方法确定cuoff
- 格式:docx
- 大小:20.48 KB
- 文档页数:2
一、产品简介:本非接触式感应卡门禁控制器是现代先进的门禁系统之一。
它选用最新中央处理器(CPU)及大容量存储芯片,所有资料不会因断电而丢失;功能强大,具备感应卡开门、感应卡加密码开门、密码开门三种开门方式;门状态监视、输出报警、安全模式、防拆、感应卡加密码等完善的保安措施让用户更加安全;开门按钮、关门提醒、门铃、可接常开或常闭锁等强大功能让用户更加方便。
本产品提供了一种安全自动的出入口管制方式,是商务机构、办公室、工厂、住宅、小区等场所的理想装置。
二、技术参数:序号项目指标1 工作电源直流:电压12V±10% 电流 <3 外型尺寸116mm×116mm×20mm4 重量130g5 环境温度0℃—60℃6 相对湿度20%—80%7 存储容量255张用户卡、1组开门密码8 读卡距离5-15CM9 读卡类型EM或EM兼容卡三、声光指示:LED指示灯:事件红灯绿灯正常状态每秒闪烁一次读有效卡亮读非法卡亮开锁亮键入按键亮进入编程亮编程确认亮内置蜂鸣器:事件说明鸣音读有效卡两次短鸣嘀嘀读非法卡一次长鸣嘀——键入按键有效一次短鸣嘀输入密码有效两次短鸣嘀嘀输入密码错误一次长鸣嘀——编程确认两次短鸣嘀嘀防拆报警连续长鸣嘀—嘀—嘀—四1、初始密码:编程密码为9999。
2、进入编程状态:按 * 编程密码 # 进入编程状态。
3、功能设置:(1)修改编程密码:按 * 编程密码 # 0 新密码 # 重复新密码 # * 注:密码为4-6位任意数字。
(2)增加用户卡:按 * 编程密码 # 1 读卡输入该卡代码 # *注:卡的代码为001-999不可重复的三位数字,必需输入代码,否则该卡无效。
如需连续增加卡,则在输完三位数的代码后不必按 # 直接读第二张卡。
(3)删除用户卡(有三种方法):A、按 * 编程密码 # 2 0 0 0 0 # *删除全部用户卡;B、按 * 编程密码 # 2 读卡 # *删除被读的卡;C、按 * 编程密码 # 2 该卡代码 # *删除遗失的卡;(4)设置开门模式:按 * 编程密码 # 3 0 0 # * 读有效卡开门按 * 编程密码 # 3 0 1 # * 读卡加密码开门按 * 编程密码 # 3 0 2 # * 读卡或密码开门注:出厂设置为读卡或者密码开门;(5)设置开门时间:按 * 编程密码 # 4 X X # *注:XX为00-99,单位为秒,出厂设置为6秒。
第42卷第1期2023年2月沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报JournalofShenyangLigongUniversityVol 42No 1Feb 2023收稿日期:2022-05-24基金项目:广西自然科学基金项目(2019GXNSFAA185013)作者简介:汪登鹏(1995 )ꎬ男ꎬ硕士研究生ꎻ通信作者:高锋(1976 )ꎬ男ꎬ副教授ꎬ研究方向:稀土功能材料ꎮ文章编号:1003-1251(2023)01-0061-07CdSe/CdS量子点荧光探针检测Cu2+汪登鹏ꎬ高㊀锋ꎬ藤田澧久(广西大学资源环境与材料学院ꎬ南宁530000)摘㊀要:采用液相反应法在水介质中合成巯基乙酸封端的CdSe/CdS核壳结构量子点ꎬ基于Cu2+对量子点荧光的猝灭效应ꎬ以CdSe/CdS核壳量子点为荧光探针定量检测水溶液中Cu2+的浓度ꎮ研究结果表明:Cu2+的浓度为0.5~60μmol/L时ꎬCdSe/CdS量子点的荧光强度与Cu2+的浓度成良好的分段线性关系ꎬ浓度检测限为0.06μmol/Lꎻ该荧光探针对Cu2+的检测具有高选择性ꎻ对实际自来水样品中Cu2+的检测结果准确可靠ꎻ量子点的淬灭机理为动态淬灭ꎮ关㊀键㊀词:量子点ꎻ荧光淬灭ꎻCu2+检测ꎻ荧光探针中图分类号:O657.3文献标志码:ADOI:10.3969/j.issn.1003-1251.2023.01.010CdSe/CdSQuantumDotFluorescenceProbeforDetectionofCu2+WANGDengpengꎬGAOFengꎬFUJITAToyohisa(CollegeofResourcesEnvironmentandMaterialsꎬGuangxiUniversityꎬNanning530000ꎬChina)Abstract:CdSe/CdScore ̄shellquantumdots(QDs)withthioglycolicacidweresuccessful ̄lysynthesizedinaqueousmediumbyliquidphasereaction.BasedonthequenchingeffectofCu2+onQDfluorescenceꎬtheCdSe/CdScore ̄shellQDfluorescenceprobewasestablishedtoquantitativelyanalyzeCu2+inaqueoussolution.Theresultsshowthatthefluorescencein ̄tensityofCdSe/CdSQDshasagoodfractionallinearrelationshipwiththeconcentrationofCu2+intherangeof0.5~60μmol/LꎬandthedetectionlimitofCu2+is0.06μmol/L.ThefluorescenceprobehasahigherselectivityforCu2+thanothermetalionsꎬandthedetectionofCu2+inactualtapwatersamplesareaccurateandreliable.ThequenchingmechanismofQDsisdynamicquenching.Keywords:quantumdotꎻfluorescencequenchingꎻCu2+detectionꎻfluorescenceprobe㊀㊀河流和湖泊中的有毒重金属ꎬ如铬㊁镉㊁铜㊁铅和汞等ꎬ对动物㊁植物及人类的生存和健康影响很大[1]ꎮ其中铜是生物必需的元素之一ꎬ铜的缺乏会导致生物体的某些功能障碍ꎬ但过度摄入铜会导致铜中毒ꎬCu2+是铜最常见的价态ꎬ痕量Cu2+的测定具有重要的意义ꎮ目前检测Cu2+的方法主要有原子吸收光谱法[2]㊁原子荧光分光光度法[3]㊁电感耦合等离子体质谱法㊁电化学法[4]和荧光探针法[5]等ꎮ与荧光探针法相比较ꎬ其他几种方法虽然都具备一定的检测能力ꎬ但存在选择性差㊁灵敏度不高ꎬ或具有高选择性与灵敏度但设备复杂㊁昂贵ꎬ或存在样品制备程序复杂等问题ꎬ故其应用受到一定限制ꎮ荧光探针法最大的优势是其荧光响应迅速ꎬ此外还具有可视性和灵敏度高㊁检测重金属离子的选择性好㊁线性范围宽等优点ꎬ且该检测方法成本低㊁操作简单ꎮ上述诸多优势使得荧光探针成为当前研究的热点ꎬ并广泛应用于生物医学和分析化学等领域[6]ꎮ荧光探针大致可分为有机荧光探针和无机荧光探针ꎮ与有机荧光探针相比ꎬ无机量子点具有高荧光量子产率㊁荧光发射光谱可调㊁多种荧光颜色可视性的优点ꎮ用于检测Cu2+的量子点荧光探针较多ꎬ如CdX(X代表Te㊁Se㊁S)[7]㊁ZnS㊁C[8]和Au量子点[9]等ꎮ根据光谱特性ꎬ量子点荧光探针可分为基于单一荧光峰强度变化的普通荧光探针和基于两个发射峰相对强度的比率荧光探针[10]ꎻ根据结构ꎬ量子点可分为单晶体型㊁核壳型和混晶型等[11-13]ꎮ量子点检测Cu2+有Turn ̄offꎬOff ̄on两种方式ꎮ本文首先制备疏基乙酸封端的CdSe/CdS核壳型量子点ꎬ并通过X射线衍射仪(XRD)㊁透射电子显微镜(TEM)和光致发光光谱(PL)对其进行表征ꎻ然后以该量子点作为Cu2+浓度检测探针ꎬ基于Turn ̄off模式定量检测水溶液中Cu2+的浓度ꎻ最后使用该荧光探针对自来水样品中的Cu2+浓度进行检测ꎮ1㊀实验部分1.1㊀实验试剂疏基乙酸(TGA)㊁硼氢化钠(NaBH4)㊁氯化镉(CdCl2 2.5H2O)㊁硫化钠(Na2S 9H2O)和各种金属离子标准溶液(K+㊁Na+㊁Mg2+㊁Ba2+㊁Al3+㊁Mn2+㊁Fe3+㊁Ca2+㊁Pb2+㊁Cu2+㊁Zn2+㊁Cd2+)ꎬ均购自国药集团化学试剂有限公司ꎻ盐酸(HCl)㊁三羟甲基氨基甲烷(Tris)ꎬ购自阿拉丁试剂(上海)有限公司ꎮ所有试剂均为分析纯ꎮ1.2㊀实验仪器透射电子显微镜(F200X型ꎬ赛默飞世尔科技公司)ꎻ高灵敏稳瞬态荧光光谱仪(FL3C ̄111TC ̄SPC型ꎬ堀场仪器(上海)有限公司)ꎻX射线衍射仪(D/MAX2500V型ꎬ日本理学公司)ꎻ傅里叶红外光谱仪(NicoletiS20型ꎬ赛默飞世尔科技公司)ꎮ1.3㊀CdSe/CdS核壳量子点的制备采用液相反应法[14]制备CdSe/CdS核壳量子点ꎮ向三颈烧瓶中通氮气30min后ꎬ分别加入一定量的单质Se㊁NaBH4和10mL超纯水ꎬ剧烈搅拌后得到无色澄清的NaHSe溶液ꎮ称取一定量的CdCl2溶解于100mL超纯水中ꎬ然后加入一定体积的TGAꎬ再加入1mol/L的NaOH溶液调节pH为11ꎬ再通入氮气30min以排除氧气ꎮ将配制好的NaHSe溶液快速转移至CdCl2混合溶液中ꎬ边通氮气边剧烈搅拌ꎬ升温至80ħ加热回流30minꎬ得到CdSe溶液ꎮ待其冷却至室温后ꎬ按照CdSe和CdS物质的量比为1ʒ1配制一定量的CdCl2和Na2S溶液ꎬ在剧烈搅拌下逐滴加入CdSe溶液中ꎬ将反应体系升温至80ħ并回流30min后制备得到CdSe/CdS核壳结构的量子点ꎮ使用无水乙醇洗涤量子点ꎬ离心3次后重新分散于超纯水中待用ꎮ1.4㊀量子点检测Cu2+的浓度将300μL的CdSe/CdS量子点溶液㊁2.4mL的Tris ̄HCl缓冲液(浓度为10mmol/LꎬpH为9.0)㊁300μL的Cu2+溶液混合后静置10minꎬ再采用397nm波长近紫外光激发ꎬ检测其发射的荧光强度ꎮ2㊀结果与讨论2.1㊀量子点的表征测试得到CdSe和CdSe/CdS量子点的XRD图谱ꎬ如图1所示ꎮ图1㊀CdSe和CdSe/CdS量子点的XRD图26沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀第42卷㊀㊀由图1可见ꎬCdSe/CdS量子点的XRD谱线在衍射角25.8ʎ㊁43.2ʎ和50.5ʎ三个位置出现清晰的衍射峰ꎬ峰位介于立方CdSe和CdS的(111)㊁(220)和(311)晶面的特征峰之间ꎬ说明CdSe的内核与CdS包层之间存在相互作用力ꎬ使晶格参数发生变化ꎬ从而使其衍射峰位产生偏移ꎮ在CdSe外延生长CdS的纳米颗粒中也观察到类似的衍射峰[15]ꎮ此外ꎬ与CdS和CdSe晶体相比ꎬ这些衍射峰出现明显宽化的现象ꎬ反映出所制备CdSe/CdS样品的量子点特征ꎮ采用透射电子显微镜/能谱仪(TEM/EDS)对CdSe/CdS量子点进行分析ꎬ结果如图2所示ꎮ图2㊀CdSe/CdS量子点的TEM/EDS分析㊀㊀由图2(a)可见ꎬCdSe/CdS量子点显示出良好的分散性ꎬ单个粒子接近球形ꎮ根据量子点统计数据(图2(a)中粒径分布插图)可知ꎬ量子点的平均粒径约为2.4nmꎮ图2(b)中晶格条纹清晰ꎬ晶面间距为0.218nmꎬ对应CdSe的(220)晶面ꎬ证明产物中存在CdSeꎻ在量子点晶格内部及边缘ꎬ没有观察到明显的晶格畸变ꎬ说明CdS与CdSe具有很好的晶格匹配性ꎬCdSe表面可能外延生长出CdS层ꎮ由图2(c)可视区域内个别较大量子点的能谱分析结果可以观察到ꎬCd㊁S㊁Se元素分布较为均匀ꎬS元素分布于量子点团聚体的整个投影区域ꎬ而Se元素倾向于分布在投影区域的内部ꎬ分布面积明显小于S元素ꎬ表明合成物质为CdSe/CdS核壳结构的量子点ꎮCdSe和CdSe/CdS的吸收光谱与荧光光谱如图3所示ꎮ图3㊀CdSe与CdSe/CdS量子点吸收光谱和荧光光谱㊀㊀由图3可以看出ꎬCdSe/CdS的吸收峰相较于CdSe有少许蓝移ꎬ相同的现象也发生于其荧光光谱中ꎮ这是由于在CdSe表面外延生长形成CdS壳层所致ꎮ此外ꎬ图3(b)中CdSe/CdS的荧光强度远远高于CdSe的强度ꎬ这是由于CdS壳层对CdSe核粒子的表面缺陷进行了修饰ꎬ减少了CdSe禁带结构中的缺陷能级数量ꎬ提高了CdSe36第1期㊀㊀㊀汪登鹏等:CdSe/CdS量子点荧光探针检测Cu2+激子复合发光的强度[15]ꎮ2.2㊀荧光检测条件的优化按1.4中实验方法ꎬ采用CdSe/CdS量子点检测Cu2+浓度ꎬ改变静置反应时间ꎬ测得不同反应时间下CdSe/CdS量子点的荧光强度及Cu2+诱使CdSe/CdS量子点的荧光淬灭ꎬ结果如图4所示ꎮ图中纵坐标为荧光强度比I/I0ꎬI表示添加Cu2+时量子点的荧光强度ꎬI0表示不添加Cu2+时量子点的荧光强度ꎮ图4㊀反应时间对荧光强度的影响㊀㊀由图4可见ꎬCdSe/CdS量子点的荧光强度随时间变化不明显ꎬ说明其荧光稳定性较好ꎮ加入Cu2+后ꎬCdSe/CdS量子点的荧光淬灭反应迅速ꎬ5min后荧光强度保持稳定ꎬ说明5min后Cu2+与CdSe/CdS量子点的反应基本完全ꎬ荧光淬灭效果接近最大值ꎮ故适宜的静置反应时间为5minꎮ溶液的pH不同可能会影响量子点的荧光强度ꎬ也可能会影响检测物质的灵敏度和选择性[16]ꎮTGA封端的CdSe/CdS量子点在pH较低的缓冲液中荧光几乎完全猝灭ꎬ并形成沉淀[17]ꎮ如果pH过高ꎬCu2+会与溶液中的OH-发生化学反应ꎬ形成沉淀ꎬ进而影响检测的灵敏度ꎮ因此ꎬ本文考察溶液pH在5.5~10.7的范围内变化时对实验结果的影响ꎮ测得不同pH下的CdSe/CdS量子点荧光强度及Cu2+诱使CdSe/CdS量子点的荧光淬灭ꎬ结果如图5所示ꎮ由图5可以看出:当溶液的pH较小时ꎬ由于量子点表面的硫醇基团不太稳定ꎬ不能保持较高的荧光强度ꎻ随着pH增大ꎬCdSe/CdS量子点的荧光强度逐渐增大并趋于稳定ꎬ当pH为8.0时ꎬ荧光强度接近最大值ꎬ此时Cu2+诱使量子点荧光淬灭效率基本达到最高ꎮ故选择适宜的pH为8.0ꎮ图5㊀pH对荧光强度的影响2.3㊀CdSe/CdS量子点对Cu2+的荧光响应特性㊀㊀CdSe/CdS量子点对Cu2+具有灵敏的荧光响应特性ꎬ测得不同Cu2+浓度下的荧光光谱及荧光淬灭率(1-I/I046沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀第42卷图6㊀Cu2+对CdSe/CdS量子点的荧光淬灭效应㊀㊀由图6(a)可见ꎬ随着Cu2+浓度的增加ꎬCdSe/CdS量子点的荧光强度逐渐下降ꎮ在Cu2+浓度为60μmol/L的情况下ꎬ荧光猝灭率达到92.7%ꎮ由图6(b)可知ꎬCu2+浓度对CdSe/CdS量子点荧光强度的影响可以由两段线性关系表示ꎬ分别如图6(c)和图6(d)所示ꎮ由图6(c)的拟合结果可知ꎬCu2+浓度(C(Cu2+))在0.5~7μmol/L范围内时ꎬ(1-I/I0)与C(Cu2+)的线性关系为1-I/I0=0.00882+0.07943C(Cu2+)(1)线性相关系数R2=0.969ꎮ由图6(d)的拟合结果可知ꎬC(Cu2+)在7~60μmol/L范围内时ꎬ(1-I/I0)与C(Cu2+)的线性关系为1-I/I0=0.45637+0.00762C(Cu2+)(2)线性相关系数R2=0.989ꎮ浓度检测限(LimitofDetectionꎬLOD)计算公式为[18]LOD=3δ/K(3)式中:δ为空白样11次检测值的标准偏差ꎻK为标准曲线的斜率ꎮ根据式(3)计算得到体系对Cu2+浓度的检测限为0.06μmol/Lꎬ本方法的检测限低于文献[19-21]的研究结果ꎮ采用不同配体的量子点检测Cu2+浓度的方法比较如表1所示ꎮ表1㊀使用量子点测量Cu2+浓度的方法比较量子点材料配体浓度检测限/(μmol L-1)CdS[19]甘油三酯0.1CdS[20]肽0.5CdS[21]半胱氨酸1.5CdSe/CdS(本文)TGA0.062.4㊀荧光检测Cu2+的选择性采用CdSe/CdS荧光探针在最佳条件下对Cu2+进行荧光检测ꎬ通过与其他11种金属离子(即K+㊁Na+㊁Mg2+㊁Ba2+㊁Al3+㊁Mn2+㊁Fe3+㊁Ca2+㊁Pb2+㊁Cd2+㊁Zn2+)相比较ꎬ评估CdSe/CdS量子点体系对Cu2+的选择性ꎮ其中ꎬ添加Cu2+的浓度为50μmol/Lꎬ其他离子浓度取为Cu2+浓度的10倍ꎮ各种离子对CdSe/CdS荧光探针荧光强度的影响如图7所示ꎮ图7㊀各种离子对CdSe/CdS荧光探针荧光强度的影响㊀㊀由图7可以看出ꎬ除Cu2+以外的其他金属离子对CdSe/CdS量子点的荧光强度影响不大ꎬ说明CdSe/CdS量子点对Cu2+的检测具有高选择性ꎮ2.5㊀荧光淬灭机理分析物与荧光探针之间发生荧光淬灭反应的机理主要有静态淬灭和动态淬灭两种[22]ꎮ静态淬灭认为分析物与荧光探针的基态荧光分子发生反应形成非荧光体ꎻ动态淬灭认为荧光淬灭与扩散过程有关ꎬ是分析物与处于激发态的荧光分子之间发生碰撞ꎬ释放热能ꎬ使得荧光体无辐射跃迁至基态ꎬ从而导致荧光淬灭ꎮ静态荧光淬灭过程会形成非荧光体ꎬ因此其反应前后的紫外-可见吸收光谱会发生改变ꎬ但反应前后的荧光寿命不发生改变ꎻ动态荧光淬灭与静态荧光淬灭特征相反ꎬ其反应前后紫外-可见吸收光谱不变ꎬ但荧光寿命会发生变化ꎮ不同Cu2+浓度下CdSe/CdS量子点的紫外-可见吸收光谱如图8所示ꎮ添加Cu2+和不添加Cu2+时CdSe/CdS量子点的荧光寿命谱图如图9所示ꎮ由图8可见ꎬ添加不同浓度Cu2+后CdSe/CdS量子点的紫外-可见吸收光谱没有明显变化ꎮ由图9可见ꎬ添加Cu2+后ꎬ量子点的寿命明56第1期㊀㊀㊀汪登鹏等:CdSe/CdS量子点荧光探针检测Cu2+显减小ꎮ因此ꎬCu2+导致CdSe/CdS量子点荧光淬灭的机理为动态淬灭ꎮ图8㊀不同Cu2+浓度下CdSe/CdS量子点的紫外-可见吸收光谱图9㊀添加和不添加Cu2+时CdSe/CdS量子点的荧光寿命谱图2.6㊀实际水样中Cu2+浓度的检测为评估CdSe/CdS量子点荧光探针对检测Cu2+的实用性与可靠性ꎬ采用实际水样(自来水)进行检测实验ꎮ选取三种不同Cu2+浓度水平(10㊁20㊁30μmol/L)的自来水样品ꎬ每个样品检测三次取平均值ꎬ检测结果如表2所示ꎮ表中回收率为Cu2+浓度的检测值与实际值之比ꎬ相对标准偏差为标准偏差与平均值之比ꎬ反映Cu2+检测的精度ꎮ表2㊀自来水样品中实际Cu2+浓度与检测值的比较样品实际浓度/(μmol L-1)检测值/(μmol L-1)回收率/%相对标准偏差/%54.8897.62.8自来水1010.45104.52.52020.32101.63.8㊀㊀由表2可看出ꎬ各样品的回收率均接近100%ꎮ自来水中可能存在多种阳离子ꎬ如Na+㊁Ca2+㊁Mg2+㊁Mn2+等ꎬ本文实际水样测定结果表明ꎬ这些金属离子的存在不会干扰Cu2+的检测ꎬ再次证明了CdSe/CdS量子点荧光探针对检测Cu2+的实用性与可靠性ꎮ3㊀结论(1)采用溶液反应法成功合成了CdSe/CdS核壳结构量子点荧光探针ꎮ基于Turn ̄off模式利用CdSe/CdS量子点检测水介质中的Cu2+ꎬ在Cu2+浓度为60μmol/L的情况下ꎬ荧光猝灭率达到92.7%ꎮ(2)确定最优检测条件为:反应时间5minꎬ溶液pH为8.0ꎮ确定了荧光淬灭率与Cu2+浓度间的分段线性关系ꎮ(3)紫外-可见吸收光谱和荧光寿命测试结果表明ꎬCdSe/CdS量子点对Cu2+的荧光淬灭为动态淬灭机制ꎮ(4)对自来水样品中Cu2+浓度的检测值与实际浓度的相对标准偏差不超过4%ꎬ且回收率较高ꎮCdSe/CdS量子点对Cu2+的检测具有高选择性ꎬ干扰离子的存在几乎不影响CdSe/CdS量子点对Cu2+荧光响应的灵敏度ꎮ参考文献:[1]ZHANGXYꎬZHANGMꎬLIUHꎬetal.Environmentalsustainability:apressingchallengetobiologicalsewagetreatmentprocesses[J].CurrentOpinioninEnviron ̄mentalScience&Healthꎬ2019ꎬ12:1-5.[2]SMICHOWSKIPꎬLONDONIOA.Theroleofanalyti ̄caltechniquesinthedeterminationofmetalsandmet ̄alloidsindietarysupplements:areview[J].Micro ̄chemicalJournalꎬ2018ꎬ136:113-120.[3]HARIBALAꎬHUBTꎬWANGCGꎬetal.AssessmentofradioactivematerialsandheavymetalsinthesurfacesoilarounduraniumminingareaofTongliaoꎬChina[J].EcotoxicologyandEnvironmentalSafetyꎬ2016ꎬ130:185-192.[4]LEEWꎬKIMHꎬKANGYꎬetal.Abiosensorplatformformetaldetectionbasedonenhancedgreenfluores ̄centprotein[J].Sensorsꎬ2019ꎬ19(8):1846.66沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀第42卷[5]BIANWꎬWANGFꎬZHANGHꎬetal.FluorescentprobefordetectionofCu2+usingcore ̄shellCdTe/ZnSquantumdots[J].Luminescenceꎬ2015ꎬ30(7):1064-1070.[6]PARKSHꎬKWONNꎬLEEJHꎬetal.Syntheticratio ̄metricfluorescentprobesfordetectionofions[J].ChemicalSocietyReviewsꎬ2020ꎬ49(1):143-179. [7]蔡朝霞ꎬ阮晓娟ꎬ石宝琴ꎬ等.水溶性CdSe量子点的合成及其作为荧光探针对大肠杆菌的快速检测[J].分析试验室ꎬ2011ꎬ30(3):107-110. [8]孙雪花ꎬ张锦婷ꎬ郝都婷ꎬ等.基于Ag+修饰氮掺杂碳量子点用于组氨酸的荧光开启检测[J].分析试验室ꎬ2021ꎬ40(4):399-403.[9]ALDEWACHIHꎬCHALATITꎬWOODROOFEMNꎬetal.Goldnanoparticle ̄basedcolorimetricbiosensors[J].Nanoscaleꎬ2017ꎬ10(1):18-33.[10]李亚楠ꎬ王俊平.基于双发射免标记核酸探针的比率型荧光传感器用于银的检测[J].分析试验室ꎬ2020ꎬ39(1):12-16.[11]WANGJꎬJIANGCXꎬWANGXQꎬetal.Fabricationofan"ion ̄imprinting"dual ̄emissionquantumdotna ̄nohybridforselectivefluorescenceturn ̄onandratio ̄metricdetectionofcadmiumions[J].Analystꎬ2016ꎬ141(20):5886-5892.[12]吕俊杰ꎬ董小绮ꎬ孟鑫ꎬ等.Mn掺杂ZnS/ZnS核壳量子点磷光猝灭法测定铜离子[J].分析试验室ꎬ2019ꎬ38(3):321-325.[13]CAOYWꎬWANGCꎬZHUBHꎬetal.Afacilemeth ̄odtosynthesishigh ̄qualityCdSequantumdotsforlargeandtunablenonlinearabsorption[J].OptMaterꎬ2017ꎬ66:59-64.[14]张梦亚ꎬ高兵ꎬ柳翠ꎬ等.L ̄半胱氨酸修饰CdTe与CdTe/CdS量子点的水相合成与表征[J].稀有金属材料与工程ꎬ2016ꎬ45(S1):554-559.[15]沈嘉林ꎬ李玲ꎬ沈水发.CdSe@CdS核-壳结构量子点的微乳水热法制备[J].功能材料与器件学报ꎬ2019ꎬ25(2):82-87.[16]BIANWꎬWANGFꎬZHANGHꎬetal.FluorescentprobefordetectionofCu2+usingcore ̄shellCdTe/ZnSquantumdots[J].Luminescenceꎬ2015ꎬ30(7):1064-1070.[17]XUHꎬMIAORꎬFANGZꎬetal.Quantumdot ̄based"turn ̄on"fluorescentprobefordetectionofzincandcadmiumionsinaqueousmedia[J].AnalyticaChimi ̄caActaꎬ2010ꎬ687(1):82-88.[18]MANJUBAASHININꎬTHANGADURAITDꎬBHARATHIGꎬetal.Rhodaminecappedgoldnanopar ̄ticlesforthedetectionofCr3+ioninlivingcellsandwatersamples[J].JournalofLuminescenceꎬ2018ꎬ202:282-288.[19]CHENYFꎬROSENZWEIGZ.LuminescentCdSquantumdotsasselectiveionprobes[J].AnalChemꎬ2002ꎬ74(19):5132-5138.[20]GATTÁS ̄ASFURAKMꎬLEBLANCRM.Peptide ̄coatedCdSquantumdotsfortheopticaldetectionofcopper(II)andsilver(I)[J].ChemCommunꎬ2003(21):2684-2685.[21]BOONMECꎬNOIPATꎬTUNTULANITꎬetal.Cys ̄teaminecappedCdSquantumdotsasafluorescencesensorforthedeterminationofcopperionexploitingfluorescenceenhancementandlong ̄wavespectralshifts[J].SpectrochimicaActaPartA:MolecularandBiomolecularSpectroscopyꎬ2016ꎬ169:161-168. [22]甘晓娟ꎬ刘绍璞ꎬ刘忠芳ꎬ等.某些芳香族氨基酸作探针荧光猝灭法测定安乃近及其代谢产物[J].化学学报ꎬ2012ꎬ70(1):58-64.(责任编辑:宋颖韬)76第1期㊀㊀㊀汪登鹏等:CdSe/CdS量子点荧光探针检测Cu2+。
酶标仪程序设置及应用王 俊 (重庆市疾病预防控制中心,400042)中图分类号:T P311111 R446 文献标识码:A 文章编号:167127414(2006)022050202 EL ISA(酶联免疫吸附实验)以其灵敏度高、特异性强、标本用量少、检测费用低等优点,已成为基层实验室的常规检测方法。
酶标比色仪作为EL ISA的主要仪器,其设置、使用、维护得当与否对实验结果有很大影响。
在对基层实验室的检查中,笔者发现许多实验室技术人员由于对酶标仪程序设置不熟悉,不能按需要自行设置比色程序,往往只能使用购机时由专业人员设置的一个程序,造成一个检测项目的多个厂家的试剂盒,甚至多个检测项目共用一个程序比色,直接影响到检测结果的准确性。
Cu toff值(临界值)是判定样本检测结果阳性或阴性的关键性参数。
测定时酶标仪根据比色结果和程序设置时输入的计算公式,自动计算Cu toff 值并进行判断,样本A值>Cu toff值即判断为阳性,而A值<该值则判为阴性。
所以Cu toff值必须严格按所用试剂盒说明书中的公式进行计算,否则可能导致结果判断错误。
当今新的EL ISA检测试剂不断涌现,原有试剂也可能随时得到改进,如能熟悉和掌握酶标比色仪程序设置及其修改方法,则可根据需要随时增加、修改程序。
做到每个检测项目、每种试剂盒都有各自的比色程序和Cu toff值计算公式,保证检测结果准确无误。
现以有代表性的奥地利产spectra 型酶标比色仪为例(其它类型酶标比色仪可作为参考)设置北京万泰药业公司生产的H I V抗体检测试剂比色程序,供同仁借鉴。
1 程序设置111 程序主要参数 程序编号:8;程序名称: W T;阴性对照3孔,设在A1、A2、A3孔;阳性对照2孔,设在A4、A5孔;比色波长:450nm;参比波长:620nm;酶标板振动时间:5s;酶标板振动强度:中等;酶标板振动位置:内部;报告方式:定性报告;Cu toff值计算公式N+0112。
PinAAcle 900系列原子吸收光谱仪(AAS) 快速操作指南一、PinAAcle 900T/H/F 火焰快速开始模式(p. 2~16)1. 开机 1) 开乙炔气90-100 kPa, 开空气450-500 kPa, 开通风系统 2) 打开计算机和主机.3) 双击WinLab32 for AA 软件进入工作界面.2. 最佳化 打开Cu 方法.① 点击Lamps 图标进入Lamp Setup. 1) 灯优化② 点Cu on/off,打开Cu 灯. ③ Lamp 1Cu 灯优化.④ Cu 灯 Lamp Energy 显示.2) Burner 垂直位置优化①点击Flame 图标进入Flame Control.②点击Align Burner.③选Automatically align the burner 点击Next.④不点火吸入空白 (测定波长在230nm 以上时), 点击Adjust,仪器开始寻找最佳垂直位置.⑤出现对话框,显式Vertical reference position found.⑥点击OK.① 在Flame Control 图标中,单击off/on 点燃火焰. 3) Burner 水平位置优化② 吸入4ppm 铜标淮溶液③ 点击Adjust,仪器开始寻找最佳水平位置.④ 出现对话框,显式Horizontal reference position found. ⑤ 点击OK ,再点击Finish 完成燃烧头最佳化.在Cu 元素的标准测量条件下,点燃铜灯;点燃空气-乙炔火焰进行调节 4) 灵敏度check① 点击Cont.进入 Continuous graphic 对话框. ② 吸入Blank 点击 Auto Zero Graph 自动调零.③ 吸入4 ppm Cu 顺时针转动锁定螺帽,待其松开后,逆时针转动调节螺帽,同时密切观察 屏幕上吸光度的变化. 当吸光度接近于零,同时看到放在样品溶液中的毛细管开始冒 泡时,立即停止逆时针旋转. 此时改为顺时针转动调节螺帽,吸光度信号将逐渐升高, 等到找到最大吸光度时,不再转动调节螺帽,同时逆时针转动锁定螺帽,直至将调节螺 帽锁紧.雾化器调节工作完成.④ 点击Analysis 在下拉菜单中点击Characteristic Concentration 进入特征浓度对话框. 如果4ppm Cu 的吸光度是0.2090, 则测量的特征浓度 Measured Characteristic Concentration 是:084.02090.00044.04=×mg/L, 而推荐特征浓度Comparison CharacteristicConcentration 是:0.077mg/L, 在±20% 范围内(0.0616~0.0924).雾化器流量控制⑤ 点击Tools 在下拉菜单中点击Recommended Conditions 进入推荐条件对话框.如灵敏度检查4ppm Cu 约产生0.2Abs,铜在324.8nm 处的特征浓度是0.077mg/L.3. 1) 点File → New → Method, 进入New Method 对话框, 选择Element: Cu 点击OK. Cu 新方法建立2) 在 Method Editor 中. 设置测量参数3) 设置积分时间和重复次数4) 选择气体流量5) 选择小数位数、有效数字和浓度单位6) 设置空白Blank、校准浓度Standard、试剂空白Reagent blank.7) 保存新方法. File →Save As →Method8) 输入新方法名,点击OK保存.9) 建立样品信息文件.点File → New → Sample info file, 进入Sample information editor对话框.10) 在Sample information editor 对话框中, 设置样品参数.如原溶液样品稀释10倍,在Aliquot Volume栏中输入1,在Diluted to Vol栏中输入10. 如固体样品称样量为0.1g, 定容至100mL, 再取0.1mL(在Aliquot Volume栏中输入0.1),稀释至1000mL(在Diluted to Vol栏中输入1000).或(在Aliquot Volume栏中输入1,在Diluted to Vol栏中输入10000)11) 保存新的样品信息文件.File →Save As →Sample Info File12) 点击Manual, 进入Manual Analysis Control, 在Results Date Set Name处,点Open.13) 在Select Result Date Set对话框中,在Name处,输入结果文件名.14) 设置工作界面,包括: Manual Analysis Control、Flame Control、Calibration Display、Results.15) 保存工作界面 File →Save As →Workspace4. 开始分析1) 在Manual Analysis Control对话框中,吸入空白,点击Analyze Blank 分析Calibrationblank.2)点击Analyze Standard, 测量校准浓度13) 测量校准浓度2和校准浓度34) 校准曲线相关系数r要求≥0.999以上6) 点击Analyze Blank 分析Reagent blank.7)样品测定.点击Analyze Sample 分析样品.8) 分析结束后,点击Flame Control中,点Off熄灭火焰,关闭乙炔气瓶,点击Bleed Gas排除管路中残留的乙炔,关闭排风系统.9) 在Lamp Setup 中点击Off 关闭灯.10) 点击Window,在下拉菜单中,点Close All Windows,关闭所有窗口,改变Change Technique进入石墨炉分析;或关闭WinLab32 软件,退出主菜单,关闭空压机、主机、计算机.二、PinAAcle 900T/Z/H 石墨炉快速开始模式(p. 17~53)1. 开机1) 开氩气350-400 kPa, 开空气450-500 kPa, 开通风系统.2) 打开计算机和主机.3) 双击WinLab32 for AA软件进入工作界面,点File→Change Technique→Furnace.4) 在WinKab32 对话框,出现The system is about to move the atomizer点击OK,再出现The technique will now be changed 点OK.5) 火焰与石墨炉原子化器的转换2. 灯优化1) 点击Lamps 图标进入Lamp Setup,点on/off,打开Pb 灯.3.石墨炉优化 1) 点击Furnace ,进入Furnace Control 对话框.2) 点击Align Furnace.点Lamp 2 Pb 灯Lamp Energy 显示3) 在Align Furnace/Quartz Cell Wizard 对话框中,选择Automatically align the device,点击Next.5) 点击Adjust,优化石墨炉最佳位置.6) Reference position found,找到石墨炉原始位置.7) 点击OK ,完成石墨炉位置优化4. 在Furnace control 图标中,点击Align Tip. 进入Align Autosampler Tip Wizard 对话框中1) 进样针长短调节 进样针调节.① 选择Suspend the autosampler tip above the rinse vessel to renew and cut theplastic tubing ,点击Next..② 用聂子将进样针拉出金属管和塑料保护套外,用锋利的刀片(如切纸刀)切一约45°斜口,进样针留在塑料保护套外约7~10mm.2) 进样针在石墨管位置调节..①选择Align the autosampler tip in the graphite tube. 点击Next,自动进样针悬在石墨管取样孔的上方(注:自动进样针在复位时的斜口朝外,针拉出保护套管约7~10mm处)..②用左边的旋纽调节自动进样器头的左右位置,用前面的旋纽调节自动进样器头的前后位置,用右边的旋纽调节自动进样器的深度,在调节深度前应将固定在石墨炉左右二边的观察镜放下..③进样针的斜口在进入石墨管口时朝里,并尽最大可能将进样针与石墨管里面内口相切,但不要接触..④调进样针进入石墨管的深度约7/10等份(通过固定在石墨炉右边的观察镜检查,将石墨管直径分10等份)..⑤点击Finish,完成进样针在石墨管位置调节.进样针在石墨管7/10等份处3) 进样针石墨管位置检查在Check autosampler tip alignment in the graphite tube,点击Next,检查确认进样针是否在石墨管7/10或者2/3处.4) 进样针在样品杯和清洗盘位置调节.①选 Set the depth of the autosampler tip in the sampling cup 和 Use a sample cup或 Use the rinse location,点Next..②调节进样针在样品杯和清洗盘中的位置,金属部分不要接触样品,点击OK完成.5)在Furnace Control中,点击Furnace on/off,清洗石墨管一至二次.5. 新方法建立点击File → New → Method.2) 选择Pb,点OK.3) 在Method Editor 对话框中,Define Element中,编辑Pb方法.4) 在Setting中,选择测定次数 Replicates5) 仪器推荐的干燥、灰化、原子化、清洗条件(注:是在有基体改进剂条件下的参数)6) 推荐条件Tools → Recommended conditions7) Pb Chemical modifier 是:0.050 mg NH4H2PO4+0.003 mg Mg(NO3)2.(注:0.050 mg NH4H2PO4是指配制%15100050.0=×NH4H2PO4,称取1g NH4H2PO4溶于100mL 去离子水中,为1%,加入5uL 基体改进剂于样品中,相当于加入0.050 mg NH4H2PO4;0.003 mg Mg(NO3)2是指配制%06.05100003.0=×)8) Sample Volume 是20uL , Matrix modifier 是5uL.9) Sequence 对话框中, Pipet Speed: Take up 是取样速度,Dispensing 是进样速度.10) 选择Nonlinear Through Zero.11) 在Method Editor、Standard Concentrations中,点击Calculate Standard Volumes 图标.12) ,设置标样位置和浓度、标准系列(10、20、50ppb)、空白.13)保存方法14) 点击试样信息编辑器图标 SamInfo icon.15) 编辑自动取样器的位置A/S Location、试样识别码 Sample ID.16) 保存样品信息文件 Sample Info File.17) 点击 Automated Analysis Control窗口图标.18) 在 Results data set name 输入结果数据文件名.19) 在Automated Analysis Control 窗口,点击Rebuild List 显示分析序列.21) Results icon 结果图标显示20) Peak icon 峰图标显示24 自动分析控制图标显示25) 工作界面设置.22) Calib icon 图标显示23) Furnace icon 石墨炉控制图标显示26) 保存工作界面 Workspace.27) 点击Analyze All全部分析.(blank+standard+sample)再点击Analyze All,出现Stopping an Analytical Sequence图标,点OK立即停止分析. 点击Reset Sequence结束分析序列.28) 点击Rebuild list重建分析序列,点Calibrate进行标准系列浓度分析.相关系数 r≥0.9990.29) 点击Analysis-Characteristic Mass 检验6. 加标回收1)在Method Editor ,Diluent Volume(uL)中:设102)设置浓标位置及标准系列3)设置加标浓度、回收率上下限等4)设置自动取样器加标位置7. Standard Addition Method 标准加入法1)在Method Editor ,Diluent Volume(uL)中:设102) 在Equation 中,选Method of Additions Calibrate方程.3) 设置浓标位置及标准系列4) 在Sample Information Editor中,设置样品信息文件5) 点Auto进入Automated analysis Control图标中,点Rebuild list重新显式分析序列,点Analyze All进行全部分析.8. 数据再处理 Data Reprocessing.1)点击 Reproc icon图标2) 点击Browse,打开要处理的数据库.3)点Analysis,在下拉菜单中,点New Calibration删除原校准曲线,点Clear Results Display删除原数据, 选中要处理的空白、标准、未知样品;点击Reprocess.9. 数据管理1)数据压缩,选中要压缩的结果数据文件,点击Archive.在Archive Description中,点Browse,选择要压缩的文件名和目录,点OK完成.2) 解压缩文件,点击Restore. 点击OK,点击OK.点击Browse,选择要解压缩的文件.在Restore Library中,点击…选择解压缩路径,点OK,点OK.3) 报告输出,选择要打开的结果文件,点Report.选择需要的数据,点OK.点Preview,浏览报告.打印报告电子版Word报告输出,点击图标(export),选择Word for Windows document,点OK.电子版Excel报告输出,点击图标(export),选择Excel5.0(XLS),点OK.。
第5章S7-200 PLC的指令系统习题与思考题7-200指令参数所用的基本数据类型有哪些?:S7-200 PLC的指令参数所用的基本数据类型有1位布尔型(BOOL)、8位无符号字节型(BYTE)、8位有符号字节型(SIMATIC模式仅限用于SHRB指令)、16位无符号整数(WORD)、16位有符号整数(INT)、32位无符号双字整数(DWORD)、32位有符号双字整数(DINT)、32位实数型(REAL)。
实数型(REAL)是按照ANSI/IEEE 754-1985标准(单精度)的表示格式规定。
2~255字节的字符串型(STRING)即I/O指令有何特点?它应用于什么场合?:立即指令允许对输入和输出点进行快速和直接存取。
当用立即指令读取输入点的状态时,相应的输入映像寄存器中的值并未发生更新;用立即指令访问输出点时,访问的同时,相应的输出映像寄存器的内容也被刷新。
由于立即操作指令针对的是I/O端口的数字输入和数字输出信号,所以它们的位操作数地址只能是物理输入端口地址Ix.x和物理输出端口地址Qx.x。
辑堆栈指令有哪些?各用于什么场合?:复杂逻辑指令,西门子称为逻辑堆栈指令。
主要用来描述对触点进行的复杂连接,并可以实现对逻辑堆栈复杂的操作。
杂逻辑指令包括:ALD、OLD、LPS、LRD、LPP和LDS。
这些指令中除LDS外,其余指令都无操作数。
这些指令都是位逻辑指令。
装载与指令ALD用于将并联子网络串联起来。
装载或指令OLD用于将串联子网络并联起来。
辑推入栈指令LPS,在梯形图中的分支结构中,用于生成一条新的母线,左侧为主控逻辑块时,第一个完整的从逻辑行从此处开始。
辑读栈指令LRD,在梯形图中的分支结构中,当左侧为主控逻辑块时,该指令用于开始第二个和后边更多的从逻辑块。
辑栈弹出指令LPP,在梯形图中的分支结构中,用于恢复LPS指令生成的新母线。
入堆栈指令LDS,复制堆栈中的第n级值,并将该值置于栈顶。
使用说明书安装使用前请仔细阅读本说明书目录引言产品外观系统功能主要参数安装接线基本操作联网设置故障检修原装附件软件安装门禁软件考勤软件一、引言:感谢您使用本非接触式感应卡门禁考勤管理系统,在使用本系统之前,请您详细阅读本用户手册,并严格按照手册中的要求来操作。
此用户手册将介绍本系统主要功能及操作使用方法。
本门禁考勤系统采用目前世界上先进的技术-非接触式感应卡技术(也称射频识别卡(RFID)技术,RFID卡具有全球卡号唯一、不易仿制的读写特性和安全性能。
RFID卡片不会产生使用磁卡时因磁头磨损、磁粉脱落、灰尘等影响所带来的麻烦,而且避免了接触式IC卡因芯片与读卡器外露而引起的沾污、接触不良和外物损伤而导致的读卡不良现象,RFID卡适应各种环境,经久耐用。
每一次感应卡读的信息,无论是否向电锁发出开锁指令,系统都自动记录下来,管理者可以通过计算机下载调阅门禁控制系统存储的信息资料,轻松查阅、打印所有的通行事件。
管理软件将根据此原始资料自动统计员工考勤情况、编制考勤报表。
本系统提供了一种智能化的出入口控制及考勤管理方式,适用于需要控制人员出入的通道、商务机构、政府机关以及考勤管理人员较多的企事业单位。
二、产品外观:高亮度数码管显示LED数字键门铃按钮删除键上翻键下翻键退出键确认键红、绿指示灯锁紧螺丝三、系统功能:1、LED数码管显示,可显示当前时间以及在读卡时显示卡号2、存储容量达12000条通行记录,2000张用户卡及密码3、每天十二个时段自由设定读卡开门、常开、常闭等开门方式4、内置、外接读卡器,可实时区分进入、外出人次数5、19,200Bps高速传输下载数据6、RS232实时通讯或RS485总线联网,布线简易实用,最多可联网255台7、主要输入/输出功能:电锁、开门按钮、报警器、门磁、门铃8、管理软件集门禁、考勤、人事于一体9、系统图示可导入电子地图,自由设定门的名称、数量及位置10、实时显示通过人员的姓名、相片、卡号、编号等资料11、考勤软件功能强大,自定义考勤规则及班次设定等12、排班灵活实用、解决了加班、三班倒、跨日考勤等问题13、自动统计迟到、早退、缺勤的次数及时间14、考勤结果可打印成报表或按Excel、Access格式输出四、主要参数:五、安装接线:1、接口插座示意图:CN1:报警、门磁、开门按钮接口NC 2:电源、电锁、门铃接口RS485通讯接口RS232通讯接口外接读卡器接口警告:安装接线时切记先断开电源,确认接线无误后再接通电源!!2、颜色识别接线示意图外接读卡器:当进出都需要读卡时,请将外接读卡器插座中间的跳线帽拔除,系统自动识别外接读卡器 读卡为进门,内置读卡器读卡 为出门。
GT_FLOAT模块简介该模块功能是检查第一个输入值是否大于第二个输入值,假设是,则输出值为ON,否则为OFF。
EN和ENO能作为附加参数加以设置。
表示符号公式OUT = ON if IN1 > IN2OUT =OFF if IN1 ≤ IN2参数描述参数数据类型含义IN1FLOAT第一输入IN2FLOAT第二输入OUT BOOL输出值GE_FLOAT模块模块功能是检查第一个输入值是否大于等于第二个输入值,假设是,则输出值为ON,否则为OFF。
EN和ENO能作为附加参数加以设置。
表示符号公式OUT = ON if IN1 ≥ IN2OUT = OFF if IN1 < IN2参数描述参数数据类型含义IN1FLOAT第一输入IN2FLOAT第二输入OUT BOOL输出值LT_FLOAT模块该模块功能是检查第一个输入值是否小于第二个输入值,假设是,则输出值为ON,否则为OFF。
EN和ENO能作为附加参数加以设置。
表示符号公式OUT = ON if IN1 < IN2OUT =OFF if IN1 ≥ IN2参数描述参数数据类型含义IN1FLOAT第一输入IN2FLOAT第二输入OUT BOOL输出值LE_INT模块简介该模块功能是检查第一个输入值是否小于等于第二个输入值,假设是,则输出值为ON,否则为OFF。
EN和ENO能作为附加参数加以设置。
表示符号公式if IN1 ≤ IN2 OUT = ONif IN1 > IN2 OUT = OFF参数描述参数数据类型含义IN1INT第一输入IN2INT第二输入OUT BOOL输出值RS触发器模块简介该模块功能是用于RS存储,其中复位优先。
当 R1 = ON, Q1就变为OFF。
当 R1 = OFF,S = ON,则 Q1 = ON;当 R1 = OFF,S = OFF,则 Q1 保持原状态。
EN和ENO能作为附加参数加以设置。
表示符号VOID RS(S,R1,Q1)参数描述参数数据类型含义S BOOL置位R1BOOL复位 (优先)Q1BOOL输出SR触发器模块简介该模块功能是用于RS存储,其中置位优先。
确定CUT-OFF值的方法:
确定CUT-OFF值的方法一:使用阴性血清测定结果均值的2或3倍作为阳性判断值:取一定数量(通常较少)的阴性血清样本,使用已建立的酶免疫测定方法或试剂盒测定,如果上述阴性血清样本的吸光度均值为0.05,则该次测定的阳性判断值为0.10或0.15。
例如现有的试剂盒结果的判定以
P/N或S/N≥2.1为阳性,其依据即是以阴性参考血清的2倍作为阳性判定值。
这种Cut-off值设定方法,可以较为避免假阳性结果的出现,但假阴性可能比例较高。
总的来说,这是一种非常粗糙的Cut-off值设定方法。
确定CUT-OFF值的方法二:首先测定大量(数千)正常人血清样本,然后将所得到的吸光度均值+2或3个SD作为阳性判断值:当正常人血清样本数量足够大时,使用特定的酶免疫测定方法测得的吸光度值将呈正态分布,在具有95.3%(单侧)的可信度的情况下,可以将从正常人血清测得的吸光度均值+2SD作为阳性判断值;如要求99%(单侧)的可信度,则以吸光度均值+3SD作为阳性判断值。
与第一种方法相比,这种Cut-off值设定方法更为科学一些,建立在统计学的精确计算的基础上,但由于这种方法仅考虑阴性人群,故而难以确定“灰区”,从图32可见,有可能会出现较多的假阴性,因其将整个“灰区”几乎都归为阴性。
确定CUT-OFF值的方法三:在测定大量正常人血清样本的同时,测定大量阳性血清样本,如测定值为正态分布,则根据u检验的特点,以单侧99.5%的可信限先分别确定阴性和阳性的Cut-off值;如为非正态分布,则百分位数法单侧 95%或99%来确定Cut-off值。
阴性和阳性人群的Cut-off值确定后,根据“灰区”的大小,综合平衡考虑假阳性和假阴性率的情况下确定Cut-off值。
这种Cut-off值确定方法,较之单纯从阴性人群考虑要较为全面一些,并且对测定的“灰区”有一个估计,不会出现将“灰区”全部纳入阴性的情况。
确定CUT-OFF值的方法四:在测定大量正常人和大量阳性血清样本的同时,测定转化型血清(从阴性转变为阳性过程中的系列血清)样本,取假阳性和假阴性发生率最低,且能区别抗原转化至抗体出现点的吸光度值作为阳性判断值:该方法与上述(3)的区别是增加了转化型血清样本的测定,使得阳性判断值的确定,能最佳地将阳性与阴性样本区别开来。
这种Cut-off值确定方法应该说是目前最佳的模式,但由于转化型血清样本非常昂贵且难以得到,因此应用起来有一定难度。
2楼
ROC曲线在Cut-off值设定中的应用
ROC是英文Receiver Operating characteristic的缩写,可直译为接收机工作特性,其最初主要是用于通讯ROC不仅可用于不同检验方法之间的比较,而且可用于对检验项目临床准确性的评价以及决定正常和异ROC曲线描述的是特定的检验方法的灵敏度(真阳性率)(TPR)[=真阳性数/(真阳性+假阴性)] 与假阳性率(F 之间的关系,即以FPR为横坐标、TPR为纵坐标所作出来的一条曲线。