第一课时 直线与平面垂直的判定-
- 格式:ppt
- 大小:2.02 MB
- 文档页数:25
教学过程在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】(2013·江西卷改编)教学效果分析教学过程如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也教学效果分析教学过程可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题教学效果分析教学过程【例3】(2013·山东卷)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面P AD;(2)求证:平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】(2013·辽宁卷)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.教学效果分析1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破6——求解立体几何中的探索性问题【典例】(2012·北京卷)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误.【自主体验】(2014·韶关模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.基础巩固题组(建议用时:40分钟)一、填空题1.设平面α与平面β相交于直线m,直线a在平面α内,直线b 在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的________条件.2.(2014·绍兴调研)设α,β为不重合的平面,m,n为不重合的直线,则下列正确命题的序号是________.①若α⊥β,α∩β=n,m⊥n,则m⊥α;②若m⊂α,n⊂β,m⊥n,则n⊥α;③若n⊥α,n⊥β,m⊥β,则m⊥α;④若m∥α,n∥β,m⊥n,则α⊥β.3.如图,AB是圆O的直径,P A垂直于圆O所在的平面,C是圆周上不同于A,B的任一点,则图形中有________对线面垂直.4.若M是线段AB的中点,A,B到平面α的距离分别是4 cm,6 cm,则M到平面α的距离为________.5.(2014·郑州模拟)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是________.6.如图,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)7.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.二、解答题9.(2013·北京卷)如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.10.(2013·泉州模拟)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.能力提升题组(建议用时:25分钟)一、填空题1.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线______上.2.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为________.①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.3.(2013·南通二模)如图,已知六棱锥P ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).二、解答题4.(2014·北京西城一模)。
§2.3.1直线与平面垂直的判定(一)吉林大学附属中学吴普林一、教材分析本节课选自人教版普通高中课程标准实验教科书-必修2》第二章2.3.1直线与平面垂直的判定(第一课时)。
本节课主要学习直线与平面垂直的定义、判定定理及其初步运用。
其中,线面垂直的定义是线面垂直最基本的判定方法和性质,它是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带!学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。
根据《课程标准》,线面垂直判定定理的严格证明安排在选修系列2中进行,这样降低了难度,符合学生的认知规律二、学生学习情况分析1.有利因素学习本课前,学生学习了空间几何体,直线、平面平行的判定定理,对空间感的建立有一定基础,同时生活中存在大量的线面垂直的实物模型,学生对线面垂直并不陌生,这是学生学习本节节的有利条件。
2.不利因素学生的抽象概括能力还有待提高。
线面垂直的定义比较抽象,平面内看不到直线,要让学生去体会“与平面内所有直线垂直”有一定困难;同时,线面垂直判定定理的发现具有一定的隐蔽性,学生不易想到。
三、教学目标设计课标要求:通过直观感知、操作确认,归纳出线面垂直的判定定理;能运用判定定理证明一些空间位置关系的简单命题。
1.知识与技能目标通过对图片、实例的观察,抽象概括出直线与平面垂直的定义,并能正确理解直线与平面垂直的定义.2.过程与发展目标通过直观感知,操作确认,体会知识产生的过程,发展合情推理能力和空间想象能力,进一步培养学生的空间观念。
3.情感、态度和价值观目标让学生亲身经历数学研究的过程,体验生活中的数学,激发学习数学的兴趣。
四、教学重点、难点分析重点:直线与平面垂直的定义和判定定理.难点:操作确认并概括出直线与平面垂直的定义和判定定理.突破难点:括定定理是难点,通过“展示物体的支架图片直观感知”和“折纸的操作探究”是突破难点的两条途径。
8.6空间直线、平面的垂直8.6.1直线与直线垂直8.6.2直线与平面垂直第1课时直线与直线垂直、直线与平面垂直的定义及判定考点学习目标核心素养异面直线所成的角会用两条异面直线所成角的定义,找出或作出异面直线所成的角,会在三角形中求简单的异面直线所成的角直观想象、逻辑推理、数学运算直线与平面垂直的定义理解并掌握直线与平面垂直的定义,明确定义中“任意”两字的重要性直观想象直线与平面垂直的判定定理掌握直线与平面垂直的判定定理,并能解决有关线面垂直的问题直观想象、逻辑推理问题导学预习教材P146-P150的内容,思考以下问题:1.异面直线所成的角的定义是什么?2.异面直线所成的角的范围是什么?3.异面直线垂直的定理是什么?4.直线与平面垂直的定义是什么?5.直线与平面垂直的判定定理是什么?1.异面直线所成的角(1)定义:已知两条异面直线a,b,经过空间任一点O分别作直线a′∥a,b′∥b,把直线a′与b′所成的角叫做异面直线a与b所成的角(或夹角).(2)垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.直线a 与直线b垂直,记作a⊥b.(3)范围:设θ为异面直线a与b所成的角,则0°<θ≤90°.■[名师点拨]当两条直线a,b相互平行时,规定它们所成的角为0°.所以空间两条直线所成角α的取值范围是0°≤α≤90°.注意与异面直线所成的角的范围的区别.2.直线与平面垂直定义一般地,如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直记法l⊥α有关概念直线l叫做平面α的垂线,平面α叫做直线l的垂面.它们唯一的公共点P叫做垂足图示及画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直■名师点拨(1)直线与平面垂直是直线与平面相交的特殊情形.(2)注意定义中“任意一条直线”与“所有直线”等同但不可说成“无数条直线”.3.直线与平面垂直的判定定理文字语言如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直图形语言符号语言l⊥a,l⊥b,a⊂α,b⊂α,a∩b=P⇒l⊥α■名师点拨判定定理条件中的“两条相交直线”是关键性词语,此处强调“相交”,若两条直线平行,则直线与平面不一定垂直.判断(正确的打“√”,错误的打“×”)(1)异面直线a,b所成角的范围为[0°,90°].()(2)如果一条直线与一个平面内无数条直线都垂直,那么这条直线与这个平面垂直.()(3)如果一条直线与一个平面内所有直线都垂直,那么这条直线与这个平面垂直.()答案:(1)×(2)×(3)√直线l与平面α内的两条直线都垂直,则直线l与平面α的位置关系是() A.平行.垂直C.在平面α内.无法确定答案:D已知直线a∥直线b,b⊥平面α,则()A.a∥α.a⊂αC.a⊥α.a是α的斜线答案:C在正方体ABCD-A1B1C1D1中,AC与BD相交于点O,则直线OB1与A1C1所成角的度数为________.解析:连接AB1,B1C,因为AC∥A1C1,所以∠B1OC(或其补角)是异面直线OB1与A1C1所成的角.又因为AB1=B1C,O为AC的中点,所以B1O⊥AC,故∠B1OC=90°,所以OB1与A1C1所成的角的大小为90°.答案:90°异面直线所成的角如图,在正方体ABCD-EFGH中,O为侧面ADHE的中心.求:(1)BE与CG所成的角;(2)FO与BD所成的角.【解】(1)如图,因为CG∥BF.所以∠EBF(或其补角)为异面直线BE与CG所成的角,又在△BEF中,∠EBF=45°,所以BE与CG所成的角为45°.(2)连接FH,因为HD∥EA,EA∥FB,所以HD∥FB,又HD=FB,所以四边形HFBD 为平行四边形.所以HF∥BD,所以∠HFO(或其补角)为异面直线FO与BD所成的角.连接HA,AF,易得FH=HA=AF,所以△AFH为等边三角形,又知O为AH的中点,所以∠HFO=30°,即FO与BD所成的角为30°.1.[变条件]在本例正方体中,若P是平面EFGH的中心,其他条件不变,求OP和CD 所成的角.解:连接EG,HF,则P为HF的中点,连接AF,AH,OP∥AF,又CD∥AB,所以∠BAF(或其补角)为异面直线OP与CD所成的角,由于△ABF是等腰直角三角形,所以∠BAF=45°,故OP与CD所成的角为45°.2.[变条件]在本例正方体中,若M,N分别是BF,CG的中点,且AG和BN所成的角为39.2°,求AM和BN所成的角.解:连接MG,因为BCGF是正方形,所以BF═∥CG,因为M,N分别是BF,CG的中点,所以BM═∥NG,所以四边形BNGM是平行四边形,所以BN∥MG,所以∠AGM(或其补角)是异面直线AG和BN所成的角,∠AMG(或其补角)是异面直线AM和BN所成的角,因为AM=MG,所以∠AGM=∠MAG=39.2°,所以∠AMG=101.6°,所以AM和BN所成的角为78.4°.求异面直线所成的角的步骤(1)找出(或作出)适合题设的角——用平移法,遇题设中有中点,常考虑中位线;若异面直线依附于某几何体,且对异面直线平移有困难时,可利用该几何体的特殊点,使异面直线转化为相交直线.(2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.(3)结论——设由(2)所求得的角的大小为θ.若0°<θ≤90°,则θ为所求;若90°<θ<180°,则180°-θ为所求.[提醒] 求异面直线所成的角,通常把异面直线平移到同一个三角形中去,通过解三角形求得,但要注意异面直线所成的角θ的范围是0°<θ≤90°.如图所示,在三棱锥A -BCD 中,AB =CD ,AB ⊥CD ,E ,F 分别为BC ,AD 的中点,求EF 与AB 所成的角.解:如图所示,取BD 的中点G ,连接EG ,FG . 因为E ,F 分别为BC ,AD 的中点,AB =CD , 所以EG ∥CD ,GF ∥AB , 且EG =12CD ,GF =12AB .所以∠GFE (或其补角)就是异面直线EF 与AB 所成的角,EG =GF . 因为AB ⊥CD ,所以EG ⊥GF . 所以∠EGF =90°.所以△EFG 为等腰直角三角形. 所以∠GFE =45°, 即EF 与AB 所成的角为45°.直线与平面垂直的定义(1)直线l ⊥平面α,直线m ⊂α,则l 与m 不可能( ) A .平行 .相交 C .异面.垂直(2)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l ⊥m ,m ⊂α,则l ⊥α B .若l ⊥α,l ∥m ,则m ⊥α C .若l ∥α,m ⊂α,则l ∥m D .若l ∥α,m ∥α,则l ∥m 【解析】 (1)因为直线l ⊥平面α,所以l 与α相交.又因为m⊂α,所以l与m相交或异面.由直线与平面垂直的定义,可知l⊥m.故l与m不可能平行.(2)对于A,直线l⊥m,m并不代表平面α内任意一条直线,所以不能判定线面垂直;对于B,因为l⊥α,则l垂直于α内任意一条直线,又l∥m,由异面直线所成角的定义知,m与平面α内任意一条直线所成的角都是90°,即m⊥α,故B正确;对于C,也有可能是l,m异面;对于D,l,m还可能相交或异面.【答案】(1)A(2)B对线面垂直定义的理解(1)直线和平面垂直的定义是描述性定义,对直线的任意性要注意理解.实际上,“任何一条”与“所有”表达相同的含义.当直线与平面垂直时,该直线就垂直于这个平面内的任何直线.由此可知,如果一条直线与一个平面内的一条直线不垂直,那么这条直线就一定不与这个平面垂直.(2)由定义可得线面垂直⇒线线垂直,即若a⊥α,b⊂α,则a⊥b.下列命题中,正确的序号是________.①若直线l与平面α内的一条直线垂直,则l⊥α;②若直线l不垂直于平面α,则α内没有与l垂直的直线;③若直线l不垂直于平面α,则α内也可以有无数条直线与l垂直;④若平面α内有一条直线与直线l不垂直,则直线l与平面α不垂直.解析:当l与α内的一条直线垂直时,不能保证l与平面α垂直,所以①不正确;当l 与α不垂直时,l可能与α内的无数条平行直线垂直,所以②不正确,③正确.根据线面垂直的定义,若l⊥α,则l与α内的所有直线都垂直,所以④正确.答案:③④直线与平面垂直的判定如图,P A⊥平面ABCD,底面ABCD为矩形,AE⊥PB于点E,AF⊥PC于点F.(1)求证:PC⊥平面AEF;(2)设平面AEF交PD于点G,求证:AG⊥PD.【证明】(1)因为P A⊥平面ABCD,BC⊂平面ABCD,所以P A⊥BC.又AB⊥BC,P A∩AB=A,所以BC⊥平面P AB,AE⊂平面P AB,所以AE⊥BC.又AE⊥PB,PB∩BC=B,所以AE⊥平面PBC,PC⊂平面PBC,所以AE⊥PC.又因为PC⊥AF,AE∩AF=A,所以PC⊥平面AEF.(2)由(1)知PC⊥平面AEF,又AG⊂平面AEF,所以PC⊥AG,同理CD⊥平面P AD,AG⊂平面P AD,所以CD⊥AG,又PC∩CD=C,所以AG⊥平面PCD,PD⊂平面PCD,所以AG⊥PD.1.[变条件]在本例中,底面ABCD是菱形,H是线段AC上任意一点,其他条件不变,求证:BD⊥FH.证明:因为四边形ABCD是菱形,所以BD⊥AC,又P A⊥平面ABCD,BD⊂平面ABCD,所以BD⊥P A,因为P A∩AC=A,所以BD⊥平面P AC,又FH⊂平面P AC,所以BD⊥FH.2.[变条件]若本例中P A=AD,G是PD的中点,其他条件不变,求证:PC⊥平面AFG.证明:因为P A⊥平面ABCD,DC⊂平面ABCD,所以DC⊥P A,又因为ABCD 是矩形,所以DC ⊥AD ,又P A ∩AD =A , 所以DC ⊥平面P AD ,又AG ⊂平面P AD , 所以AG ⊥DC ,因为P A =AD ,G 是PD 的中点, 所以AG ⊥PD ,又DC ∩PD =D , 所以AG ⊥平面PCD ,所以PC ⊥AG , 又因为PC ⊥AF ,AG ∩AF =A , 所以PC ⊥平面AFG .3.[变条件]本例中的条件“AE ⊥PB 于点E ,AF ⊥PC 于点F ”,改为“E ,F 分别是AB ,PC 的中点,P A =AD ”,其他条件不变,求证:EF ⊥平面PCD .证明:取PD 的中点G ,连接AG ,FG . 因为G ,F 分别是PD ,PC 的中点,所以GF ═∥12CD ,又AE ═∥12CD ,所以GF ═∥AE , 所以四边形AEFG 是平行四边形,所以AG ∥EF . 因为P A =AD ,G 是PD 的中点, 所以AG ⊥PD ,所以EF ⊥PD , 易知CD ⊥平面P AD ,AG ⊂平面P AD , 所以CD ⊥AG ,所以EF ⊥CD .因为PD ∩CD =D ,所以EF ⊥平面PCD .(1)线线垂直和线面垂直的相互转化(2)证明线面垂直的方法①线面垂直的定义.②线面垂直的判定定理.③如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.④如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.[提醒]要证明两条直线垂直(无论它们是异面还是共面),通常是证明其中的一条直线垂直于另一条直线所在的一个平面.如图,AB为⊙O的直径,P A垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.(1)求证:AN⊥平面PBM;(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.证明:(1)因为AB为⊙O的直径,所以AM⊥BM.又P A⊥平面ABM,所以P A⊥BM.又因为P A∩AM=A,所以BM⊥平面P AM.又AN⊂平面P AM,所以BM⊥AN.又AN⊥PM,且BM∩PM=M,所以AN⊥平面PBM.(2)由(1)知AN⊥平面PBM,PB⊂平面PBM,所以AN⊥PB.又因为AQ⊥PB,AN∩AQ=A,所以PB⊥平面ANQ.又NQ⊂平面ANQ,所以NQ⊥PB.1.若直线a⊥平面α,b∥α,则a与b的关系是()A.a⊥b,且a与b相交B.a⊥b,且a与b不相交C.a⊥bD.a与b不一定垂直解析:选C.过直线b作一个平面β,使得β∩α=c,则b∥c.因为直线a⊥平面α,c⊂α,所以a⊥c.因为b∥c,所以a⊥b.当b与a相交时为相交垂直,当b与a不相交时为异面垂直.2.在正方体ABCD-A1B1C1D1中,与AD1垂直的平面是()A.平面DD1C1C.平面A1DB1C.平面A1B1C1D1.平面A1DB解析:选B.因为AD1⊥A1D,AD1⊥A1B1,且A1D∩A1B1=A1,所以AD1⊥平面A1DB1.3.空间四边形的四边相等,那么它的对角线()A.相交且垂直.不相交也不垂直C.相交不垂直.不相交但垂直解析:选D.如图,空间四边形ABCD,假设AC与BD相交,则它们共面α,从而四点A,B,C,D都在α内,这与ABCD为空间四边形矛盾,所以AC与BD不相交;取BD的中点O,连接OA与OC,因为AB=AD=DC=BC,所以AO⊥BD,OC⊥BD,从而可知BD⊥平面AOC,故AC⊥BD.4.已知a,b是一对异面直线,而且a平行于△ABC的边AB所在的直线,b平行于边AC所在的直线,若∠BAC=120°,则直线a,b所成的角为________.解析:由a∥AB,b∥AC,∠BAC=120°,知异面直线a,b所成的角为∠BAC的补角,所以直线a,b所成的角为60°.答案:60°[A基础达标]1.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是()A.α∥β,且m⊂α.m∥n,且n⊥βC.m⊥n,且n⊂β.m⊥n,且n∥β解析:选B.A中,由α∥β,且m⊂α,知m∥β;B中,由n⊥β,知n垂直于平面β内的任意直线,再由m∥n,知m也垂直于β内的任意直线,所以m⊥β,B符合题意;C,D 中,m⊂β或m∥β或m与β相交,不符合题意.故选B.2.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是()A.b⊥β.b∥βC.b⊂β.b⊂β或b∥β解析:选A.因为a⊥α,a∥b,所以b⊥α.又α∥β,所以b⊥β.3.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q分别为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不垂直的是()解析:选D.对于A,易证AB⊥MN,AB⊥NQ,即可得直线AB⊥平面MNQ;对于B,易证AB⊥MN,AB⊥NQ,即可得直线AB⊥平面MNQ;对于C,易证AB⊥NQ,AB⊥MQ,即可得直线AB⊥平面MNQ;对于D,由图可得MN与直线AB相交且不垂直,故直线AB 与平面MNQ不垂直.故选D.4.如图,P为△ABC所在平面α外一点,PB⊥α,PC⊥AC,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B.由PB⊥α,AC⊂α得PB⊥AC,又AC⊥PC,PC∩PB=P,所以AC⊥平面PBC,AC⊥BC.故选B.5.在正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总保持AP⊥BD1,则动点P的轨迹是()A.线段B1CB.线段BC1C.BB1中点与CC1中点连成的线段D.BC中点与B1C1中点连成的线段解析:选A.如图,由于BD1⊥平面AB1C,故点P一定位于线段B1C上.6.如图,在正方形ABCD-A1B1C1D1中,AC与BC1所成角的大小是______.解析:连接AD1,则AD1∥BC1.所以∠CAD 1(或其补角)就是AC与BC1所成的角,连接CD1,在正方体ABCD-A1B1C1D1中,AC=AD1=CD1,所以∠CAD1=60°,即AC与BC1所成的角为60°.答案:60°7.如图,∠BCA=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中:(1)与PC垂直的直线有__________________;(2)与AP垂直的直线有__________________.解析:(1)因为PC⊥平面ABC,AB,AC,BC⊂平面ABC.所以PC⊥AB,PC⊥AC,PC ⊥BC.(2)∠BCA=90°即BC⊥AC,又BC⊥PC,AC∩PC=C,所以BC⊥平面P AC,因为AP⊂平面P AC,所以BC⊥AP.答案:(1)AB,AC,BC(2)BC8.如图所示,在矩形ABCD中,AB=1,BC=a(a>0),P A⊥平面ABCD,且P A=1,若BC边上存在点Q,使得PQ⊥QD,则a的最小值为________.解析:因为P A⊥平面ABCD,所以P A⊥QD.若BC边上存在一点Q,使得QD⊥PQ,P A∩PQ=P,则有QD⊥平面P AQ,从而QD⊥AQ.在矩形ABCD中,当AD=a<2时,直线BC与以AD为直径的圆相离,故不存在点Q,使PQ⊥DQ.所以当a≥2时,才存在点Q,使得PQ⊥QD.所以a的最小值为2.答案:29.如图,在直三棱柱ABC-A 1B1C1中,∠BAC=90°,AB=AC,D是BC的中点,点E在棱BB1上运动.证明:AD⊥C1E.证明:因为AB=AC,D是BC的中点,所以AD⊥BC.①又在直三棱柱ABC-A1B1C1中,BB1⊥平面ABC,而AD⊂平面ABC,所以AD⊥BB1.②由①②得AD⊥平面BB1C1C.由点E在棱BB1上运动,得C1E⊂平面BB1C1C,所以AD⊥C1E.10.如图所示,等腰直角三角形ABC中,∠BAC=90°,BC=2,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点,求异面直线BE与CD所成角的余弦值.解:取AC的中点F,连接EF,BF,在△ACD中,E,F分别是AD,AC的中点,所以EF∥CD,所以∠BEF(或其补角)即为所求的异面直线BE与CD所成的角.在Rt△ABC中,BC=2,AB=AC,所以AB=AC=1,在Rt△EAB中,AB=1,AE=12AD=12,所以BE=52.在Rt△AEF中,AF=12AC=12,AE=12,所以EF=22.在Rt△ABF中,AB=1,AF=12,所以BF=52.在等腰三角形EBF中,cos∠FEB=12EFBE=2452=1010,所以异面直线BE与CD所成角的余弦值为1010.[B 能力提升]11.已知异面直线a 与b 所成的角为50°,P 为空间一定点,则过点P 且与a ,b 所成的角都是30°的直线有且仅有( )A .1条B .2条C .3条D .4条解析:选B.过空间一点P ,作a ′∥a ,b ′∥b .由a ′、b ′两交线确定平面α,a ′与b ′的夹角为50°,则过角的平分线与直线a ′、b ′所在的平面α垂直的平面上,角平分线的两侧各有一条直线与a ′、b ′成30°的角,即与a 、b 成30°的角且过点P 的直线有两条.在a ′、b ′相交另一个130°的角部分内不存在与a ′、b ′成30°角的直线.故应选B. 12.(2018·高考全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.56C.55D.22解析:选C.如图,连接BD 1,交DB 1于O ,取AB 的中点M ,连接DM ,OM ,易知O 为BD 1的中点,所以AD 1∥OM ,则∠MOD 为异面直线AD 1与DB 1所成角.因为在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,AD 1=AD 2+DD 21=2,DM =AD 2+⎝⎛⎭⎫12AB 2=52,DB 1=AB 2+AD 2+DD 21=5,所以OM =12AD 1=1,OD =12DB 1=52,于是在△DMO 中,由余弦定理,得cos ∠MOD =12+⎝⎛⎭⎫522-⎝⎛⎭⎫5222×1×52=55,即异面直线AD 1与DB 1所成角的余弦值为55,故选C.13.如图,在矩形ABCD 中,AB =8,BC =4,E 为DC 边的中点,沿AE 将△ADE 折起,在折起过程中,下列结论正确的有( )①ED ⊥平面ACD ;②CD ⊥平面BED ;③BD ⊥平面ACD ;④AD ⊥平面BED .A.1个B.2个C.3个D.4个解析:选A.因为在矩形ABCD中,AB=8,BC=4,E为DC边的中点,所以在折起过程中,D点在平面ABCE上的投影如图.因为DE与AC所成角不能为直角,所以DE不会垂直于平面ACD,故①错误;只有D点投影位于Q2位置时,即平面AED与平面AEB重合时,才有BE⊥CD,此时CD不垂直于平面AECB,故CD与平面BED不垂直,故②错误;BD与AC所成角不能为直角,所以BD不能垂直于平面ACD,故③错误;因为AD⊥ED,并且在折起过程中,有AD⊥BD,所以存在一个位置使AD⊥BE,所以在折起过程中有AD⊥平面BED,故④正确.故选A.14.如图,在多面体ABCDEF中,已知四边形ABCD是边长为2的正方形,△BCF为正三角形,G,H分别为BC,EF的中点,EF=4且EF∥AB,EF⊥FB.(1)求证:GH∥平面EAD;(2)求证:FG⊥平面ABCD.证明:(1)如图,取AD的中点M,连接EM,GM.因为EF∥AB,M,G分别为AD,BC的中点,所以MG∥EF.因为H为EF的中点,EF=4,AB=2,所以EH=AB=MG,所以四边形EMGH为平行四边形,所以GH∥EM,又因为GH⊄平面EAD,EM⊂平面EAD,所以GH∥平面EAD.(2)因为EF⊥FB,EF∥AB,所以AB⊥FB.在正方形ABCD中,AB⊥BC,所以AB⊥平面FBC.又FG⊂平面FBC,所以AB⊥FG.在正三角形FBC中,FG⊥BC,所以FG⊥平面ABCD.[C拓展探究]15.如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.解:(1)证明:因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,BC⊂平面A1CB,所以DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,所以DE⊥AC.因为DE⊥A1D,DE⊥CD,所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE.所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEQP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰△DA1C底边A1C的中点,所以A1C⊥DP.又DP∩DE=D,所以A1C⊥平面DEQP.即A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.。