微分方程模型(数学建模)
- 格式:ppt
- 大小:1.67 MB
- 文档页数:51
实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。
二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。
其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。
(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。
微分方程模型练习题
1.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ,用量纲分析方法确定风车获得的功率P 与,
,v s ρ的关系
2.根据经验当一种新商品投入市场后,随着人们对它的拥有量的增加,其销售量()s t 成正比。
广告宣传可给销量添加一个增长速度,它与广告费()a t 成正比,但广告只能影响这种商品在市场上尚未饱和的部分(设饱和量为M )。
建立一个销量()s t 的模型。
若广告宣传只进行有限时间τ,且广告费为常数a ,问()s t 如何变化?
3.如果两个种群都能独立生存,共处时又能相互提供食物,试建立种群依存模型并讨论平衡点的稳定性,解释稳定的意义。
4.某种群最高年龄为30岁,按间隔10岁将此种群分为三组并
以10年为一时段。
若020b b ==,13b =,016p =,112p =,
0(1000,1000,1000)T N =
求:(1)10年、20年、30年后该种群按年龄分布的种群量;
(2)此种群的固有增长率1λ及相应的稳定年龄分布;
(3)指出该种群的发展趋势。
常微分方程数学建模案例分析常微分方程是运用微积分中的概念与理论研究变化率的方程。
它是数学建模中常用的方法之一,可用于描述各种实际问题,如经济增长、生物扩散、化学反应等。
本文将通过一个关于人群传染病的数学建模案例,分析常微分方程在实际问题中的应用。
假设地有一种传染病,病毒的传播速度与感染者的接触频率有关。
现在我们要研究传染病的传播速度以及控制措施对传染病传播的影响。
为此,我们可以建立如下的数学模型:设N(t)表示时间t时刻的总人口数,而I(t)表示感染者的人口数,S(t)表示易感者的人口数。
根据该模型,易感者的人数随时间的变化率可表示为:dS/dt = -βSI其中,β表示感染率,即感染者每接触到一个易感者,会使其发病的概率。
感染者的人数随时间的变化率可表示为:dI/dt = βSI - γI其中,γ表示恢复率,即感染者每天被治愈的人数。
总人口数随时间的变化率可以通过易感者和感染者的变化率求和得到:dN/dt = dS/dt + dI/dt通过对该方程进行求解,我们可以得到感染者和易感者的人数随时间变化的解析解。
进一步,我们可以通过调节β和γ来研究不同的传播速度和控制措施对传染病传播的影响。
例如,如果β较大,表示感染率较高,此时传染速度会加快,可能导致传染病扩散的速度加快。
反之,如果β较小,表示感染率较低,传染病传播的速度会减慢。
另外,如果γ较大,表示恢复率较高,此时感染者的人数会快速减少,传染病传播的速度会减慢。
相反,如果γ较小,传染病传播的速度会加快。
通过对这些参数的调节,我们可以研究不同的控制措施对传染病传播的影响。
例如,我们可以通过降低感染率β或增加恢复率γ来减缓传染病传播的速度,从而控制疫情的爆发。
在实际应用中,常微分方程数学建模方法可以用于预测传染病的传播趋势,评估各种干预措施的效果。
此外,还可以通过引入更多的变量和参数,建立更复杂的模型,以更好地解释实际问题。
总之,常微分方程是数学建模中常用的方法之一,可以用于描述各种实际问题,如传染病的传播、经济增长等。
微分方程列微分方程常用的方法: (1)根据规律列方程利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。
(2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。
(3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。
一、模型的建立与求解 1.1传染病模型 (1)基础模型假设:t 时刻病人人数()x t 连续可微。
每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。
建模:t 到t t +∆病人人数增加()()()x t t x t x t t λ+∆-=∆ (1)0,(0)dxx x x dtλ== (2) 解得:0()t x t x e λ= (3)所以,病人人数会随着t 的增加而无限增长,结论不符合实际。
(2)SI 模型假设:1.疾病传播时期,总人数N 保持不变。
人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。
2.每位病人每天平均有效接触λ人,λ为日接触率。
有效接触后健康者变为病人。
依据:患病人数的变化率=Ni(t)(原患病人数)* λs(t)(每个病人每天使健康人变为病人的人数) 建模:di N Nsi dtλ= (4)由于()()1s t i t += (5)设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型0(1),(0)dii i i i dtλ=-= (6) 解得:01()111kti t e i -=⎛⎫+- ⎪⎝⎭(7)用Matlab 绘制图1()~i t t ,图2 ~di i dt图形如下,结论:在不考虑治愈情况下①当12i =时didt 达到最大值m di dt ⎛⎫ ⎪⎝⎭,这时101ln 1m t i λ-⎛⎫=- ⎪⎝⎭②t →∞时人类全被感染。
数学建模微分方程模型在数学建模的旅程中,微分方程模型扮演了至关重要的角色。
它们在描述和解决各种实际问题中,从物理学到社会科学,都起到了关键的作用。
在本章中,我们将探讨微分方程模型的基本概念、类型和应用。
微分方程是一种方程,它包含未知函数的导数。
这种方程在描述变化率时非常有用,例如,描述物体的速度或加速度。
在形式上,微分方程可以表示为 y'(x) = f(x, y),其中 y'表示 y的导数,f是一个给定的函数。
根据方程的特点,微分方程可以划分为多种类型,如线性微分方程、非线性微分方程、常微分方程、偏微分方程等。
每种类型的方程都有其特定的求解方法和应用领域。
微分方程在众多领域中都有应用,如物理学、工程学、经济学等。
例如,牛顿第二定律就是一个微分方程,它描述了物体的加速度如何由作用力决定。
人口增长模型、传染病模型等也都依赖于微分方程。
建立微分方程模型通常需要以下步骤:确定模型的目标和变量;然后,根据问题背景和物理规律建立数学模型;通过数值计算或解析解法得出结果。
求解微分方程的方法主要有两种:数值方法和解析方法。
数值方法是通过计算机程序或软件进行数值计算得到近似解,而解析方法是通过求解方程得到精确解。
对于某些类型的微分方程,可能需要结合使用这两种方法。
建立微分方程模型后,我们需要对模型进行评估和检验,以确保其有效性和准确性。
这通常包括对模型的假设进行检验、对模型的预测结果进行验证以及对模型的参数进行估计和调整等。
随着科学技术的发展,微分方程模型的应用前景越来越广阔。
例如,在生物学中,微分方程被用来描述疾病的传播动态;在经济学中,微分方程被用来分析市场供需关系的变化;在工程学中,微分方程被用来模拟复杂系统的行为等。
未来,随着大数据和人工智能等技术的发展,微分方程模型将在更多领域得到应用和发展。
微分方程模型是数学建模中一个极其重要的部分。
通过学习和掌握微分方程的基本概念、类型、应用以及求解方法等,我们可以更好地理解和解决现实生活中的各种问题。