几何学的发展简史
- 格式:doc
- 大小:845.50 KB
- 文档页数:9
解析几何的发展简史解析几何学是数学的一个分支,研究点、线、面及其相互关系的形状和性质。
它起源于古代文明,随着时间的推移,逐渐发展成为现代数学的一部分。
下面是解析几何发展的简史。
古代:解析几何的起源可追溯到古埃及和古希腊时期。
古埃及人以地理测量和土地标记为目的,开始研究几何学。
而在古希腊,数学家毕达哥拉斯和欧几里得作出了关于点、线和面的基本定义和公理,为几何学建立了坚实的基础。
17世纪:解析几何在17世纪得到了重要的发展。
法国数学家笛卡尔提出了坐标系,将代数与几何学相结合,从而建立了现代解析几何的基础。
笛卡尔坐标系将点的位置通过坐标表示,使得几何问题可以转化为代数方程。
这为后来的数学家们提供了研究平面和空间中几何图形的新方法。
19世纪:19世纪是解析几何学发展的黄金时代。
法国数学家拉格朗日和欧拉等人进一步发展了解析几何的方法和理论。
此外,高斯、黎曼和庞加莱等数学家的研究推动了解析几何学的进一步发展。
他们建立了非欧几何学,推翻了欧几里得几何学的一些公理,为后来的几何学发展开辟了新的方向。
20世纪:20世纪是几何学发展的一个重要时期。
在这一时期,解析几何研究的焦点逐渐从平面和空间的几何图形转向了更抽象的代数和拓扑几何。
19世纪末和20世纪初,法国数学家庞加莱提出了拓扑学的概念,这是一种研究几何形状变化的新方法。
庞加莱的工作对后来拓扑学的发展产生了重要影响。
当代:在当代,随着计算机技术的发展,解析几何学得到了进一步发展和应用。
计算机辅助几何设计(CAGD)是解析几何的一个重要应用领域,它将几何形状的描述和计算机图形学相结合,用于工程设计、制造和动画等领域。
总结起来,解析几何经历了几个重要的发展阶段。
古代时期几何学的基本概念和公理得到确立;17世纪随着笛卡尔坐标系的引入,解析几何开始研究代数与几何的关系;19世纪期间,非欧几何学和拓扑学的发展对解析几何的发展起到了重要作用;20世纪以来,解析几何进一步发展和应用于计算机技术。
几何学的发展简史_6几何学的发展简史_6几何学作为数学的一个重要分支,在人类历史上有着悠久的发展历史。
从古埃及的金字塔到现代的航天技术,几何学一直在人类的生活中扮演着重要的角色。
下面将对几何学的发展历史进行简要概述。
古代几何学的起源可以追溯到古埃及和古希腊时期。
在古埃及,人们开发了测量土地面积和建造金字塔的技术。
古希腊的几何学由希腊数学家欧几里得奠定基础,他在著作《几何原本》中阐述了许多基本的几何原理和定理,如平行线公理和勾股定理。
在欧洲中世纪,几何学的发展受到了宗教和哲学的限制。
然而,阿拉伯学者在穆斯林帝国中保护和传播了古希腊的几何学知识。
阿拉伯数学家阿尔哈齐(Alhazen)和阿尔库菲(Al-Khwarizmi)在光学和代数几何方面做出了重要贡献。
到了文艺复兴时期,几何学的发展取得了重大突破。
意大利数学家费拉里(Ferrari)解决了四次方程的根的问题,拉格朗日(Lagrange)发展了解析几何学的理论。
此外,笛卡尔(Descartes)的代数几何学为几何学和代数学的融合提供了基础,开创了坐标几何学的时代。
18世纪和19世纪是几何学的黄金时代。
欧拉(Euler)首先引入了拓扑学的概念,拉普拉斯(Laplace)和高斯(Gauss)等数学家推动了非欧几何学的发展。
非欧几何学挑战了传统几何学中的平行线公理,为后来的拓扑学和流形理论做出了重要贡献。
20世纪是几何学发展的一个重要时期。
爱因斯坦的相对论理论利用了非欧几何学和黎曼流形的理论。
同时,拓扑学和微分几何学得到了广泛的应用,特别是在物理学和天体物理学中。
随着计算机技术的进步,计算几何学和几何建模也成为了几何学的重要研究领域。
计算机辅助设计(CAD)和计算机图形学(CG)在工程、建筑和电影等领域得到广泛应用。
总结起来,几何学的发展始于古代,经历了古希腊、中世纪、文艺复兴和近现代,不断受到数学家和科学家们的推动和发展。
从欧几里得的几何原理到现代的非欧几何学和拓扑学,几何学不断进化和发展,为人类认识和探索世界提供了重要工具和理论基础。
几何学简史
几何学是数学中的一个重要分支,它研究空间中的点、线、面及其相互关系。
几何学的历史可以追溯到古代文明时期,如埃及、巴比伦和印度等国家。
在古希腊时期,几何学得到了极大的发展。
公元前300年左右,欧几里得编写了《几何原本》,这是一本关于几何学的权威著作,对几何学的发展产生了深远的影响。
欧几里得将几何学的基本概念和定理进行了系统化的整理和阐述,成为了后来几何学研究的基础。
在中世纪时期,阿拉伯数学家对几何学做出了重要的贡献。
他们发展了三角学和代数学,并将这些知识应用于几何学中。
阿拉伯数学家还发明了阿拉伯数字和零的概念,这些概念对现代数学的发展产生了重要的影响。
在文艺复兴时期,欧洲的数学家开始重新发现和研究古希腊和阿拉伯的数学知识。
伽利略和笛卡尔等人提出了解析几何的概念,将代数和几何结合起来,为现代数学的发展奠定了基础。
19世纪是几何学发展的黄金时期。
高斯、黎曼、庞加莱等数学家提出了许多重要的几何学理论和定理,如高斯-邦克尔公式、黎曼猜想等。
这些成果不仅推动了几何学的发展,也对其他学科产生了重要的影响。
20世纪以来,几何学的研究进入了一个新的阶段。
数学家们
开始关注非欧几里得几何和非交换几何等领域,并取得了许多重要的成果。
同时,计算机技术的发展也为几何学的研究提供了新的手段和方法。
几何学是一门古老而充满魅力的学科。
从古至今,无数数学家为之奋斗,不断推动着几何学的发展。
未来,随着科学技术的不断进步和发展,相信几何学将会有更加广阔的应用前景和发展空间。
几何学的发展简史引言几何学是数学中的一个分支学科,研究空间与图形的形状、属性、关系以及变化规律。
几何学的发展可以追溯到古代文明时期,而随着人类知识和科技的进步,几何学不断演化和发展,推动了人类对于空间和形状的深入认识并为其他学科的发展奠定了基础。
本文将简要介绍几何学的发展历程,从古代几何学到现代几何学的演进过程。
古代几何学古代几何学的奠基人可以追溯到古埃及和古希腊时期。
埃及人在建筑、土地测量等方面的需要推动了他们对几何学的研究。
而古希腊的数学家毕达哥拉斯开创了几何学中的代数方法,将几何问题与代数问题相结合,为后来几何学的发展奠定了基础。
另外,古希腊的数学家欧几里得在公元前3世纪出版的《几何原本》一书中,系统地总结了当时的几何学知识,成为几何学发展的重要里程碑。
欧几里得几何学欧几里得几何学,也被称为传统几何学,在古代几何学中占据着重要的地位。
这种几何学以欧几里得《几何原本》为基础,通过一系列的公理、定义和推理定理,研究了平面和空间中的点、线、面以及它们的性质和关系。
欧几里得几何学的基本思想是使用逻辑推理和证明,从一些基本事实出发,逐步推导出更复杂的命题,形成完备的理论体系。
这种几何学体系在欧洲的教育中广泛应用,直到现代几何学的出现。
非欧几何学的出现19世纪,随着数学思想的发展和对几何学的深入研究,人们开始思考是否存在其他几何学体系。
1830年,俄国数学家罗巴切夫斯基提出了一种与欧几里得几何相悖的几何体系,被称为非欧几何学。
非欧几何学在这个体系中放宽了欧几里得几何学中的一些公理,并提出了一些与传统几何学相矛盾的概念和命题。
尽管这种几何学体系与直觉和日常经验相悖,但它引发了对几何学基础的深入思考,并推动了几何学的发展。
现代几何学的发展随着数学和科学的发展,几何学逐渐从传统的几何学中解放出来,形成了更加抽象和广义的几何学研究方向。
例如,19世纪末至20世纪初,德国数学家大卫·希尔伯特提出了公理化几何学的概念,通过精确的公理系统建立了几何学的基础。
解析几何的发展简史
马(Fermat,1601-1665)是解析几何的开创者。
___和费
马独立地发明了坐标法,将几何问题转化为代数问题,从而使几何学得以与代数学结合,形成了解析几何这一新的数学分支。
___和费马的贡献不仅在于发明了坐标法,而且还在于他们建
立了解析几何的基本理论和方法。
___在《几何学》一书中,
首次系统地阐述了解析几何的基本思想和方法,成为解析几何的奠基人之一。
费马则在研究圆锥曲线时,提出了“最小路线”原理,为微积分学的发展奠定了基础。
3.解析几何的发展
随着解析几何的创立,它在数学、物理等领域得到了广泛应用和发展。
18世纪,___和___等数学家对解析几何进行了
深入的研究和发展,创立了解析几何的新理论和方法。
19世纪,___、___和___等数学家在解析几何的基础上,发展了非
欧几何学,进一步推动了解析几何的发展。
20世纪,随着计
算机的发展,解析几何得到了广泛应用,成为计算机图形学、计算机辅助设计等领域的基础。
同时,解析几何的研究也在不
断深化和扩展,如微分几何、代数几何、拓扑几何等,为数学的发展做出了重要贡献。
结论
解析几何的创立和发展,是数学史上的一大里程碑。
它的产生是几何学和代数学相结合的产物,是数学发展的必然结果。
解析几何的基本思想和方法,为数学的发展和应用提供了强有力的工具和方法,成为数学中不可或缺的一部分。
随着计算机技术的不断发展,解析几何的应用和研究也将不断深入和扩展,为人类的科技进步和社会发展做出更大的贡献。
第一部分 几何学发展概述第一章 几何学发展简史几何学是数学中最古老的一门分科.最初的几何知识是从人们对形的直觉中萌发出来的。
史前人大概首先是从自然界本身提取几何形式,并且在器皿制作、建筑设计及绘画装饰中加以再现。
图1-1所示图片显示了早期人类的几何兴趣,不止是对圆、三角形、正方形等一系列几何形状的认识,而且还有对全等、相似、对称等几何性质的运用。
根据古希腊学者希罗多德的研究,几何学起源于古埃及尼罗河泛滥后为整修土地而产生的测量法,它的外国语名称geometry 就是由geo (土地)与metry (测量)组成的。
古埃及有专门人员负责测量事务,这些人被称为“司绳”。
古代印度几何学的起源则与宗教实践密切相关,公元前8世纪至5世纪形成的所谓“绳法经”,就是关于祭坛与寺庙建造中的几何问题及求解法则的记载.中国最早的数学经典《周髀算经》事实上是一部讨论西周初年天文测量中所用数学方法的著作,其中第一章叙述了西周开国时期(约公元前1000年)周公姬旦同商高的问答,讨论用矩测量的方法,得出了著名的勾股定理,并举出了“勾三、股四、弦五”的例子。
古希腊数学家泰勒斯曾经利用两三角形的等同性质,做了间接的测量工作;毕达哥拉斯学派则以勾股定理等著名。
在埃及产生的几何学传到希腊,然后逐步发展起来而变为理论的数学。
哲学家柏拉图(公元前429~前348)对几何学做了深奥的探讨,确立起今天几何学中的定义、公设、公理、定理等概念,而且树立了哲学与数学中的分析法与综合法的概念。
此外,梅内克缪斯(约公元前340)已经有了圆锥曲线的概念。
§1 欧几里得与《原本》 1。
1 《原本》产生的历史背景欧几里得《原本》①是一部划时代的著作。
其伟大的历史意义在于它是用公理法建立起演绎体系的最早典范。
它的出现不是偶然的,在它之前,已有许多希腊学者做了大量的前驱工作。
从泰勒斯算起,已有三百多年的历史。
泰勒斯是希腊第一个哲学学派—-伊奥尼亚学派的创建者。
几何学的发展简史
几何学是学习和研究几何形状的一门科学,它涉及几何形状和大小之间的关系。
研究者们说,几何学的发展可以追溯到公元前3000年的古埃及时期,当时古埃及人就开始使用几何图形学习和研究几何形状。
大约公元前2000年,古希腊人开始大量使用几何图形,发展出一套完整的几何学理论。
主要几何学家包括欧几里得、毕达哥拉斯和斐波纳契等,他们将几何学推向了新高度。
欧几里得是古希腊几何学家,他发明了欧几里得几何,提出了五条几何定理,还提出了欧几里得算法,以求解重要的几何问题。
此外,欧几里得还发明了三角函数,为微积分提供了重要的基础。
毕达哥拉斯是一位古希腊几何学家,在他的《几何原本》中,他以极其精准的数学演算方法推导出许多几何定理,重新定义了几何学的研究方法。
斐波纳契是一位意大利几何学家,他建立了三角学的新体系,提出了斐波纳契公式,证明了欧几里得几何的许多定理。
公元一世纪,此后几何学发展得很快,特别是在17世纪,古典几何学得到了进一步发展。
17世纪的古典几何学家开始用抽象几何学来研究几何形状,这使得几何学进入了新的阶段。
更近代的几何学家,特别是20世纪末以来的数学家。
几何学发展简史范文
从古代到现代,几何学已经经历了长达数千年的飞跃发展。
几何学的
起源可以追溯到古埃及、古巴比伦、古希腊以及古印度的文明。
古埃及几何学的起源可以追溯到公元前2000年左右,早期埃及文明
就发现了关于面积的几何原理,包括长方形和三角形。
他们也对多边形和
复杂图形进行了研究,发现了有关它们的性质,并记录了构造这些图形所
需要的步骤。
古埃及人也研究了所谓的“平行规则”,即两条平行线之间
相等的角度。
他们还发现了投影几何法,可以利用它来把三维物体转换成
二维图形。
古巴比伦几何学的研究追溯到公元前1600年左右,同古埃及人一样,古巴比伦人也研究了几何学。
他们发现了所谓的“正方形定理”,即关于
正方形的对角线之间的关系。
古巴比伦人还发现了“勾股定理”,即对于
给定的一个正整数,可以构造一个三角形,其三边的长度分别是那个正整
数的平方数和另外两个正整数的乘积。
古希腊几何学的发展可以追溯到公元前六世纪左右,可以说古希腊几
何学是关于几何学最重要的突破性发展。
古希腊几何学家发现了圆周率的
存在,以及圆周率在计算圆的面积和周长时的作用。
古希腊几何学家盖比
卢斯发现了直角三角形的勾股定理。
几何学的发展简史上海市第十中学数学教研组王沁[课前设计]中国古代是一个在世界上数学领先的国家,用近代数学科目来分类的话,可以看出:无论是算术、代数还是几何、三角,中国古代数学在各方面都十分发达。
而且在数学理论与实际需要的联系中,创造出了与古希腊等欧洲国家风格迥异的实用数学。
可惜的是,现行的教材对中国古代数学家的成就介绍得很少。
即使教材中有,但是也基本上出现在阅读材料中,几乎没有老师会去介绍,当然,学生也很少去看。
我本人接触这些数学历史知识也是拜赐学校提供的再学习机会。
我校有一个由秦一岚校长总负责、全校老师共同参与的市级课题:史情教育与各学科校本课程的整合。
如何在数学学科上整合史情教育,在数学课中充分挖掘数学学科的民族精神内涵,弘扬中华民族精神和上海城市精神,渗透德育教育,探索出一条符合学生特点的教学方法,通过师生互动,能提高学生团结协作精神,并提高学生的科学素养,是摆在我面前的一个重要课题。
为此,我做了以下几方面的准备。
第一步,确定课题。
高二正在上立体几何,于是确定上几何学(偏重立体几何)的发展简史。
第二步,收集资料。
主要是阅读大量有关数学史的书籍。
第三步,理清脉络。
把看到的大量信息进行梳理,按照时间顺序、内容与教材内容的相关程度、在几何史上地位的重要性等方面进行选取。
第四步,组织教案。
确定前一部分讲几何学发展简史,后一部分让学生用学习过的几何知识(主要是立体几何)来解决一些实际问题。
数学应用能力是基础数学教育的重要组成部分,同时它也是学生比较薄弱的环节。
中学里的数学内容多半是纯粹的数学基础知识,而现在国家提倡数学素质教育,那么提高数学应用能力是其中重要的一环。
为了提高同学对立体几何的兴趣,提高学生应用立体几何知识解决实际问题的能力,我选择了四道应用性较强的例题:平改坡问题,遮阳篷的角度,飞机高度测量和蜂巢表面积最小问题。
鉴于学生的实际数学水平与能力,我没有让学生从数学实际问题出发自行建立数学模型,而是在帮助他们建立了数学模型后,指导学生如何看懂模型,如何联系学习过的数学知识解决数学问题。
我希望通过我的课,能让更多的学生了解数学的历史,了解中国数学的历史,为我国古代数学家的杰出贡献而自豪。
同时让同学看到数学是多么有用的一门学科,多么有趣的一门学科,希望无论是数学成绩好还是数学成绩不理想的同学都能对数学永远保持一分兴趣。
[教案]教学目标:(1)让学生大致了解几何学(主要是立体几何)学在中外的发展简史;(2)通过使用古代数学家的方法解决问题,让学生亲身体会中国古代科学家的成就;(3)通过中外数学家的成就比较中外古代研究数学的思想的不同;(4)通过学习过的立体几何知识来解决一些实际问题。
教学重点:割补法应用于解决实际问题。
教学难点:实际问题向数学模型的转化。
教学过程:前言“《九章》所蕴含的思想影响,必将日益显著,在下一世纪中凌驾于《原本》思想体系之上,不仅不无可能,甚至说是殆成定局。
”—吴文俊《汇校九章算术序》[引入]数学的历史就是“数”与“形”的发展史。
我们的先民在从野蛮走向文明的漫长历程中,逐步认识了数与形的概念。
“形”的意识也许跟人类历史一样古老。
例如:在中国出土的新石器时代的陶器大多为圆形或其他规则形状,陶器上有各种几何图案,通常还有三个着地点,这些都是几何知识的萌芽。
古埃及在齐阿普斯王朝(公元前2900年左右)时代建造起来的金字塔,其塔基是一个“标准”的正方形,各边的误差不超过万分之六。
希腊人创造了他们自己的文明和文化,对现代西方文化的发展影响最大,对今日数学的奠基起了决定作用。
[新课讲授]一﹑古希腊几何学⒈古典时期(公元前600年到公元前300年)(1)泰勒斯(约前640—前546年)将埃及的实用几何带入希腊,开始证明几何命题。
(2)毕达哥拉斯(约前585—前500年)学派对图形进行广泛的研究。
开头研究的一类问题叫面积应用问题。
几何上有三个著名的作图问题:作一正方形使其与给定的圆面积相等;给定正方体一边,求作另一正方体之边,使后者体积两倍于前者体积;用尺规三等分任意角。
有好些数学结果是为解决这三个问题而得出的副产品。
(3)希波克拉底(前5世纪下半叶)已研究画圆为方及立方倍积问题。
据说最早把间接证明引用到数学里的是他。
他所著的几何书叫《几何原本》,已经失传。
(4)德谟克利特(约前460—前370年)发现棱锥和圆锥的体积分别等于同底等高的棱柱和圆柱体积的三分之一(但是证明是由欧道克斯作出的)。
他的几何著作很可能是欧几里德《几何原本》问世以前的重要著作。
(5)亚里士多德(约前384—前322年)创造了演绎逻辑,虽然他的哲学对数学的直接影响很少,但对古希腊的论证几何等数学的发展起到明显的促进作用。
他给“定义”、“定理”、“公设”等以明确的解释。
(6)欧几里德(前300年左右生活在亚历山大城并在该处授徒)著《几何原本》,确立几何学的逻辑体系,成为世界上最早的公理化数学著作。
《原本》共十三篇,第一篇到第四篇讲直边形和圆的基本性质;第五篇讲比例论;第六篇讲相似形;第七、八、九篇是数论;第十篇是不可公度量的分类;第十一、十二、十三篇是立体几何及穷竭法。
西方曾有两本影响最广的书,一本是《圣经》,另一本就是《几何原本》。
《原本》是使用时间最长的数学教科书。
《原本》实际上是古希腊古典时期一些个别发现的整理,是众多学者智慧的结晶,欧几里德对前人的成果加以整理、归纳、完善和发展,他依然是个大数学家。
虽然它的内容存在缺陷,而且与现代教学趋势日益不相适应,但从历史的角度看,它确实是一部伟大的著作,无愧于“西方数学的代表作”的称号。
这个时期的数学仅仅是定性的。
那个时期的知识分子只限于搞哲学和科学工作,不去搞商业和贸易;有教养的人不关心实际问题。
他们就这样把数学思维和实际需要割裂开来,而且数学家也没有感到有去改进算术方法和代数方法的压力。
只有当有文化的阶级与奴隶阶级之间的壁垒在亚历山大时期被冲破而且有教养的人关心实际事务的时候,重点才转移到数量知识以及发展算术和代数方面。
⒉亚历山大时期(前300年到公元600年)阿基米德(前287—前212年)利用穷竭法求出球的表面积和体积公式,研究抛物弓形面积,给出π的范围,它的几何著作是希腊数学的顶峰。
大约从公元1世纪初起,亚历山大的数学工作特别是几何工作开始衰落.而此时在东方的中国数学正蓬勃发展。
二、中国古代几何学中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,甲骨文内已有“规”和“矩”两个字,规是用来画圆的,矩是用来画方的.春秋时期,随着铁器的出现,生产力的提高,中国开始了由奴隶制向封建制的过渡,新的生产关系促进了科学技术的发展与进步。
战国时期人们通过田地及国土面积的测量,城池的修建,水利工程的设计等生产生活实践,积累了大量的数学知识。
(1)但是秦朝的焚书坑儒给中国文化事业造成空前的浩劫,西汉作为数学新发展及先秦典籍的抢救工作的结晶,便是《九章算术》的成书。
它对于中国和东方数学,大体相当于《几何原本》对于希腊和欧洲数学。
中国古代的几何一般不讨论图形离开数量关系的性质,而要计算出长度、面积、体积。
在《九章算术》的方田章中有各种多边形、圆、弓形等的面积公式;商功章讨论了各种立体的体积公式。
《九章算术》后,中国的数学著述基本采用两种方式:一是为《九章算术》做注;二是以《九章算术》为楷模编纂新的著作。
经过两汉社会经济和科学技术的大发展,到魏晋时期,思想文化领域中儒家的统治地位被削弱,代之以谈三玄——《周易》、《老子》、《庄子》为主的辩难之风。
与此相适应,数学家重视理论研究,力图把自先秦到两汉积累起来的数学知识建立在必然可靠的基础之上。
(2)刘徽和他的《九章算术注》便是魏晋时代造就的最伟大的数学家和最杰出的数学著作。
该书前九卷全面论证了《九章算术》的公式、解法,发展了出入相补原理、截面积原理、齐同原理和率的概念,在圆面积公式和锥体体积公式的证明中引入了无穷小分割和极限思想,首创了求圆周率的正确方法,指出并纠正了《九章》的某些不正确的或错误的公式,探索出解决球体积的正确途径。
以多面体体积的算法为例,在实际中使用了长方体的体积公式:V=abh。
堑堵是将长方体沿相对两棱剖开所得的几何体,其体积显然是V=abh/2;沿堑堵的一顶点与相对的棱剖开,一部分是四棱锥,称为阳马,其体积为V=abh/3,另一部分为四面都是直角三角形的三棱锥,叫鳖臑,其体积V=abh/6。
刘徽用无穷小分割的方法证明了上述公式。
在平面几何中用直角三角形或正方形在立体几何中用锥体和长方体进行移补,这构成了中国古代几何的特点.刘徽未能解决球体积公式的证明,但他创造性地给出了他的“牟合方盖”,但是他未能证明,在书中他也坦诚直言,表示“以俟能言者”。
200多年后出了一位“能言者”,那就是祖暅之。
(3)《缀术》包含了祖冲之(429—500年)和儿子祖暅之(一作祖暅,生平不详)的数学贡献。
祖暅沿用刘徽的“牟合方盖”,证明了球体体积的计算问题,充分显示了中国古代数学家的聪明才智。
由于该书内容深奥,隋唐算学馆的学官(相当于今天大学数学系的教授)读不懂,后失传。
刘徽和祖氏父子在极限思想的运用上远远超过了古希腊的同类思想,达到了文艺复兴前世界数学界的最高峰。
三、我们研究探索的问题问题1为了改善住房条件,上海近些年大力推行“平改坡”工程。
一个平顶建筑物屋顶是一个长为a 米宽为b 米的矩形,在其上增加一个如图所示的屋顶,屋脊PQ 的长为m 米,屋顶的高为h 米,求增加的屋顶的体积。
[分析]将屋顶截成中间成三棱柱(堑堵),两边成四棱锥(阳马)。
仅此,我们可以看出刘徽的这组模型在几何体计算中的作用。
问题2 遮阳棚的角度卖西瓜的小商贩决定利用一面南北方向的墙(如图所示),在上面用AC=3m BC=4m AB=5m 的角钢焊接成一个简易的遮阳棚(将AB 放在墙上),他认为从正西方向射出的太阳光线与地面成75度角时,气温最高,要使此时的遮阳棚面积最大,应将遮阳棚ABC 面与水平面成多大角度?问题3飞行的高度B1在南北方向的一条公路上,一辆汽车由南向北行驶,速度为100千米/时,一架飞机在一定高度上的一条直线上飞行,速度为100√7千米/时。
从汽车里看飞机,在某个时刻看见是正西方向,仰角是30度,在36秒后,又看见飞机在北偏西30度,仰角为30度,问飞机的飞行高度是多少千米?问题418世纪,法国科学家雷奥乌姆尔和马拉尔蒂等人认真观测蜂巢,发现它外形是正六棱柱,下底是正六边形(设边长为2a),顶部是三个全等菱形,三个菱形与棱柱轴线成等角,三者彼此斜依而下倾,棱柱侧面皆全等直角梯形。
设较长侧棱AA1=h,问:(1)当菱形的边长变化时,蜂巢的体积是否改变?请说明理由。
(2)欣赏了蜂巢的艺术性之后,科学家在深思这种奇特结构的实用价值,猜想这种蜂房的顶盖设计可能是节省其建材蜂蜡的最佳选择。