八上数134最短路径问题(新)
- 格式:ppt
- 大小:574.50 KB
- 文档页数:17
13.4轴对称之最短路径问题人教版2024—2025学年八年级上册二、例题讲解例1.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知线段AB=4,DE=2,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.变式1.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC,EC,已知AB=5,DE=1,BD=8.(1)请问点C什么位置时AC+CE的值最小?最小值为多少?(2)设BC=x,则AC+CE可表示为,请直接写出的最小值为.例2.如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.变式1.如图,在⊥ABC中,BA=BC,BD平分⊥ABC,交AC于点D,点M、N 分别为BD、BC上的动点,若BC=10,⊥ABC的面积为40,则CM+MN的最小值为.变式2.如图,等腰三角形ABC的底边BC长为8,面积是24,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF 上一动点,则⊥CDM的周长的最小值为()A.7B.8C.9D.10变式3.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)点D的坐标为;(2)若E为边OA上的一个动点,当⊥CDE的周长最小时,求点E的坐标.例3.如图,⊥AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若⊥PMN的周长是6cm,则P1P2的长为()A.6cm B.5cm C.4cm D.3cm变式1.已知点P在⊥MON内.如图1,点P关于射线OM的对称点是G,点P 关于射线ON的对称点是H,连接OG、OH、OP.(1)若⊥MON=50°,求⊥GOH的度数;(2)如图2,若OP=6,当⊥P AB的周长最小值为6时,求⊥MON的度数.变式2.如图,⊥MON=45°,P为⊥MON内一点,A为OM上一点,B为ON上一点,当⊥P AB的周长取最小值时,⊥APB的度数为()A.45°B.90°C.100°D.135°变式3.如图,⊥AOB=30°,P是⊥AOB内的一个定点,OP=12cm,C,D分别是OA,OB上的动点,连接CP,DP,CD,则⊥CPD周长的最小值为.变式4.如图,在五边形中,⊥BAE=140°,⊥B=⊥E=90°,在边BC,DE上分别找一点M,N,连接AM,AN,MN,则当⊥AMN的周长最小时,求⊥AMN+⊥ANM 的值是()A.100°B.140°C.120°D.80°例4.如图,在⊥ABC中,AB=AC,⊥A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,⊥DNM+⊥EMN的大小是()A.45°B.90°C.75°D.135°变式1.如图,在平面直角坐标系中,已知点A(0,1),B(4,0),C(m+2,2),D(m,2),当四边形ABCD的周长最小时,m的值是()A.B.C.1D.变式2.如图,在四边形ABCD中,⊥B=90°,AB⊥CD,BC=3,DC=4,点E 在BC上,且BE=1,F,G为边AB上的两个动点,且FG=1,则四边形DGFE 的周长的最小值为.例5.如图,⊥AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记⊥MPQ=α,⊥PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°变式1.如图,∠AOB=20°,M,N分别为OA,OB上的点,OM=ON=3,P,Q分别为OA,OB上的动点,求MQ+PQ+PN的最小值。
人教版八年级数学上册13.4 课题学习最短路径问题一、选择题(共16小题;共80分)1. 如图,直线是一条河,,是两个村庄.欲在上的某处修建一个水泵站,向,两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是A. B.C. D.2. 如图,四边形是直角梯形,,,点是腰上的一个动点,要使最小,则点应该满足A. B.C. D.3. 四边形中,,,在,上分别找一点,,使三角形周长最小时,则的度数为A. B. C. D.4. 如图,直线外存在不重合的两点,,在直线上求作一点,使得的长度最短,作法为:① 作点关于直线的对称点;②连接与直线相交于点,则点为所求作的点.在解决这个问题时没有运用到的知识或方法是A. 转化思想B. 三角形的两边之和大于第三边C. 两点之间,线段最短D. 三角形的一个外角大于与它不相邻的任意一个内角5. 如图,牧童在处放牛,其家在处,,到河岸的距离分别为和,且,若点到河岸的中点的距离为米,则牧童从处把牛牵到河边饮水再回家,最短距离是A. 米B. 米C. 米D. 米6. 如图,已知直线,且与之间的距离为,点到直线的距离为,点到直线的距离为,.试在直线上找一点,在直线上找一点,满足且的长度最短,则此时A. B. C. D.7. 如图,正的边长为,过点的直线,且与关于直线对称,为线段上一动点,则的最小值是A. B. C. D.8. 如图,在中,,,是的两条中线,是上一个动点,则下列线段的长度等于最小值的是A. B. C. D.9. 如图,在四边形中,,,在,上分别找一点,,使的周长最小,此时,A. B. C. D.10. 如图,,内有一定点,且,在上有一动点,上有一动点.若周长最小,则最小周长是A. B. C. D.11. 如图,四边形中,,,,分别是,上的点,当的周长最小时,的度数为A. B. C. D.12. 如图,在中,,,面积是,的垂直平分线分别交,边于,点.若点为边的中点,点为线段上一动点,则周长的最小值为A. B. C. D.13. 如图,在中,,,,为上一点,且,平分交于.若是上的动点,则的最小值等于A. B. C. D.14. 如图,圆柱形容器高为,底面周长为,在杯内壁离杯底的点处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿与蜂蜜相对的点处,则蚂蚁从外壁处到达内壁处的最短距离为A. C. D.15. 如图,点是内任意一点,且,点和点分别是射线和射线上的动点,当周长取最小值时,则的度数为A. B. C. D.16. 如图,,点是内任意一点,,点和点分别是射线和射线上的动点,若周长的最小值是,则的值是A. B. C. D.二、填空题(共5小题;共25分)17. 与的最小公倍数是.18. 如图,在中,是边的中点,过点作边的垂线,是上任意一点,且,,则的周长的最小值为.19. 如图,在中,,,的垂直平分线交于点,交于点,在直线上存在一点,使,,三点构成的的周长最小,则的周长最小值为.20. 已知,点在的内部,点是边上任意一点,点是边上任意一点,连接,,当的周长最小时,的度数为.21. 如图,是等腰直角三角形,,,为上的动点,则的最大值为.三、解答题(共3小题;共45分)22. 如图,已知直线及其同侧两点,,在直线上找一点,使得的长度最小.23. 如图,点,在的内部,为射线上的一个动点,为射线上的一个动点,求作点,,使得的长最短.作法:24. 如图,,两个小集镇在河流的同侧,分别到河的距离为千米,千米,且千米,现在要在河边建一自来水厂,向,两镇供水,铺设水管的费用为每千米万,请你在河流上选择水厂的位置,使铺设水管的费用最节省,并求出总费用是多少?答案第一部分1. D2. D 【解析】如图,作点关于的对称点,连接交于,连接.根据轴对称的性质,得,根据对顶角相等知,所以.3. C4. D5. B6. B7. A 【解析】如图所示.过点作的对称点,连接,与的延长线交于点 .此时,为最小值 .点在线段上,点在点处.的最小值为.8. B 【解析】如图连接,,,,,,,,,共线时,的值最小,最小值为的长度.9. D10. B【解析】设,则,作与相交于,并将延长一倍到,即,作与相交于,并将延长一倍到,即,连接与相交于,与相交于,再连接,,连接,,则即为周长最短的三角形,是的垂直平分线,;同理,是的垂直平分线,,的周长,,且,是等边三角形,,即在保持的条件下的最小周长为.11. D 【解析】作关于和的对称点,,连接,交于,交于,则即为的周长最小值.作延长线 .,...,,..12. C 【解析】连接.是等腰三角形,点是边的中点,,,解得,是线段的垂直平分线,点关于直线的对称点为点,的长为的最小值,13. D 【解析】如图,作点关于的对称点,连接交于,连接,此时的值最小,作于.,,,,,,,,,故选:D.14. D 【解析】如图:将杯子侧面展开,作关于的对称点,连接,则即为最短距离,.15. B【解析】分别作点关于,的对称点,,连接,分别交,于点,,如图所示:此时的周长取最小值.,,,,,,,.16. B第二部分17.18.19.【解析】如图,连接.,,的值最小时,的周长最小,垂直平分线段,,,的最小值为,的周长的最小值为.20.【解析】如图,过点作关于,的对称点,,连接,与,相交与点,,则此时的周长最小,为线段的长度;,,,,,,,,,,,解得:;故答案为:.21.第三部分22. 过点作直线的垂线,垂足为点,截取,连接,则与的交点就是点.23. 作点关于直线的对称点,作点关于直线的对称点交于,交于,则最短.24. 作关于的对称点,连接交于,点即为所求作的点,则可得:(千米),所以(千米),所以(千米),总费用为万元.。
第1页(共9页)
2023-2024学年人教版八年级数学上学期13.4课题学习 最短路
径问题
一.选择题(共6小题)
1.如图,点P 为∠AOB 内一点,分别作点P 关于OA ,OB 的对称点P 1,P 2,连接P 1,P 2
交OA 于M ,交OB 于N ,若P 1P 2=6,则△PMN 周长为( )
A .4
B .5
C .6
D .7
2.如图,直线L 是一条输水主管道,现有A 、B 两户新住户要接水入户,图中实线表示铺
设的管道,则铺设的管道最短的是( )
A .
B .
C .
D .
3.如图,直线l 是一条河,P ,Q 是两个村庄.计划在l 上的某处修建一个水泵站M ,向P ,
Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是( )
A .
B .
C .
D .
4.如图,直线m 表示一条河,M ,N 表示两个村庄,欲在m
上的某处修建一个给水站,向。
八年级数学上册 13.4 课题学习最短路径问题教学设计(新版)新人教版一. 教材分析“课题学习最短路径问题”是人教版八年级数学上册第13.4节的内容。
这部分内容主要让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
教材通过引入一个实际问题,引导学生探讨并找出解决问题的方法,从而培养学生解决问题的能力和兴趣。
二. 学情分析八年级的学生已经掌握了图论的基本知识,如图的定义、图的表示方法等。
但是,对于图的最短路径问题,学生可能还没有直观的理解和认识。
因此,在教学过程中,教师需要结合学生的已有知识,通过实例讲解、动手操作等方式,帮助学生理解和掌握最短路径问题。
三. 教学目标1.知识与技能目标:让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
2.过程与方法目标:通过探讨实际问题,培养学生解决问题的能力和兴趣。
3.情感态度与价值观目标:培养学生对数学的热爱,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:最短路径问题的实际应用,图论中的最短路径算法。
2.教学难点:如何引导学生从实际问题中抽象出最短路径问题,并运用图论知识解决。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.实例讲解法:通过具体的实例,讲解最短路径问题的解决方法,帮助学生理解和掌握。
3.动手操作法:让学生亲自动手操作,加深对最短路径问题的理解。
六. 教学准备1.教学素材:准备一些实际问题的案例,以及相关的图论知识介绍。
2.教学工具:多媒体教学设备,如PPT等。
3.学生活动:让学生提前预习相关内容,了解图论的基本知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入最短路径问题,激发学生的学习兴趣。
例如,讲解从一个城市到另一个城市,如何找到最短的路线。
2.呈现(15分钟)讲解最短路径问题的定义,以及图论中最短路径算法的基本原理。
通过PPT等教学工具,展示相关的知识点,让学生直观地了解最短路径问题。