition rea ction 加成反应299. dextro- 右旋300. levo- 左旋301. stereochemistry 立体化学302. stereo isomer 立体异构体303. Lucas reagent 卢卡斯试剂304. covalent bond 共价键305. conjugated diene 共轭二烯烃306. conjugated double bond 共轭双键307. conjugated system 共轭体系308. conjugated effect 共轭效应309. isomer 同分异构体310. isomerism 同分异构现象311. organic chemistry 有机化学312. hybridization 杂化313. hybrid orbital 杂化轨道314. heterocyclic compound 杂环化合物315. peroxide effect 过氧化物效应t316. valence bond theory 价键理论317. sequence rule 次序规则318. electron-attracting grou p 吸电子基319. Huckel rule 休克尔规则320. Hinsberg test 兴斯堡试验321. infrared spectrum 红外光谱322. Michael reacton 麦克尔反应323. halogenated hydrocarbon 卤代烃324. haloform reaction 卤仿反应325. systematic nomenclatur 系统命名法e 326. Newman projection 纽曼投影式327. aromatic compound 芳香族化合物328. aromatic character 芳香性r329. Claisen condensation reaction克莱森酯缩合反应330. Claisen rearrangement 克莱森重排331. Diels-Alder reation 狄尔斯-阿尔得反应332. Clemmensen reduction 克莱门森还原333. Cannizzaro reaction 坎尼扎罗反应334. positional isomers 位置异构体335. unimolecular elimination reaction单分子消除反应336. unimolecular nucleophilic substitution单分子亲核取代反应337. benzene 苯338. functional grou 官能团p339. configuration 构型340. conformation 构象341. confomational isome 构象异构体342. electrophilic addition 亲电加成343. electrophilic reagent 亲电试剂344. nucleophilic addition 亲核加成345. nucleophilic reagent 亲核试剂346. nucleophilic substitution reaction亲核取代反应347. active intermediate 活性中间体348. Saytzeff rule 查依采夫规则349. cis-trans isomerism 顺反异构350. inductive effect 诱导效应 t351. Fehling’s reagent 费林试剂352. phase transfer catalysis 相转移催化作用353. aliphatic compound 脂肪族化合物354. elimination reaction 消除反应355. Grignard reagent 格利雅试剂356. nuclear magnetic resonance 核磁共振357. alkene 烯烃358. allyl cation 烯丙基正离子359. leaving group 离去基团360. optical activity 旋光性361. boat confomation 船型构象362. silver mirror reaction 银镜反应363. Fischer projection 菲舍尔投影式364. Kekule structure 凯库勒结构式365. Friedel-Crafts reaction傅列德尔-克拉夫茨反应366. Ketone 酮367. carboxylic acid 羧酸368. carboxylic acid derivative 羧酸衍生物369. hydroboration 硼氢化反应370. bond oength 键长371. bond energy 键能372. bond angle 键角373. carbohydrate 碳水化合物374. carbocation 碳正离子375. carbanion 碳负离子376. alcohol 醇377. Gofmann rule 霍夫曼规则378. Aldehyde 醛379. Ether 醚380. Polymer 聚合物m/hgjy123456/blog/item/ff2571c759c2d4ded0006088.html。
a r X i v :c o n d -m a t /0403203v 1 [c o n d -m a t .s t a t -m e c h ] 8 M a r 2004Ordering phenomena in cooling granular mixturesC.Cattuto 1and U.Marini Bettolo Marconi 21Frontier Research System,The Institute of Physical and Chemical Research (RIKEN),Wako-shi,Saitama 351-0198,Japan2Dipartimento di Fisica,Universit`a di Camerino and Istituto Nazionale di Fisica della Materia,Via Madonna delle Carceri,62032Camerino,ItalyWe report two phenomena,induced by dynamical correlations,that occur during the free cooling of a two-dimensional mixture of inelastic hard disks.First,we show that,due to the onset of velocity correlations,the ratio of the kinetic energies associated with the two species changes from the value corresponding to the homogeneous cooling state to a value approximately given by the mass ratio m 1/m 2of the two species.Second,we report a novel segregation effect that occurs in the late stage of cooling,where interconnected domains appear.Spectral analysis of the composition field reveals the emergence of a growing characteristic length.PACS numbers:5.40,45.70.Mg,A gas of inelastic hard spheres (IHS),due to its rela-tive simplicity,represents a standard reference model for fluidized granular materials [1].Many of its properties are well understood.In particular,a great deal of atten-tion has been devoted to the study of the cooling process that occurs when an assembly of grains,initially in mo-tion,evolves in the absence of any external energy feed.In this case,while the asymptotic state (all particles at rest)is trivial,the dynamics of the cooling process dis-plays several interesting features.Three stages can be identified:i)After an initial transient,during which the velocity distribution is not necessarily Maxwellian [3],the system enters the homogeneous cooling state (HCS),where the average kinetic energy decreases according to Haff’s law [4],K (t )=K (0)/(1+t/t 0)2.Such a state is characterized by a uniform density and a lack of strong correlations among the velocities [5].ii)An intermediate regime,wherein the system re-mains homogeneous,but the velocity field develops vor-tices (fig.1).These vortices result from the paralleliza-tion of velocities induced by inelasticity.Due to the pro-gressive build up of velocity correlations,the kinetic en-ergy decays as t −d/2[2,6,7].iii)Goldhirsch and Zanetti [2]suggested that vortices represent the physical mechanism leading to the third stage,wherein the density field itself loses its homogene-ity and dense clusters appear,surrounded by rarefied re-gions.At this stage neither the velocity nor the temper-ature fields are homogeneous anymore (see fig.1).Most of the existing information on the cooling proper-ties of granular matter concern one-component systems.A few investigations on binary mixtures [9,10]focused on the HCS only.Garz´o and Dufty [9]showed that for a binary mixture the average kinetic energies per par-ticle –i.e.the kinetic temperatures K 1and K 2of the two species –are different,and their ratio γ=K 1/K 2remains constant in the HCS.In this Letter we explore the cooling dynamics of a mix-ture of inelastic hard disks across the previously listedFIG.1:Status of the system at points A (upper panel)and B (lower panel)of fig.2.The instantaneous velocity field is superimposed.Early vortices can be seen in the upper panel,with particles still (approximately)uniformly distributed.In the lower panel,dense clustering has appeared and the typical size of vortices has significantly increased.Strong correlations in the velocity field are visible.dynamical regimes by using an event-driven molecular dynamics simulation and a recently introduced lattice model [11].We show that during the second stage of cool-ing –at the onset of local velocity correlations –the ra-tio of the kinetic temperatures of the two species sharply departs from the nearly steady value attained during the homogeneous cooling stage,and eventually approaches an asymptotic value that only depends on the mass ratio of the two species.In the last stage we find evidence for segregation of the species,which is revealed both by lo-2different values of the coefficient of restitution.The crossover from K1/K2∼1to K1/K2∼m1/m2is clearly visible.For comparison,we also show the corresponding result for the lattice model.The status of the system at points A and B is shown infig.1.cal indicators and by spectral analysis of the composition field.For our model we consider a two-dimensional(2D)sys-tem containing N1=5×104and N2=N1disks of equal radius R and masses m1and m2,respectively.Initially, the discs are uniformly distributed in a square domain of side L=103R,with periodic boundary conditions, and their velocities are set by sampling Maxwell distri-butions corresponding to the same temperature.In the IHS model the collisions are instantaneous,conserve total momentum and dissipate a fraction of the kinetic energy. The velocity v′j of a particle j after collision isv′j=v j+µij[1+r(v n)]v n n,(1) where n=(r i−r j)/|r i−r j|is the unit vector joining the centers r i and r j of the disks at contact,v n=(v i−v j)·n is the relative normal velocity of the disks before collision,µij=m i/(m i+m j),and r(v n)is a velocity-dependent coefficient of restitution.Inelastic collapse is avoided by choosing a r(v n)such that,for relative normal velocities falling below a threshold v0,r approaches unity when v n→0,according to the power law given in ref.[8]. Different cutoffvelocities were simulated in order to as-certain the robustness of the investigated properties.An efficient event-driven simulation allowed us to probe the late stages of the cooling process[12].During the initial homogeneous cooling phase,the be-by the Boltzmann-Theoretical valuesthis framework,microscopic param-These theoreticalobserved in the tem-the BE approach,one canregime cannot beIndeed,hydro-with respectvelocityfield.Itshave not been1(t)and K2(t)ex-−1scaling behaviorssystems.rather sharplyHCS to a higherat which the(1−r2)−1and di-elasticity.Asthe lower plateau is well accounted for by the BE theory.Fromfig.2one can also see that the asymptotic,higher plateau corre-sponds to K1/K2=m1/m2.This correspondence was confirmed for several values of the density ratio of the two species.Whereas in the HCS the inelasticity deter-mines only a small departure from equipartition,in the intermediate and late regime such a breakdown becomes more severe:the specific asymptotic value ofγmeans that particles with different masses eventually share the same velocity distributions,i.e.“equipartition”of veloci-ties eventually sets in.Although not previously reported, the phenomenon has a simple explanation:due to the in-elasticity of collisions,the velocities of the particles tend to become more and more parallel.Since momentum con-servation does not allow the velocities to select a unique direction,the velocityfield develops many vortices(see fig.1),i.e.a situation of local alignment.The occurrence of a collision depends only on the relative velocities of particles,and not on their masses,coefficients of resti-tution or other properties.Therefore,the velocity of a given particle tends to be locked to the velocity of neigh-bors,regardless of their species.The fact that the ratio K1/K2eventually attains the value m1/m2is a striking manifestation of the long range velocity correlations that develop in a granularfluid.We checked the above argu-ment against a different case,wherein densities are kept unchanged and the masses of the two species are made equal by choosing different radii for them.The result is shown infig.2(gray diamonds).In this case the value ofγstays close to m1/m2=1.Also,the dependence on other parameters(such as different restitution coeffi-cients,geometrical factors,tangential friction modeled as in ref.[12])was found to be rather weak.Of course,real granular materials are subject to more complex dissipa-tive forces.Our tests,however,show thatγasymptot-ically depends mainly on m1/m2,although the detailed crossover dynamics reflects the specific parameters.It is interesting to observe that the previously pre-sented scenario is reproduced by a very simple extensionto mixtures of the inelastic lattice model of ref.[11]. The mixture consists of N1and N2“particles”with thesame physical properties as above,sitting randomly onthe M=N1+N2nodes of a2D triangular lattice.Every particle is characterized by a2D vector velocity v i,but itsposition staysfixed.A dynamics is induced by randomlychoosing two neighboring particles and updating their velocities according to the rule of eq.1.The free stream-ing component of the dynamics is neglected,but velocity correlations are properly taken into account.After anexponential decay,the energy decreases as K∼τ−d/2,as usual.Correlations become more and more important as time elapses,showing the presence of a growing lengthscale L(τ)∼τ1/2associated with the average diameterof the vortices[11].As shown infig.2(gray triangles) the lattice mixture model can reproduce the asymptoticvalue ofγ.To demonstrate that velocity correlations are responsible for the specific value ofγ,we shuffled the ve-locity of each particle right after collision,by exchangingits velocity with that of a randomly chosen particle.This suppresses completely theτ−d/2energy decay,the vortexinstability,and the crossover inγ.In the third stage of cooling,densityfluctuationslead to cluster formation,like in mono-disperse sys-tems.In addition to that(seefig.4),we observe anovel and appreciable segregation of species,that wequantify by studying the following ratios S1and S2of integrated(partial)pair distribution functions:Sα= D0gαα(r)r dr/ D0gαβ(r)r dr,where gαβ(r)(α,β= 1,2)are the partial pair correlation functions and D is acutoffdistance,here chosen equal to5R.Fig.3shows the time evolution of S1and S2for different choices of the mass ratio.For values ofτcorresponding to the transi-tion inγ(refer tofig.2),local segregation appears:heavy particles tend to group together(S1>1)and the effect increases with the mass ratio.A simple heuristic argu-ment can explain such afinding.The average change of kinetic energy ∆Eα βof a particle of speciesαcolliding with a particle of speciesβcan be expressed as a function of the local kinetic temperatures[15]T1and T2as[13]∆Eα β=mαmβ2√Tαmα(mµ+mβ)−2FIG.4:Composition pattern within a cluster afterτ=1300collisions per particle,for r=0.95and m1/m2=8.Black discs correspond to heavier particles.The radius of the par-ticles is R=0.1cm.In inset:global state of the system.tal densityfield(seefig.5,inset):the compositionfieldand the densityfield have very different characteristic lengths.In conclusion,we found that the strong velocity cor-relations induced by inelasticity result in a ratio of ki-netic energies K1/K2≃m1/m2that is not accounted for by the BE theory,which underestimates the effect ofdynamical correlations.This can be regarded as a man-ifestation of the noise reduction effect[14]of granular systems,where a suitable collective arrangement of the velocities minimizes dissipation.In addition to that,in the clustered stage,segregation builds up according to a phenomenology which bears similarities to the spin-odal decomposition occurring in metallic alloys,where a growing characteristic length appears in the composition field. C.C.gratefully acknowledges support from the Japan Society for the Promotion of Science(JSPS).[1]H.M.Jaeger et al.,Rev.Mod.Phys.68,1259(1996).[2]I.Goldhirsch and G.Zanetti,Phys.Rev.Lett.70,1619(1993)and I.Goldhirsch et al.,p.8,1(1993).[3]I.Goldhirsch et al.,p.37,in“Granular Gas Dynamics”,T.Poeschel and N.V.Brilliantov(Eds),Lecture Notes in Physics,Springer Verlag,Berlin(2003).[4]K.Haff,J.Fluid Mech.134,401(1983).[5]T.Poeschel et al.,Int.J.Mod.Phys.C13,1263(2002).[6]R.Brito and M.E.Ernst,Europhys.Lett.43,497(1998).[7]J.J.Brey et al.,Phys.Rev.E54,3664(1996).[8]on et al.,Phys.Rev.E60,4340(1999).[9]V.Garz´o and J.W.Dufty,Phys.Rev.E,605706(1999).[10]U.M.B.Marconi and A.Puglisi,Phys.Rev.E65,051305(2002)and Phys.Rev.E66,011301(2002),R.Pagnani et al.,Phys.Rev.E66,051304(2002).[11]A.Baldassarri et al.,Phys.Rev.E65,051301(2002).[12]We employ the same modeling for the grains as inD.Paolotti et al.,Granular Matter5,75(2003).[13]P.E.Krouskop and J.Talbot,Phys.Rev E68,021304(2003).[14]T.P.C.van Noije and M.H.Ernst,Phys.Rev.E61,1765(2000).[15]Local kinetic temperatures are computed by subtracting F(k,t),at different times.With time,the peak grows higher and moves towards smaller wavevectors.The inset shows how the peak forτ=1300(solid circles,right vertical axis)is sup-pressed on reshuffling the particle species(empty circles,right axis).The structure factor of the total densityfield(empty squares,left axis)has a peak at a much lower wavevector.For these curves,r=0.95and m1/m2=8,as infig.4.。