18.1.1 平行四边形的性质(2)
- 格式:doc
- 大小:91.00 KB
- 文档页数:5
第十八章 平行四边形
体会图形
体会图形性质探O. OA 与OC,OB 与OD 有什
_________. OA=OC ,OB=OD. 例1如图,已知平行四边形ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,△AOB 的周长比△DOA 的周
第1题图第2题图
ABCD中,对角线相交于点O,△AOB的周长为
,若平行四边形ABCD的周长为
方法总结:
平行四边形的对角线分平行四边形为四个面积相等的三角形,且都等于平行四边形
面积的四分之一.相对的两个三角形全等.
例5如图,AC,BD 交于点O ,EF 过点O,平行四边形ABCD 被EF 所分的两个四边形面积相等吗?
变式题如图,AC,BD 交于点O ,EF 过点O,平行四边形ABCD 被EF 所分的两个四边形面积相等吗?
二、课堂小结
第1题图第2题图第3题图
第4题图第5题图第6题图
如图,平行四边形ABCD中,对角线AC、BD相交于点AC,AB=3,AD=5,则
的对角线相交于点O,且AB
能力提升
8.如图,已知O是平行四边形ABCD的对角线的交点,AC=24,BD=18,AB=16,求△OCD的周长及AD边的取值范围.。
平行四边形性质课标解读与教材分析【课标要求】1.理解并掌握平行四边形的概念和平行四边形对边、对角相等、对角线互相平分的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.教学内容分析:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等、对角线互相平分的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.教学目标知识与技能1.理解并掌握平行四边形的概念和平行四边形对边、对角相等、对角线互相平分的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.过程与方法培养学生发现问题、解决问题的能力及逻辑推理能力.情感态度价值观1、培养学生观察、分析、猜想、归纳知识的自学能力.2、使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.3、初步达到演绎数学论证过程的能力.教学重点与难点重点平行四边形的定义,平行四边形对角、对边相等、对角线互相平分的性质,以及性质的应用.难点运用平行四边形的性质进行有关的论证和计算.媒体教具三角板课时1课时教学过程修改栏教学内容师生互动配套练习P23-251、典型例题讲析2、基础演练运用平行四边形的性质进行有关的论证和计算.板书设计作业布置教学反思平行四边形的判定——三角形的中位线课标解读与教材分析【课标要求】1.理解三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线性质进行有关的证明和计算.3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.教学内容分析:一、课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)3.创设情境实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?二、定义:连接三角形两边中点的线段叫做三角形的中位线.【思考】:(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由)三、例题分析例1如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.DE=21BC . 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形. 方法1:如图(1),延长DE 到F ,使EF=DE ,连接CF ,由△ADE ≌△CFE ,可得AD ∥FC ,且AD=FC ,因此有BD ∥FC ,BD=FC ,所以四边形BCFD 是平行四边形.所以DF ∥BC ,DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC .(也可以过点C 作CF ∥AB 交DE 的延长线于F 点,证明方法与上面大体相同)方法2:如图(2),延长DE到F ,使EF=DE ,连接CF 、CD和AF ,又AE=EC ,所以四边形ADCF 是平行四边形.所以AD ∥FC ,且AD=FC .因为AD=BD ,所以BD ∥FC ,且BD=FC .所以四边形ADCF 是平行四边形.所以DF ∥BC ,且DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . 例2(补充)已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形. 分析:因为已知点E 、F 、G 、H 分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH 的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC 或BD ,构造“三角形中位线”的基本图形后,此题便可得证.证明:连结AC (图(2)),△DAG 中,所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.∵ AH=HD ,CG=GD , ∴ HG ∥A C ,HG=21AC (三角形中位线性质). 同理EF ∥AC ,EF=21AC .∴ HG ∥EF ,且HG=EF . ∴ 四边形EFGH 是平行四边形.此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.板 书设 计作业布置教 学反 思18.1.1 平行四边形的性质一、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.讲定义时要强调“四边形”和“两组对边分别平行”这两个条件,一个“四边形”必须具备有“两组对边分别平行”才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行”的一个“四边形”.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在教师的范式的诱导下,初步达到演绎数学论证过程的能力.最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识.三、例题的意图分析教材P42的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(教材P42例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.六、随堂练习1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=︒(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.七、课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是().360(A)对角相等(B)对角互补(C)邻角互补(D)内角和是︒2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.课后反思:18.1.1 平行四边形的性质三、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.四、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.讲定义时要强调“四边形”和“两组对边分别平行”这两个条件,一个“四边形”必须具备有“两组对边分别平行”才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行”的一个“四边形”.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在教师的范式的诱导下,初步达到演绎数学论证过程的能力.最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识.三、例题的意图分析教材P42的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(教材P42例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.六、随堂练习1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=︒(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.七、课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是().360(A)对角相等(B)对角互补(C)邻角互补(D)内角和是︒2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.课后反思:。
人教版八下18.1.1平行四边形的性质(第2课时)教学设计教学内容解析教学流程图地位与作用本节课是在前一节课研究平行四边形边、角性质的基础上,进一步从平行四边形对角线的角度来探究平行四边形的性质.对角线互相平分是平行四边形的重要性质,在“旋转”一章,学习中心对称及中心对称图形时,会有进一步的体会.平行四边形的学习综合了平行线与三角形的相关知识,突出演绎推理,是训练学生思维的良好平台,而平行四边形的性质又是猜想平行四边形判定的起点,是后续学习矩形、菱形、正方形的基础,所以它在教材中处于非常重要的位置.概念解析平行四边形的性质:平行四边形的对角线互相平分.即在□ABCD中,对角线AC,BD 相交于点O,则OA=OC,OB=OD.平行四边形对角线的性质揭示了平行四边形对角线特殊的位置关系,揭示了对角线交点是平行四边形的对称中心.在具体几何证明应用中,此性质提供了证明线段相等的一种方法,也为已知一条对角线时添加另一条对角线作为辅助线提供了依据.思想方法平行四边形性质的研究从上一课时的边、角分析,再到本节课对对角线关系的分析,展示了研究几何图形性质的一般思路.平行四边形性质3的证明,要转化为三角形全等进行解决,渗透着转化的数学思想.知识类型平行四边形的性质属于原理和规则的知识.在性质的获得与理解层面,需要学生经历“观察、猜想、证明”的过程,在性质的运用层面,需要经过知识由简单到综合,思维由浅入深的层次训练,使学生形成条件化、策略化的知识.基于以上分析,本课的教学重点是:平行四边形性质3的探究与应用.教学目标解析教学目标1.探索并证明平行四边形的性质3.2.会利用平行四边形的性质进行简单的计算和推理.目标解析目标1的具体要求是:明确图形性质的探究就是从构成图形的边、角、对角线等基本要素着手,猜想它们之间的关系,并从定义出发结合已有定理进行逻辑证明. 在证明“平行四边形对角线互相平分”这一性质时,能利用“三角形全等是证明线段相等的重要方法”这个经验想到证明思路并完成证明;目标2的具体要求是:能分清性质3的条件与结论,在题目中涉及平行四边形的对角线时能主动联想到对角线互相平分,进行简单的计算和推理.教学问题诊断分析具备的基础学生在八上已经学习了全等三角形,对利用全等证明线段相等有了比较丰富的经验.在第1课时又已学了平行四边形性质:对边平行且相等,这些是为平行四边形性质3的证明提供了知识基础. 同时,通过前面的学习也初步体会几何图形性质研究的一般思路,这为本节继续研究平行四边形的性质提供了思路与方法.与本课目标的差距分析由于八年级学生处在形象思维与抽象思维的过渡时期,而这个过渡的过程中需要在不断丰富经验和反思体会中顺利跨越,很多学生容易通过观察直接猜想得出平行四边形对角线互相平分,而忽略对此猜想的证明.存在的问题在证“平行四边形对角线互相平分”时,要结合图形写出已知,求证,再进行证明,从文字表述到几何证明是学生感到困难的;同时,随着平行四边形性质的进一步学习,应用性质进行推理计算的要求越来越高,知识综合与复杂程度的提升也会造成学习的困难.应对策略在学生原有的经验中,已经具备利用三角形全等证明线段或角相等的方法,在证明平行四边形性质时,教师应通过目标(证线段相等)分析和方法(证全等三角形)引导,让学生自然合理地想到利用全等三角形证明线段相等的方法.在习题训练中,坚持顺序渐进的原则逐步巩固知识,发展能力.基于以上分析,本课的教学难点是:构建平行四边形性质的研究路径,发现平行四边形的性质3.教学支持条件分析可用ppt自定义动画等技术显示图片动画,体验平行四边形对角线的性质,可用实物投影或西沃授课助手等软件展示学生思考和讨论的成果;可用常用统计软件统计显示测评结果;根据测评结果,对没有达标的部分内容、没有达标的部分同学,用点对点技术推送相应的训练资源.教学支持条件分析教学过程设计课前检测1.在□ABCD中∠A=50 o,则∠B=_______,∠C=_______,∠D=_______.2.在□ABCD中,AB=5,BC=3,则它的周长是_______.3.在□ABCD中,AB=4cm,BC=5cm,∠B=30o,则□ABCD的面积为_______.设计意图:检查学生对平行四边形边、角性质及平行线之间的距离的掌握程度,如果学生对于前两个问题回答不好,则需要在课前增加平行四边形性质的复习.新课学习1.创设情境引出课题情境:一位饱经沧桑的老人,经过一辈子的辛勤劳动,到晚年的时候,终于拥有了一块平行四边形的土地,由于年迈体弱,他决定把这块土地分给他的四个孩子,分法如图.问题1:如何判断如图的三角形面积是否相等?师生活动设计:先请一位同学回答,如有不足,其他同学补充.预设有两种可能答案:1.可通过证明相对的两对三角形全等,(说明不了相邻两三角形面积相等);2.三角形在等高的情况下,可通过判断底边是否相等即可.设计意图:1.由身边事物来创设情景,虽普通,但蕴含数学来源于生活的道理,容易让学生较快进入所需的数学状态;2.回顾平行四边形边、角两个基本要素的性质,带出对角线这一研究对象;3.引出教师追问.追问:平行四边形除了边、角这两个基本要素的性质外,对角线有什么关系?设计意图:引导学生深入探究平行四边形的性质,明确新课核心内容.2.方法类比提出猜想问题2:如图1,在□ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB 与OD有什么关系?师生活动设计:先引导学生合作探究,可用几何图形性质探究的常用方法:度量法或叠合法来猜想对角线具有什么关系.猜想:平行四边形对角线互相平分.设计意图:经历数学猜想的过程,体验图形性质探究的方法.3.演绎推理形成定理问题3:你能证明上述猜想吗?师生活动设计:对于猜想,要求经历完整的证明过程.教师引导学生画出图形,写出已知,求证.本环节注重化四边形为三角形的思想.如图2,在□ABCD中,连接AC,BD,并设它们相交于点O,求证:OA=OC,OB=OD.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠1=∠2,∠3=∠4.∴△COD ≌△AOB.∴OA=OC,OB=OD.小结:通过推理论证正确的猜想可以成为性质定理,这样我们得到了平行四边形关于对角线的性质:平行四边形的对角线互相平分.设计意图:初步掌握证明猜想的基本步骤:画图,写出已知,求证,证明.经历命题的证明过程,体验化四边形为三角形的思想.问题4:你能用几何语言表述平行四边形对角线的性质吗?师生活动设计:符号语言:∵四边形ABCD是平行四边形∴OA=OC,OB=OD设计意图:强调几何的几种不同语言的转化,为性质的应用作好准备.目标1检测:回顾刚才的过程,我们是如何探索平行四边形对角线的性质的?设计意图:如果学生能大致正确回答,则表示肯定后进入下面环节的学习;如果学生不能很好组织表达,教师应和学生一起回顾学习过程,进一步明确研究图形性质的一般思路与方法,同时指出将四边形问题转化为三角形问题的证明策略.问题5:结合前一节,平行四边形有哪些性质?师生活动设计:平行四边形具有以下性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.设计意图:学生对平行四边形的性质作总结,学会对所学知识作及时整理.追问:引入情景中的老人分土地分得均匀吗?设计意图:前后呼应,体现学有所用.4.运用定理解决问题例1:如图,在□ABCD中,AB=10,AD=8,AC⊥BC.求BC,CD,AC,OA的长,以及□ABCD的面积.师生活动设计:分析思路,引导学生书写规范格式.同时引导学生用所学新知识来解决问题,以免学生跳不出三角形的圈子.设计意图:1.及时巩固平行四边形的性质;2.引出变式图.目标2检测:如图,□ABCD的对角线AC,BD交于点O,已知AC=6,BD=10,AB⊥AC,求AB的长以及□ABCD的面积.设计意图:如果大部分学生能顺利解决,则进入变式的教学,如果个别学生不会,建议进行个别辅导,如果较多学生感到困难,则应对目标2检测题进行详细讲解分析,如果有些学生没有思路,讲解后能领悟也可先进入后续的学习.其中对AB的长应当要求大部分学生能独立解决,□ABCD的面积有多种求法,应给学生表达的时间.变式:在上题中,EF过□ABCD对角线的交点O且与AB,CD分别相交于点E,F.求证:OE=OF.师生活动设计:要求学生口述证明思路,并对不同思路进行点评,突出不同思路的合理成分.设计意图:对例2进行简单变式,使图形有一种动态的感觉,在进一步巩固知识与方法的同时,有利于思维深刻性的训练与培养.追问:图中还有那些相等的量?设计意图:引导学生发散性联想,相等的量可从边、角、面积等角度思考.课堂小结教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)到目前为止,我们知道了平行四边形的性质有哪些?(2)请回顾平行四边形性质3的探究过程,谈谈你的体会.设计意图:通过小结,使学生梳理平行四边形性质的有关内容,形成知识体系,通过对学习过程的回顾,进一步体会几何研究的一般思路,在这里主要是了解学生的认识情况并稍加指导,完整的教学将在下一节中进行.目标检测设计1.如图,□ABCD的对角线AC,BD相交于点O,则下列说法一定正确的是() A.AO=OD B.AO⊥ODC.AO=OC D.AO⊥AB2.如图,在□ABCD中,BC=10cm,AC=14cm,BD=8cm,则△AOD的周长等于_______.3.如图,在□ABCD中, 对角线AC,BD相交于点O,AC=6,BD=8,则AB的取值范围是_______.4.如图,若平行四边形ABCD的周长为22cm,AC,BD相交于点O,△AOD的周长比△AOB的周长小3cm,则AD=_______,AB=_______.5.如图,延长□ABCD的边BC至E,DA至F,使CE=AF,EF与BD交于O.求证:EF与BD互相平分.。
18.1 平行四边形18.1.1 平行四边形的性质第1课时平行四边形的性质(1)思想方法(即为甚么要添加对角线).教学预备教学过程(师生活动)设计理念创设情境,导入新课引言前面我们曾经学习了许多图形与几何知识,掌握了一些探求和证明图形几何性质的方法,本节开始,我们继续研讨生活中的常见图形.成绩 1 观察以下图片, 从中能找到甚么几何图形的抽象?师生活动:先生积极积极发言,教师用电脑演示你知道甚么样的图形叫做平行四边形吗?平行四边形是四边形中比较特殊的一类,那么平行四边形性质有哪些特殊的性质?本节课我们一同来探求平行设计意图:经过图片展现,让先生逼真感受生活中存在大量平行四边形的原型.进而从实践背景中抽象出平行四边形,让先生经历将实物抽象为图形的过程.四边形及其性质!合作探求,探求新知活动1:平行四边形相关概念1、结合之前学习的知识,你能从以下图形中找出平行四边形吗?2、归纳概念让先生本人归纳定义定义:有两组对边__________________的四边形叫平形四边形。
表示方法:平行四边形用“______”表示,平行四边形ABCD记作__________.如图□ABCD中,对边有组,分别是对角有_____组,分别是_________________3、想一想:你还能说出生活中哪些平行四边形的例子吗?设计意图:给出定义,强调定义的作用.621师生活动:教师引导先生回顾小学学习过的平行四边形的概念:两组对边分别平行的四形叫做平行四边形.阐明定义的两方面作用:既可以作为性质,又可以作为判定平行四边形的根据.介绍平行四边形的表示方法.活动2:猜想证明,探求性质理想世界中很多物体都有平行四边形的抽象,为甚么平行四边形外形的物体到处可见呢?这与平行四边形的性质有关。
1、由平行四边形的定义可知,平行四边形有甚么性质?2、除此之外,平行四边形的边与边,角与角之间还有怎样的关系呢?大家一同探求平行四边形边、角的其它性质。
平行四边形的性质(第二课时)同步练习题一、单选题1.平行四边形的一边长为10,那么它的两条对角线的长可以是( )A .4和6B .6和8C .8和12D .20和302.平行四边形的一组对角的平分线( )A .一定相互平行B .一定相交C .可能平行也可能相交D .平行或共线 3.有下列说法:①平行四边形具有四边形的所有性质: ②平行四边形是中心对称图形:③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形; ④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形. 其中正确说法的序号是( ).A .①②④B .①③④C .①②③D .①②③④4.如图,在▱ABCD 中,已知90ODA =∠°,10cm AC =,6cm BD =,则AD 的长为( )第4题 第5题 第7题 第9题 A .4cmB .5cmC .6cmD .8cm5.如图,在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是( )A .(3,7)B .(5,3)C .(7,3)D .(8,2)6.平行四边形一边的长是10cm ,那么这个平行四边形的两条对角线长可以是( )A .4cm ,6cmB .6cm ,8cmC .8cm ,12cmD .20cm ,30cm7.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC 于E ,AB 3AC =2,BD =4,则AE 的长为( )A 3B .32C .217D .2178.已知四边形ABCD 是平行四边形,则下列各图中1∠与2∠一定不相等的是( )A .B .C .D .9.如图,已知平行四边形ABCD 中,4B A ∠=∠,则C ∠=( )A.18°B.36°C.72°D.144°10.如图,设M是ABCD边AB上任意一点,设AMD∆的面积为1S,BMC∆的面积为2S,CDM∆的面积为S,则()第10题第12题第13题第14题A.12S S S=+B.12S S S>+C.12S S S<+D.不能确定二、填空题11.在平行四边形ABCD中,BC边上的高为AE=4,AB=5,EC=7,则平行四边形ABCD的周长等于_____.12.如图,在中,.以点为圆心,以小于长为半径作弧,分别交、于点、,再分别以、为圆心,以大于的长为半径作弧,两弧在内交于点,连接并延长交于点,则____.13.如图,直线EF经过平行四边形ABCD的对角线的交点O,若四边形AEFB的面积为20cm2,则平行四边形ABCD的面积为___cm2.14.如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于点E,BF⊥CD于点F,DE、BF 相交于点H,直线BF交线段AD的延长线于点G,下列结论:①CE=BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG.其中正确的结论是 ___.15.如图,在一个平行四边形中,两对平行于边的直线将这个平行四边形分为九个小平行四边形,如果原来这个平行四边形的面积为,而中间那个小平行四边形(阴影部分)的面积为20平方厘米,则四边形的面积是________.三、解答题16、如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=25,且AO∶BO=2∶3.(1)求AC的长;(2)求▱ABCD的面积.17.如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AB,CD分别相交于点E,F,连接EC.ABCD50D∠=︒B AB BA BC PQ P Q12PQ ABC∠M BM AD E AEB∠=122100cmABDC(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.。
18.1.1平行四边形的性质(2)
1.(2014·河南)如图,□ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB=4,AC=6,则BD的长是( )
A.8
B.9
C.10
D.11
2.如图,在□ABCD中,对角线AC和BD相交于点O.如果AC=12,BD=10,AB=m,那么m的取值范围是( )
A.10<m<12
B.2<m<22
C.1<m<11
D.5<m<6
3.(2013·襄阳)如图,□ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则□ABCD的两条对角线的和是( )
A.18
B.28
C.36
D.46
4.如图,□ABCD中,AC、BD为对角线,BC=6,BC边上的高为4,则阴影部分的面积为( )
A.3
B.6
C.12
D.24
5.如图,在□ABCD中,AC、BD相交于点O,则下列说法,错误的是( )
A.OA=OC
B.∠BAD=∠BCD
C.AC⊥BD
D.∠BAD+∠ABC=180°
6.如图,在□ABCD中,已知∠ODA=90°,AC=10 cm,BD=6 cm,则AD的长为( )
A.4 cm
B.5 cm
C.6 cm
D.8 cm
7.如图,在四边形ABCD中,AB∥CD,AD∥BC,AC、BD相交于点O.若AC=6,则线段AO的长度等于__________.
8.□ABCD的对角线AC、BD交于点O,若两条对角线长的和为20 cm,且BC长为6 cm,则△AOD的周长为__________cm.
9.如图,在□ABCD中,过其对角线的交点O引一直线交BC于点E,交AD于点F.若AB=3 cm,BC=4 cm,OE=1 cm,则四边形CDFE的周长是__________.
10.如图,若平行四边形ABCD的周长为22 cm,AC、BD相交于点O,△AOD的周长比△AOB的周长小3 cm,则AD=__________,AB=__________.
11.□ABCD的对角线AC、BD交于O,若△AOB的面积为3,则△ABC的面积为__________,□ABCD的面积为__________.
12.(2014·泸州)一个平行四边形的一条边长为3,两条对角线的长分别为4和
的面积为__________.
13.(2014·广州)如图,□ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD 分别交于点E、F,求证:△AOE≌△COF.
15.如图,有一块形状为平行四边形的铁片,用
AB表示其较长的一边,BC表示较短的边,且AD∶AB
=1∶2,现在想用这块铁片截一个直角三角形,并且要
以AB为斜边,直角顶点在CD上,问这件事能否办成,
如果能的话,请说明应该怎样截;如果不能的话,请说明理由.
16.如图,在平行四边形ABCD中, E、F是对角
线BD上的两点,要使△BCF绕对角线的交点O旋转
180°后与△DAE重合,还需添加一个条件.
A
B C
D
参考答案
1.C
2.C
3.C
4.C
5.C
6.A
7.3
8.16
9.9 cm 10.4 cm 7 cm 11.6 12 12.
13.证明:∵□ABCD 的对角线AC 、BD 相交于点O ,
∴AO=CO ,AB ∥CD. ∴∠EAO=∠FCO.
在△AOE 和△COF 中,,,,EAO FCO AO CO AOE COF ∠=∠=∠=∠⎧⎪
⎨⎪⎩
∴△AOE ≌△COF.
14.∵□ABCD ,DO=1.5 cm ,AB=5 cm , ∴DB=3 cm ,CD=AB=5 cm.
又∵BC=4 cm ,∴DB 2+BC 2=CD 2.
∴△DBC 是直角三角形,且∠CBD=90°. ∴DB ⊥BC.
∴S □ABCD =BC ·DB=3×4=12(cm 2).
15.要使∠AMB 为直角,则要求∠MAB +∠MBA =90°,又由AD//BC,∠DAB +∠ABC
=180°,联想作角的平分线,结合AB =2AD ,不难得出此时M 点刚好为CD 的中点. 16.OE=OF 、DE=DF 或∠EAO=∠FCO 等(点拨:利用平行四边形是中心对称图形.) 17.先说明△BEH ≌△DEC ,从而BH=DC . 又由平行四边形ABCD ,得AB=DC . 18.如图,连结AC , AD//BC,AB//CD,从而
S ABC AD C S ∆∆=,根据同底等高的两个三角形面积相等, 则S ,ADE ADC S ∆∆=S ABF ABC S ∆∆=,所以 ADE ABF S S ∆∆=.。