数学建模微分方程的应用举例
- 格式:doc
- 大小:206.00 KB
- 文档页数:14
数学建模在常微分方程中的应用数学建模是一项广泛应用于各领域的数学方法,而常微分方程恰好是数学建模中常见的一种手段。
常微分方程是描述自然界许多物理现象和生物现象的数学工具,如机械振动、电路理论、生物种群模型、人口增长模型等。
本文将深入探讨数学建模在常微分方程中的应用,为你带来一些启发和思考。
一、模型的建立建立数学模型的第一步是明确问题的背景和目标,确定所涉及的变量及其相互之间的关系。
在常微分方程中,模型通常可以写成如下形式:$$\frac{dy}{dx}=f(x,y)$$其中,$y$是待定函数,$x$是自变量,$f(x,y)$则是关于$y$和$x$的已知函数。
这个模型描述了函数$y$的变化速率与它所处的位置$x$和它自身的值$y$有关。
二、利用数学方法解常微分方程在将模型建立起来后,我们需要求出未知函数$y$的解,这就需要利用各种数学方法。
下面是几种解常微分方程的方法:1.分离变量法当常微分方程可以写成以下形式:我们就可以采用“分离变量”的方法,将未知函数$y$和独立变量$x$分别在两边隔离,然后进行积分即可解出方程的解。
2.变量代换法当常微分方程比较复杂,难以直接求解时,我们可以尝试将自变量$x$或者$y$进行代换,将方程转化为更容易解决的形式。
3.常数变易法当常微分方程无法直接求解,但是已知特定的边界条件时,我们可以采用常数变易法,通过对未知函数常数进行变异,消去特定边界条件,从而解出常微分方程的解。
常微分方程在各个领域中的应用广泛,下面列举了其中的一些实际问题:1.自由落体运动自由落体运动是物理学中的一个基本概念,可以通过常微分方程建立模型。
当物体从高空落下时,它所受的重力和阻力之间的平衡关系将导致其速度的变化。
可以用以下的常微分方程来描述这个过程:其中,$v$为物体的速度,$t$为时间,$g$为重力加速度,$k$为空气阻力系数。
2.生物种群模型生物种群模型通常涉及到生物种群数量的变化。
一个典型的生物种群模型可以写作以下的常微分方程组:其中,$S$表示易感者的数量,$I$表示感染者的数量,$R$表示恢复者的数量,$b$和$d$分别为出生率和自然死亡率,$e$表示感染率,$a$为发病率,$v$为治愈率,$c$和$d$为康复者的死亡率和自然死亡率。
微分方程在建模中的应用随着科学技术的不断发展,微分方程已经成为了数学中一项非常重要的研究领域。
微分方程不仅在数学中有着广泛的应用,而且在其他各个学科中,尤其是在自然科学、工程学、经济学等领域中,微分方程也有着广泛的应用。
在这些应用中,微分方程在建模中起着非常重要的作用,可以帮助我们更好地理解和解决实际问题。
一、微分方程在物理学中的应用物理学是微分方程在科学中最广泛应用的领域之一。
在物理学中,微分方程可以描述物理系统的运动和变化,例如牛顿运动定律、热传导定律、电磁场方程等等。
以下是几个具体的例子:(1)牛顿第二定律:物体的加速度与作用力成正比,反比于物体的质量。
可以用微分方程表示为:F = ma,其中F为物体所受的作用力,m为物体的质量,a为物体的加速度。
(2)热传导方程:描述物体内部温度分布的变化。
可以用微分方程表示为:u/t = α2u,其中u为温度分布,t为时间,α为热扩散系数。
(3)电磁场方程:描述电磁场的变化。
可以用微分方程表示为:·E = ρ/ε0,·B = 0,×E = -B/t,×B = μ0J + μ0ε0E/t,其中E 为电场,B为磁场,ρ为电荷密度,J为电流密度,ε0和μ0为真空中的电介质常数和磁导率。
二、微分方程在工程学中的应用微分方程在工程学中也有着广泛的应用。
在工程学中,微分方程可以描述物理系统的行为和特性,例如机械振动、电路分析、流体力学等等。
以下是几个具体的例子:(1)机械振动方程:描述机械系统的振动行为。
可以用微分方程表示为:mx'' + kx = F(t),其中m为质量,k为弹性系数,x为位移,F(t)为外部作用力。
(2)电路方程:描述电路中电流和电压的变化。
可以用微分方程表示为:Ldi/dt + Ri = V(t),其中L为电感,R为电阻,i为电流,V(t)为电压。
(3)流体力学方程:描述流体的运动和变化。
常微分方程在数学建模中的应用这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型.例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型.解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ∆+时间段,人口的增长量为t t rN t N t t N ∆=-∆+)()()(,并设0t t =时刻的人口为0N ,于是⎪⎩⎪⎨⎧==.,00)(d d N t N rN t N这就是马尔萨斯人口模型,用分离变量法易求出其解为)(00e )(t t r N t N -=,此式表明人口以指数规律随时间无限增长.模型检验:据估计1961年地球上的人口总数为91006.3⨯,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3⨯=N ,02.0=r ,于是)1961(02.09e1006.3)(-⨯=t t N .这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人口大约每35年翻一番,而上式断定34.6年增加一倍(请读者证明这一点).但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改.例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢?这主要是地球上的各种资源只能供一定数量的人生活,随着人口的增加,自然资源环境条件等因素对人口增长的限制作用越来越显著,如果当人口较少时,人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随人口的增加而减小.因此,应对马尔萨斯模型中关于净增长率为常数的假设进行修改.1838年,荷兰生物数学家韦尔侯斯特(Verhulst)引入常数m N ,用来表示自然环境条件所能容许的最大人口数(一般说来,一个国家工业化程度越高,它的生活空间就越大,食物就越多,从而m N 就越大),并假设将增长率等于⎪⎪⎭⎫⎝⎛-m N t N r )(1,即净增长率随着)(t N 的增加而减小,当m N t N →)(时,净增长率趋于零,按此假定建立人口预测模型.解 由韦尔侯斯特假定,马尔萨斯模型应改为⎪⎩⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-=,,000)(1d d N t N N N N r t N上式就是逻辑模型,该方程可分离变量,其解为,)(00e 11)(t t r m mN N N t N --⎪⎪⎭⎫ ⎝⎛-+=.下面,我们对模型作一简要分析.(1)当∞→t ,m N t N →)(,即无论人口的初值如何,人口总数趋向于极限值m N ; (2)当m N N <<0时,01d d >⎪⎪⎭⎫ ⎝⎛-=N N N r t N m ,这说明)(t N 是时间t 的单调递增函数;(3)由于N N N N N r t N m m ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=211d d 222,所以当2m N N <时,0d d 22>t N ,t N d d 单增;当2m N N >时,0d d 22<t N ,t N d d 单减,即人口增长率tNd d 由增变减,在2m N 处最大,也就是说在人口总数达到极限值一半以前是加速生长期,过这一点后,生长的速率逐渐变小,并且迟早会达到零,这是减速生长期;(4)用该模型检验美国从1790年到1950年的人口,发现模型计算的结果与实际人口在1930年以前都非常吻合,自从1930年以后,误差愈来愈大,一个明显的原因是在20世纪60年代美国的实际人口数已经突破了20世纪初所设的极限人口.由此可见该模型的缺点之一是m N 不易确定,事实上,随着一个国家经济的腾飞,它所拥有的食物就越丰富, m N 的值也就越大;(5)用逻辑模型来预测世界未来人口总数.某生物学家估计,029.0=r ,又当人口总数为91006.3⨯时,人口每年以2%的速率增长,由逻辑模型得⎪⎪⎭⎫⎝⎛-=m N N r t N N 1d d 1, 即 ⎪⎪⎭⎫ ⎝⎛⨯-=m N 91006.31029.002.0, 从而得 91086.9⨯=m N ,即世界人口总数极限值近100亿.值得说明的是:人也是一种生物,因此,上面关于人口模型的讨论,原则上也可以用于在自然环境下单一物种生存着的其他生物,如森林中的树木、池塘中的鱼等,逻辑模型有着广泛的应用.二、市场价格模型对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场价格能促使商品的供给与需求相等(这样的价格称为(静态)均衡价格).也就是说,如果不考虑商品价格形成的动态过程,那么商品的市场价格应能保证市场的供需平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的,应是随时间不断变化的动态过程.例3 试建立描述市场价格形成的动态过程的数学模型解 假设在某一时刻t ,商品的价格为)(t p ,它与该商品的均衡价格间有差别,此时,存在供需差,此供需差促使价格变动.对新的价格,又有新的供需差,如此不断调节,就构成市场价格形成的动态过程,假设价格)(t p 的变化率tpd d 与需求和供给之差成正比,并记),(r p f 为需求函数,)(p g 为供给函数(r 为参数),于是()()[]⎪⎩⎪⎨⎧=-=,,0)0(,d d p p p g r p f tpα 其中0p 为商品在0=t 时刻的价格,α为正常数.若设b ap r p f +-=),(,d cp p g +=)(,则上式变为⎪⎩⎪⎨⎧=-++-=,,0)0()()(d d p p d b p c a t pαα ① 其中d c b a ,,,均为正常数,其解为ca db c a d b p t p t c a +-+⎪⎭⎫ ⎝⎛+--=+-)(0e)(α.下面对所得结果进行讨论:(1)设p 为静态均衡价格 ,则其应满足0)(),(=-p g r p f ,即d p c b p a +=+-,于是得ca db p +-=,从而价格函数)(t p 可写为 p p p t p t c a +-=+-)(0e )()(α , 令+∞→t ,取极限得p t p t =+∞→)(lim这说明,市场价格逐步趋于均衡价格.又若初始价格p p =0,则动态价格就维持在均衡价格p 上,整个动态过程就化为静态过程;(2)由于t c a c a p p tp)(0e )()(d d +-+-=αα , 所以,当p p >0时,0d d <t p ,)(t p 单调下降向p 靠拢;当p p <0时, 0d d >tp ,)(t p 单调增加向p 靠拢.这说明:初始价格高于均衡价格时,动态价格就要逐步降低,且逐步靠近均衡价格;否则,动态价格就要逐步升高.因此,式①在一定程度上反映了价格影响需求与供给,而需求与供给反过来又影响价格的动态过程,并指出了动态价格逐步向均衡价格靠拢的变化趋势.三、混合溶液的数学模型 例4 设一容器原有100L 盐,含有盐10kg,现以3L/min 的速度注入质量浓度为0.01kg/L 的淡盐水,同时以2L/min 的速度抽出混合均匀的盐水,求容器盐量变化的数学模型.解 设t 时刻容器的盐量为)(t x kg,考虑t 到t t d +时间容器中盐的变化情况,在dt 时间 容器中盐的改变量=注入的盐水中所含盐量-抽出的盐水中所含盐量容器盐的改变量为x d ,注入的盐水中所含盐量为t d 301.0⨯,t 时刻容器溶液的质量浓度为tt x )23(100)(-+,假设t 到t t d +时间容器溶液的质量浓度不变(事实上,容器的溶液质量浓度时刻在变,由于t d 时间很短,可以这样看).于是抽出的盐水中所含盐量为t tt x d 2)23(100)(-+,这样即可列出方程t txt x d 1002d 03.0d +-=,即txt x +-=100203.0d d . 又因为0=t 时,容器有盐10kg,于是得该问题的数学模型为d 20.03d 100(0)10x x t tx ⎧+=⎪+⎪⎨⎪⎪=⎩,, 这是一阶非齐次线性方程的初值问题,其解为24)100(109)100(01.0)(t t t x +⨯++=. 下面对该问题进行一下简单的讨论,由上式不难发现:t 时刻容器溶液的质量浓度为34)100(10901.0100)()(t t t x t p +⨯+=+=, 且当+∞→t 时,01.0)(→t p ,即长时间地进行上述稀释过程,容器盐水的质量浓度将趋于注入溶液的质量浓度.溶液混合问题的更一般的提法是:设有一容器装有某种质量浓度的溶液,以流量1V 注入质量浓度为1C 的溶液 (指同一种类溶液,只是质量浓度不同),假定溶液立即被搅匀,并以2V 的流量流出这种混合溶液,试建立容器中质量浓度与时间的数学模型.首先设容器中溶质的质量为)(t x ,原来的初始质量为0x ,t =0时溶液的体积为2V ,在d t 时间,容器溶质的改变量等于流入溶质的数量减去流出溶质的数量,即t V C t V C x d d d 2211-=,其中1C 是流入溶液的质量浓度, 2C 为t 时刻容器中溶液的质量浓度,,tV V V xC )(2102-+=于是,有混合溶液的数学模型11220d d (0)xC V C V tx x ⎧=-⎪⎨⎪=⎩,. 该模型不仅适用于液体的混合,而且还适用于讨论气体的混合.四、振动模型振动是生活与工程中的常见现象.研究振动规律有着极其重要的意义.在自然界中,许多振动现象都可以抽象为下述振动问题.例5 设有一个弹簧,它的上端固定,下端挂一个质量为m 的物体,试研究其振动规律. 解 假设(1)物体的平衡位置位于坐标原点,并取x 轴的正向铅直向下(见图4).物体的平衡位置指物体处于静止状态时的位置.此时,作用在物体上的重力与弹性力大小相等,方向相反;(2)在一定的初始位移0x 及初始速度0v 下,物体离开平衡位置,并在平衡位置附近作没有摇摆的上下振动;(3)物体在t 时刻的位置坐标为)(t x x =,即t 时刻物体偏离平衡位置的位移;(4)在振动过程中,受阻力作用.阻力的大小与物体速度成正比,阻力的方向总是与速度方向相反,因此阻力为txhd d -,h 为阻尼系数;(5)当质点有位移)(t x 时,假设所受的弹簧恢复力是与位移成正比的,而恢复力的方向总是指向平衡位置,也就是总与偏离平衡位置的位移方向相反,因此所受弹簧恢复力为kx -,其中k 为劲度系数;(6)在振动过程中受外力)(t f 的作用.在上述假设下,根据牛顿第二定律得)(d d d d 22x f kx t xh tx m +--= , ①这就是该物体的强迫振动方程.由于方程①中, )(t f 的具体形式没有给出,所以,不能对式 ①直接求解.下面我们分四种情形对其进行讨论.1. 无阻尼自由振动在这种情况下,假定物体在振动过程中,既无阻力、又不受外力 作用.此时方程①变为0d d 22=+kx txm ,令2ω=mk,方程变为 0d d 222=+x tx ω,特征方程为 022=+ωλ, 特征根为ωλi 2,1±=,通解为 t C t C x ωωcos sin 21+=,或将其写为⎪⎪⎭⎫ ⎝⎛++++=t C C C t C C C C C x ωωcos sin 22212222112221()t t A ωϕωϕcos sin sin cos +=图4,)sin(ϕω+=t A 其中 2221C C A +=,22212sin CC C +=ϕ,22211cos CC C +=ϕ.这就是说,无阻尼自由振动的振幅2221C C A +=,频率mk=ω均为常数. 2.有阻尼自由振动在该种情况下,考虑物体所受到的阻力,不考虑物体所受的外力.此时,方程①变为0d d d d 22=++kx t xh tx m ,令2ω=m k ,δ2=mh,方程变为 0d d 2d d 222=++x t xtx ωδ, 特征方程为0222=++ωδλλ,特征根 222,1ωδδλ-±-=.根据δ与ω的关系,又分为如下三种情形:(1)大阻尼情形, δ>ω.特征根为二不等实根,通解为ttC C x )(2)(12222eeωδδωδδ-+--+-+=(2)临界阻尼情形,ωδ=.特征根为重根,通解为tt C C x δ-+=e)(21这两种情形,由于阻尼比较大,都不发生振动.当有一初始扰动以后,质点慢慢回到平衡位置,位移随时间t 的变化规律分别如图5和图6所示.图5 图6(3)小阻尼情形,δ<ω.特征根为共轭复根,通解为)sin C sinC (e 222221t t x t δωδωδ-+-=-将其简化为)sin(e 22ϕδωδ+-=-t A x t其中,cos ,sin ,22211222122221C C C C C C C C A ++=+=ϕϕ振幅A tδ-e 随时间t 的增加而减小.因此,这是一种衰减振动.位移随时间t 的变化规律见图7.3.无阻尼强迫振动在这种情形下,设物体不受阻力作用,其所受外力为简谐力pt m t f sin )(=,此时,方程①化为pt m kx t xm sin d d 22=+,pt x tx sin d d 222=+ω, 根据p i 是否等于特征根ωi ,其通解分为如下两种情形:(1)当ω≠p 时,其通解为 图7t C t C pt px ωωωcos sin sin 12122++-=, 此时,特解的振幅221p -ω为常数,但当p 接近于ω时,将会导致振幅增大,发生类似共振的现象;(2)当ω=p 时,其通解为t C t C pt t px ωωcos sin cos 2121++-=, 此时,特解的振幅t p21随时间t 的增加而增大,这种现象称为共振,即当外力的频率p 等于物体的固有频率ω时,将发生共振.4.阻尼强迫振动在这种情形下,假定振动物体既受阻力作用,又受外力pt m x f sin )(=的作用,并设ωδ<,方程①变为pt x t xtx sin d d 2d d 222=++ωδ , 特征根0,i22≠-±-=δδωδλ,则p i 不可能为特征根,特解为pt B pt A x cos sin *+=,其中22222224)(p p p A δωω+--=,222224)(2pp pB δωδ+--=, 还可将其化为*22222221[()sin 2cos ]()4x w p pt p pt w p pδδ=---+, 由此可见,在有阻尼的情况下,将不会发生共振现象,不过,当ω=p 时,pt px cos 21*δ-=, 若δ很小,则仍会有较大的振幅;若δ比较大,则不会有较大的振幅.。
微分方程在数学建模中有广泛的应用,具体如下:
1.微分方程可以描述现实世界的变化,揭示实际事物内在的动态关
系。
2.微分方程可以建立纯数学(特别是几何)模型。
3.微分方程可以建立物理学(如动力学、电学、核物理学等)模型。
4.微分方程可以建立航空航天(火箭、宇宙飞船技术)模型。
5.微分方程可以建立考古(鉴定文物年代)模型。
6.微分方程可以建立交通(如电路信号,特别是红绿灯亮的时间)
模型。
7.微分方程可以建立生态(人口、种群数量)模型。
8.微分方程可以建立环境(污染)模型。
9.微分方程可以建立资源利用(人力资源、水资源、矿藏资源、运
输调度、工业生产管理)模型。
10.微分方程可以建立生物(遗传问题、神经网络问题、动植物循环
系统)模型。
11.微分方程可以建立医学(流行病、传染病问题)模型。
12.微分方程可以建立经济(商业销售、财富分布、资本主义经济周
期性危机)模型。
13.微分方程可以建立战争(正规战、游击战)模型。
常微分方程数学建模案例分析常微分方程是运用微积分中的概念与理论研究变化率的方程。
它是数学建模中常用的方法之一,可用于描述各种实际问题,如经济增长、生物扩散、化学反应等。
本文将通过一个关于人群传染病的数学建模案例,分析常微分方程在实际问题中的应用。
假设地有一种传染病,病毒的传播速度与感染者的接触频率有关。
现在我们要研究传染病的传播速度以及控制措施对传染病传播的影响。
为此,我们可以建立如下的数学模型:设N(t)表示时间t时刻的总人口数,而I(t)表示感染者的人口数,S(t)表示易感者的人口数。
根据该模型,易感者的人数随时间的变化率可表示为:dS/dt = -βSI其中,β表示感染率,即感染者每接触到一个易感者,会使其发病的概率。
感染者的人数随时间的变化率可表示为:dI/dt = βSI - γI其中,γ表示恢复率,即感染者每天被治愈的人数。
总人口数随时间的变化率可以通过易感者和感染者的变化率求和得到:dN/dt = dS/dt + dI/dt通过对该方程进行求解,我们可以得到感染者和易感者的人数随时间变化的解析解。
进一步,我们可以通过调节β和γ来研究不同的传播速度和控制措施对传染病传播的影响。
例如,如果β较大,表示感染率较高,此时传染速度会加快,可能导致传染病扩散的速度加快。
反之,如果β较小,表示感染率较低,传染病传播的速度会减慢。
另外,如果γ较大,表示恢复率较高,此时感染者的人数会快速减少,传染病传播的速度会减慢。
相反,如果γ较小,传染病传播的速度会加快。
通过对这些参数的调节,我们可以研究不同的控制措施对传染病传播的影响。
例如,我们可以通过降低感染率β或增加恢复率γ来减缓传染病传播的速度,从而控制疫情的爆发。
在实际应用中,常微分方程数学建模方法可以用于预测传染病的传播趋势,评估各种干预措施的效果。
此外,还可以通过引入更多的变量和参数,建立更复杂的模型,以更好地解释实际问题。
总之,常微分方程是数学建模中常用的方法之一,可以用于描述各种实际问题,如传染病的传播、经济增长等。
常微分方程在数学建模中的应用首先是物理方面。
在物理学中,常微分方程广泛应用于描述运动、波动、电磁学、量子力学等问题。
例如,牛顿第二定律可以用常微分方程的形式表示为:\[m \frac{{d^2x}}{{dt^2}} = F(x,t)\]其中m为质量,x为位置,t为时间,F(x,t)为力。
这个方程可以用来描述物体的运动。
另一个例子是振动方程,可以通过常微分方程来描述弹簧振子、简谐振动等。
生物方面是另一个常见的应用领域。
生物学中经常需要对生物体的增长、衰退、群体动态等问题进行建模。
而常微分方程可以很好地描述这些问题。
例如,布鲁塞尔方程是描述细菌群体增长的常微分方程模型。
该模型使用了增长速率与细菌种群密度之间的关系。
通过求解布鲁塞尔方程,我们可以预测细菌的增长趋势,并为控制细菌的增长提供依据。
此外,常微分方程还可以在生物学中应用于描述神经网络、生物化学反应等。
经济方面也是常微分方程的应用领域之一、经济学中的一些重要问题,如经济增长、通货膨胀、利率变动等,都可以通过常微分方程进行建模和分析。
例如,Solow增长模型是描述经济增长的常微分方程模型。
该模型考虑了资本积累和技术进步对经济增长的影响。
通过求解Solow增长模型,我们可以分析经济增长的稳定状态、长期趋势和影响经济增长的因素。
除了物理、生物和经济学,常微分方程还可以在其他领域中应用。
例如,环境科学中可以通过常微分方程描述污染物的传输和扩散过程;工程学中可以应用常微分方程来描述振动、控制系统等问题。
此外,计算机科学中的数值方法也广泛应用于求解常微分方程的数值解。
总而言之,常微分方程在数学建模中的应用非常广泛,涵盖了物理、生物、经济等多个领域。
通过对常微分方程的求解和分析,我们可以获得有关问题的定量结论,并为问题的解决和决策提供支持。
数学建模中的微分方程与边界条件的应用分析在数学建模中,微分方程是一种重要的工具,用于描述自然界和社会现象中的各种变化规律。
微分方程可以分为常微分方程和偏微分方程两类。
常微分方程是只涉及一个自变量的方程,而偏微分方程则涉及多个自变量。
边界条件是微分方程求解过程中的重要条件,它限定了解的取值范围。
微分方程在数学建模中的应用非常广泛,我们可以通过一些具体的实例来进行分析。
首先,考虑一个经典的物理问题:自由落体运动。
假设一个物体从高处自由落下,我们想要知道它在任意时刻的位置。
根据牛顿第二定律,我们可以得到物体的运动方程:$m\frac{d^2y}{dt^2} = -mg$,其中$y$表示物体的高度,$m$表示物体的质量,$g$表示重力加速度。
这是一个二阶常微分方程,我们需要给出适当的边界条件来求解它。
边界条件可以是物理上的限制,比如物体在$t=0$时刻的初始位置和初始速度。
假设物体在$t=0$时刻的位置为$y_0$,初始速度为$v_0$,那么我们可以得到边界条件$y(0) = y_0$和$\frac{dy}{dt}(0) = v_0$。
将这些边界条件代入微分方程,我们可以求解得到物体在任意时刻的位置。
另一个常见的应用是热传导问题。
假设一个杆体的两端分别与两个恒温热源接触,我们想要知道杆体上各点的温度分布。
根据热传导定律,我们可以得到杆体上的热传导方程:$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$,其中$u(x,t)$表示杆体上某点的温度,$\alpha$表示热扩散系数。
这是一个一维的偏微分方程,我们需要给出适当的边界条件来求解它。
边界条件可以是温度的限制,比如杆体两端的温度分别为$T_1$和$T_2$。
我们可以得到边界条件$u(0,t) = T_1$和$u(L,t) = T_2$,其中$L$表示杆体的长度。
微分方程数学模型和数学实验在实际生活中的应用举例微分方程数学模型和数学实验是数学在实际生活中应用的两种重要方法。
微分方程数学模型是将实际问题转化为微分方程形式,通过求解微分方程来研究问题的性质和解决问题。
数学实验则是通过建立合适的数学模型,并进行相应的实验、观测和数据分析,得出结论和预测。
下面以三个不同领域的实例来阐述微分方程数学模型和数学实验在实际生活中的应用。
1.化学反应动力学模型化学反应动力学研究的是反应速率和反应机理的关系。
数学可以通过建立微分方程数学模型,来描述化学反应过程中物质浓度随时间的变化。
例如,考虑一个简单的一级反应动力学模型,即物质的浓度随时间的变化速率与其本身的浓度成正比。
设化学反应速率为r,物质浓度为C,时间为t,则化学动力学微分方程可以表示为:dC/dt = -kC,其中k为反应速率常数。
通过求解这个微分方程,可以得到物质浓度随时间的变化规律,从而预测反应的进行过程和反应速率的变化。
根据实验测得的浓度数据,可以通过数学实验,进行拟合和参数估计,从而获得更准确的反应动力学模型。
2.疾病传播模型疾病传播是流行病学研究的重要内容之一、数学可以通过建立微分方程数学模型,来描述疾病在人群中的传播过程。
一个常用的模型是SIR模型,即将人群分为易感者(Susceptible),感染者(Infected)和康复者/免疫者(Recovered)三个状态。
设人群总数为N,易感者数量为S,感染者数量为I,康复者数量为R,时间为t,则SIR模型的微分方程可以表示为:dS/dt = -βSI/NdI/dt = βSI/N - γIdR/dt = γI其中β和γ分别表示感染率和康复率。
通过求解这个微分方程,可以得到疾病传播的规律,从而帮助制定合理的防控措施。
通过与实际流行病数据的对比,进行数学实验,可以对感染率和康复率进行估计和优化,从而更好地预测和控制疾病的传播。
3.经济增长模型经济增长是宏观经济学研究的核心问题之一、数学可以通过建立微分方程数学模型,来描述经济增长的动态过程。
第八节数学建模——微分方程的应用举例
微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力.
内容分布
★衰变问题
★逻辑斯谛方程
★价格调整问题
★人才分配问题模型
★追迹问题
内容要点:
一、衰变问题
镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t的质量.
用x表示该放射性物质在时刻t的质量, 则
表示x在时刻t的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为
(8.1)
这是一个以x为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中
是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t增加时, 质量x减少.
解方程(8.1)得通解
若已知当
时,
代入通解
中可得
则可得到方程(8.1)特解
它反映了某种放射性元素衰变的规律.
注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素(
)的半衰期约为50亿年;通常的镭(
)的半衰期是1600年.半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克
衰变成半克所需要的时间与一吨
衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.
二、逻辑斯谛(Logistic)方程:
逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型.
一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型.
如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比.
设树生长的最大高度为H(m), 在t(年)时的高度为h(t), 则有
(8.2)
其中
是比例常数. 这个方程为Logistic方程. 它是可分离变量的一阶常数微分方程.
下面来求解方程(8.2). 分离变量得
两边积分
得
或
故所求通解为
其中的
是正常数.
函数
的图象称为Logistic曲线. 图8-8-1所示的是一条典型的Logistic曲线, 由于它的形状, 一般也称为S曲线. 可以看到, 它基本符合我们描述的树的生长情形. 另外还可以算得
这说明树的生长有一个限制, 因此也称为限制性增长模式(阻滞增长模型).
注: Logistic的中文音译名是“逻辑斯谛”. “逻辑”在字典中的解释是
“客观事物发展的规律性”, 因此许多现象本质上都符合这种S规律. 除了生物种群的繁殖外, 还有信息的传播、新技术的推广、传染病的扩散以及某些商品的销售等. 例如流感的传染、在任其自然发展(例如初期未引起人们注意)的阶段, 可以设想它的速度既正比于得病的人数又正比于未传染到的人数. 开始时患病的人不多因而传染速度较慢; 但随着健康人与患者接触, 受传染的人越来越多, 传染的速度也越来越快; 最后, 传染速度自然而然地渐渐降低, 因为已经没有多少人可被传染了.
下面举两个例子说明逻辑斯谛的应用.
人口阻滞增长模型 1837年, 荷兰生物学家Verhulst提出一个人口模型
(8.3)
其中
的称为生命系数.
我们不详细讨论这个模型, 只提应用它预测世界人口数的两个有趣的结果.
有生态学家估计k的自然值是0.029. 利用本世纪60年代世界人口年平均增
长率为2%以及1965年人口总数33.4亿这两个数据, 计算得
从而估计得:
(1)世界人口总数将趋于极限107.6亿.
(2)到2000年时世界人口总数为59.6亿.
后一个数字很接近2000年时的实际人口数, 世界人口在1999年刚进入60亿.
新产品的推广模型设有某种新产品要推向市场, t时刻的销量为
由于产品性能良好, 每个产品都是一个宣传品, 因此, t时刻产品销售的增长率
与
成正比, 同时, 考虑到产品销售存在一定的市场容量N, 统计表明
与尚未购买该产品的潜在顾客的数量
也成正比, 于是有
(8.4)
其中k为比例系数. 分离变量积分, 可以解得
(8.5)
由
的图像知,当
时, 则有
即销量
单调增加. 当
时,
当
时,
当
时,
即当销量达到最大需求量N的一半时, 产品最为畅销, 当销量不足N一半时, 销售速度不断增大, 当销量超过一半时, 销售速度逐渐减少.
国内外许多经济学家调查表明. 许多产品的销售曲线与公式(8.5)的曲线(逻辑斯谛曲线)十分接近. 根据对曲线性状的分析, 许多分析家认为, 在新产品推出的初期, 应采用小批量生产并加强广告宣传, 而在产品用户达到20%到80%期间, 产品应大批量生产; 在产品用户超过80%时, 应适时转产, 可以达到最大的经济效益.
三、价格调整模型
假设某种商品的价格变化主要服从市场供求关系. 一般情况下,商品供给量S 是价格P的单调递增函数, 商品需求量Q是价格P的单调递减函数, 为简单起见, 分别设该商品的供给函数与需求函数分别为
(8.6)
其中
均为常数, 且
当供给量与需求量相等时, 由(8.6)可得供求平衡时的价格
并称
为均衡价格.
一般地说, 当某种商品供不应求, 即
时, 该商品价格要涨, 当供大于求, 即
时, 该商品价格要落. 因此, 假设t时刻的价格
的变化率与超额需求量
成正比, 于是有方程
其中
用来反映价格的调整速度.
将(8.6)代入方程, 可得
(8.7)
其中常数
方程(8.7)的通解为
假设初始价格
代入上式, 得
于是上述价格调整模型的解为
由于
知,
说明随着时间不断推延, 实际价格
将逐渐趋近均衡价格
.
四、人才分配问题模型
每年大学毕业生中都要有一定比例的人员留在学校充实教师队伍, 其余人员将分配到国民经济其他部门从事经济和管理工作. 设t年教师人数为
科学技术和管理人员数目为
又设1个教员每年平均培养
个毕业生, 每年从教育、科技和经济管理岗位退休、死亡或调出人员的比率为
表示每年大学生毕业生中从事教师职业所占比率
于是有方程
(8.8)
(8.9)
方程(8.8)有通解
(8.10)
若设
于是得特解
(8.11)
将(8.11)代入(8.9)方程变为
(8.12)
求解方程(8.12)得通解
(8.13)
若设
则
于是得特解
(8.14)
(8.11)式和(8.14)式分别表示在初始人数分别为
情况, 对应于
的取值, 在t年教师队伍的人数和科技经济管理人员人数. 从结果看出, 如果取
即毕业生全部留在教育界, 则当
时, 由于
必有
而
说明教师队伍将迅速增加. 而科技和经济管理队伍不断萎缩, 势必要影响经济发展, 反过来也会影响教育的发展. 如果将
接近于零. 则
同时也导致
说明如果不保证适当比例的毕业生充实教师选择好比率
, 将关系到两支队伍的建设, 以及整个国民经济建设的大局.
五、追迹问题
设开始时甲、乙水平距离为1单位, 乙从A点沿垂直于OA的直线以等速
向正北行走; 甲从乙的左侧O点出发, 始终对准乙以
的速度追赶. 求追迹曲线方程, 并问乙行多远时, 被甲追到.
建立如图8-8-2所示的坐标系, 设所求追迹曲线方程为
经过时刻t, 甲在追迹曲线上的点为
乙在点
于是有
(8.15)
由题设, 曲线的弧长OP为
解出
代入(8.15), 得
两边对x求导, 整理得
这就是追迹问题的数学模型.
这是一个不显含y的可降阶的方程, 设
, 代入方程得
或
两边积分, 得
即
将初始条件
代入上式, 得
于是
(8.16)
两边同乘
并化简得
(8.17)
(8.16)与(8.17)式相加, 得
两边积分, 得
代入初始条件
得
故所求追迹曲线方程为
甲追到乙时, 即曲线上点P的横坐标
此时
即乙行走至离A点
个单位距离时被甲追到.。