05数学建模-微分方程模型
- 格式:ppt
- 大小:1.67 MB
- 文档页数:67
在解决实际问题时,弄清问题中的变量之间的函数关系或其转变趋势是相当重要的,而在一些较为复杂的转变进程中,变量之间的函数关系无法直接取得。
可是,在许多情形下,咱们往往能够在理论或体会的基础上找到问题中的一些变量及其导数之间的关系。
也确实是找出一个或几个含有未知函数及其导数所知足的方程,那个(些)方程就称为微分方程(组)。
然后通过求解微分方程(组)取得变量之间的函数关系,或在微分方程(组)的基础上进行数值计算和渐进性态研究,从而了解整个系统的进展转变规律。
为了研究一些实际问题的转变规律,往往需要对所研究的问题进行适当的简化和假设,再成立数学模型,当问题中涉及变量的转变率时,就能够够通过微分方程来建模。
微分方程模型主若是解决与导数,也即转变率相关的问题,可是;实际问题中一样并非会直接显现“导数”或“转变率”等词语,这时,就需要咱们认真分析,从中找出这些信息,一样来讲,若是问题中涉及到“速度”、“增加”、“改变”、“转变”、“增加”、“减少”、“衰变”(在放射性问题中)、“扩散”、“边际的”(在经济学中)等问题时,往往就能够够用微分方程(组)来建模。
微分方程模型的类型很多,在解决实际问题时,要依照具体情形选择不同的模型,成立模型时,应第一将实际问题概念化为文字方程,许多问题都遵循下面的模式:总讯宗勋净转变率=净增加率━净减少率若是变量之间的关系能够用这种形式来描述,咱们就不难给出相应的微分方程(组)了。
在成立了微分方程模型以后,咱们固然希望能取得微分方程的解,可是,关于大多数微分方程而言,要想直接求解往往是困难的,乃至是不可能的,现在咱们能够通过对方程的定性分析取得有关的一些有效信息。
§1 确信性存贮模型为了使生产和销售有条不紊地进行,一样的工商企业总需要存贮必然数量的原料或商品,但是大量的库存不但积存了资金,而且会使仓库的保管费用增加。
因此,寻求合理的库存量乃是现代企业治理的一个重要课题。
需要注意的是,存贮问题的原型能够是真正的仓库存货,水库存水,也能够是运算机的存贮器的设计问题,乃至是大脑的存贮问题。
第十节 数学建模—微分方程的应用举例微分方程在几何、力学和物理等实际问题中具有广泛的应用,本节我们将集中讨论微分方程在实际应用中的几个实例. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力.分布图示衰变问题★ 例1 ★ 例2 ★ 逻辑斯谛方程★ 环境污染的数学模型 ★ 例3 ★ 自由落体问题内容要点一、 衰变问题二、 逻辑斯谛方程三、 环境污染的数学模型 四、 自由落体问题例题选讲衰变问题例1(E01)镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量,这种现象称为放射性物质的衰变. 根据实验得知,衰变速度与现存物质的质量成正比,求放射性元素在时刻t 的质量.解 用x 表示该放射性物质在时刻t 的质量,则dtdx表示x 在时刻t 的衰变速度,依题意得.kx dtdx-= (1) 它就是放射性元素衰变的数学模型,其中0>k 是比例常数,称为衰变常数,因元素的不同而异.方程右端的负号表示当时间t 增加时,质量x 减少.易求出方程(1)的通解为.ktCex -=若已知当0t t =时,,0x x =代入通解kt Ce x -=中可得,00kt ex C =则可得到特解,)(00t t k e x x --=它反映了某种放射性元素衰变的规律.注:物理学中,我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期,不同物质的半衰期差别极大.如铀的普通同位素)(238U 的半衰期约为50亿年;通常的镭)(226Ra 的半衰期为1600年,而镭的另一同位素Ra 230的半衰期仅为1小时.半衰期是上述放射性物质的特征,然而半衰期却不依赖于该物质的初始质量,一克Ra 226衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年,正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.例2 (E02) 碳14(C 14)是放射性物质,随时间而衰减,碳12是非放射性物质.活性人体因吸纳食物和空气,恰好补偿碳14衰减损失量而保持碳14和碳12含量不变,因而所含碳14与碳12之比为常数.已测知一古墓中遗体所含碳14的数量为原有碳14数量的80%,试求遗体的死亡年代.解 放射性物质的衰减速度与该物质的含量成比例,它符合指数函数的变化规律.设遗体当初死亡时C 14的含量为0p ,t 时的含量为),(t f p =于是,C 14含量的函数模型为,)(0kt e p t f p ==其中),0(0f p =k 是一常数.常数k 可以这样确定:由化学知识可知,C 14的半衰期为5730年,即C 14经过5730年后其含量衰减一半,故有,2573000k e p p = 即.215730k e =两边取自然对数,得,69315.021ln5730-≈=k 即.0001209.0-≈k 于是,C 14含量的函数模型为.)(0001209.00t e p t f p -==由题设条件可知,遗体中C 14的含量为原含量0p 的80%,故有 ,8.00001209.000t e p p -= 即.8.00001209.0te -=两边取自然对数,得,0001209.08.0ln t -= 于是 .184********.022314.00001209.08.0ln ≈--≈-=t由此可知,遗体大约已死亡1846年.二、 逻辑斯谛方程:逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型.一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型.如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比.设树生长的最大高度为H (m), 在t (年)时的高度为h (t ), 则有)]()[()(t h H t kh dtt dh -= (8.2) 其中0>k 是比例常数. 这个方程为Logistic 方程. 它是可分离变量的一阶常数微分方程.下面来求解方程(8.2). 分离变量得,)(kdt h H h dh=-两边积分,)(⎰⎰=-kdt h H h dh得 ,)]ln([ln 11C kt h H h H+=-- 或,21k H t H C k H t e C e hH h==-+ 故所求通解为,11)(22kHtkHt kHt CeH e C He C t h -+=+= 其中的⎪⎪⎭⎫ ⎝⎛>==-0112HC e C C C 是正常数. 函数)(t h 的图象称为Logistic 曲线. 图8-8-1所示的是一条典型的Logistic 曲线, 由于它的形状, 一般也称为S 曲线. 可以看到, 它基本符合我们描述的树的生长情形. 另外还可以算得.)(lim H t h t =+∞→这说明树的生长有一个限制, 因此也称为限制性增长模式.注: Logistic 的中文音译名是“逻辑斯谛”. “逻辑”在字典中的解释是“客观事物发展的规律性”, 因此许多现象本质上都符合这种S 规律. 除了生物种群的繁殖外, 还有信息的传播、新技术的推广、传染病的扩散以及某些商品的销售等. 例如流感的传染、在任其自然发展(例如初期未引起人们注意)的阶段, 可以设想它的速度既正比于得病的人数又正比于未传染到的人数. 开始时患病的人不多因而传染速度较慢; 但随着健康人与患者接触, 受传染的人越来越多, 传染的速度也越来越快; 最后, 传染速度自然而然地渐渐降低, 因为已经没有多少人可被传染了.下面举两个例子说明逻辑斯谛的应用.人口阻滞增长模型 1837年, 荷兰生物学家V erhulst 提出一个人口模型00)(),(y t y by k y dtdy=-= (8.3)其中b k ,的称为生命系数.我们不详细讨论这个模型, 只提应用它预测世界人口数的两个有趣的结果.有生态学家估计k 的自然值是0.029. 利用本世纪60年代世界人口年平均增长率为2%以及1965年人口总数33.4亿这两个数据, 计算得,2=b 从而估计得:(1)世界人口总数将趋于极限107.6亿. (2)到2000年时世界人口总数为59.6亿.后一个数字很接近2000年时的实际人口数, 世界人口在1999年刚进入60亿. 新产品的推广模型 设有某种新产品要推向市场, t 时刻的销量为),(t x 由于产品性能良好, 每个产品都是一个宣传品, 因此, t 时刻产品销售的增长率,dtdx与)(t x 成正比, 同时, 考虑到产品销售存在一定的市场容量N , 统计表明dtdx与尚未购买该产品的潜在顾客的数量)(t x N -也成正比, 于是有)(x N kx dtdx-=(8.4)其中k 为比例系数. 分离变量积分, 可以解得kNtCeNt x -+=1)( (8.5)由,)1()1(,)1(2322222kNt kNt kNt kNt kNt Ce Ce e N Ck dt x d Ce ke CN dt dx -----+-=+= 当N t x <)(*时, 则有,0>dt dx 即销量)(t x 单调增加. 当2)(*N t x =时, ;022=dt x d 当2)(*N t x >时, ;022<dtxd 当2)(*N t x <时, 即当销量达到最大需求量N 的一半时, 产品最为畅销, 当销量不足N 一半时, 销售速度不断增大, 当销量超过一半时, 销售速度逐渐减少.国内外许多经济学家调查表明. 许多产品的销售曲线与公式(8.5)的曲线(逻辑斯谛曲线)十分接近. 根据对曲线性状的分析, 许多分析家认为, 在新产品推出的初期, 应采用小批量生产并加强广告宣传, 而在产品用户达到20%到80%期间, 产品应大批量生产; 在产品用户超过80%时, 应适时转产, 可以达到最大的经济效益.三、环境污染的数学模型随着人类文明的发展,环境污染问题已越来越成为公众所关注的焦点.我们将建立一个模型,来分析一个已受到污染的水域,在不再增加污染的情况下,需要经过多长的时间才能将其污染程度减少到一定标准之内.记()t Q Q =为体积为V 的某一湖泊在时刻t 所含的污染物的总量.假设洁净的水以不变的流速r 流入湖中,并且湖水也以同样的流速流出湖外,同时假设污染物是均匀地分布在整个湖中,并且流入湖中洁净的水立刻就与原来湖中的水相混合.注意到Q 的变化率= — 污染物的流出速度,等式右端的负号表示Q 是减少的,而在时刻t ,污染物的浓度为VQ.于是 污染物的流出速度=污水外流的速度⨯浓度=VQr ⋅.这样,得微分方程 Q Vrdt dQ -= 又设当0=t 时,()00Q Q =,解得该问题的特解为Vrte Q Q -=0.污染量Q 随时间t 的变化如下图t Q 0Q 0(污染量)Q =Q 0e -rt/V例3(E03) 若有一已受污染的湖泊,其体积为6109.4⨯m 3,洁净的水以每年3310158m⨯的流速流入湖中,污水也以同样的流速流出.问经过多长时间,可使湖中的污染物排出90%?若要排出99%,又需要多长时间?解:因为03225.0109.41015833≈⨯⨯=V r t e Q Q 03225.00-=所以,当有90%的污染物被排出时,还有10%的污染物留在湖中, 即01.0Q Q =,代入上式,得 te Q Q 03225.0001.0-=解得 ()7203225.01.0ln ≈-=t (年) 当有99%的污染物被排出时,剩余的001.0Q Q =,于是t e Q Q 03225.00001.0-=,解得()14303225.001.0ln ≈-=t (年).自由落体问题例4(E04)一个离地面很高的物体, 受地球引力的作用由静止开始落向地面. 求它落到地面时的速度和所需的时间(不计空气阻力).解 取连结地球中心与该物体的直线为y 轴,其方向铅直向上,取地球的中心为原点O (如图).设地球的半径为,R 物体的质量为,m 物体开始下落时与地球中心的距离为),(R l l >在时刻t 物体所在位置为),(t y y =于是速度为.)(dtdyt v =由万有引力定律得微分方程 ,222y kmM dt y d m -= 即 ,222y kMdt y d -=其中M 为地球的质量,k 为引力常数.因为当R y =时,g dtyd -=22 (取负号是因此时加速度的方向与y 轴的方向相反).,,22gR kM RkM g ==代入得到,2222ygR dt y d -=初始条件为 ,0l y t ==.00='=t y 先求物体到达地面时的速度.由,v dtdy=得 ,22dydvv dt dy dy dv dt dv dty d =⋅== 代入并分离变量得 dy ygR vdv 22-= .2122C y gR v += 把初始条件代入上式,得 ,221gR C -=于是⎪⎪⎭⎫⎝⎛-=l y gR v 11222 .112⎪⎪⎭⎫ ⎝⎛--=l y g R v 式中令,R y =就得到物体到达地面时得速度为.)(2lR l gR v --= 再求物体落到地面所需的时间.,112⎪⎪⎭⎫ ⎝⎛--==l y g R v dt dy,0l y t == 分离变量得 .21dy yl yg l R dt --=由条件,0l y t ==得.02=C.a r c c o s 212⎪⎪⎭⎫ ⎝⎛+-=l y l y ly g l R t 在上式中令,R y =便得到物体到达地面所需得时间为.arccos 212⎪⎪⎭⎫ ⎝⎛+-=l R l R lR g l R t。
数学建模微分方程模型在数学建模的旅程中,微分方程模型扮演了至关重要的角色。
它们在描述和解决各种实际问题中,从物理学到社会科学,都起到了关键的作用。
在本章中,我们将探讨微分方程模型的基本概念、类型和应用。
微分方程是一种方程,它包含未知函数的导数。
这种方程在描述变化率时非常有用,例如,描述物体的速度或加速度。
在形式上,微分方程可以表示为 y'(x) = f(x, y),其中 y'表示 y的导数,f是一个给定的函数。
根据方程的特点,微分方程可以划分为多种类型,如线性微分方程、非线性微分方程、常微分方程、偏微分方程等。
每种类型的方程都有其特定的求解方法和应用领域。
微分方程在众多领域中都有应用,如物理学、工程学、经济学等。
例如,牛顿第二定律就是一个微分方程,它描述了物体的加速度如何由作用力决定。
人口增长模型、传染病模型等也都依赖于微分方程。
建立微分方程模型通常需要以下步骤:确定模型的目标和变量;然后,根据问题背景和物理规律建立数学模型;通过数值计算或解析解法得出结果。
求解微分方程的方法主要有两种:数值方法和解析方法。
数值方法是通过计算机程序或软件进行数值计算得到近似解,而解析方法是通过求解方程得到精确解。
对于某些类型的微分方程,可能需要结合使用这两种方法。
建立微分方程模型后,我们需要对模型进行评估和检验,以确保其有效性和准确性。
这通常包括对模型的假设进行检验、对模型的预测结果进行验证以及对模型的参数进行估计和调整等。
随着科学技术的发展,微分方程模型的应用前景越来越广阔。
例如,在生物学中,微分方程被用来描述疾病的传播动态;在经济学中,微分方程被用来分析市场供需关系的变化;在工程学中,微分方程被用来模拟复杂系统的行为等。
未来,随着大数据和人工智能等技术的发展,微分方程模型将在更多领域得到应用和发展。
微分方程模型是数学建模中一个极其重要的部分。
通过学习和掌握微分方程的基本概念、类型、应用以及求解方法等,我们可以更好地理解和解决现实生活中的各种问题。