球赛积分表问题教学案
- 格式:doc
- 大小:46.50 KB
- 文档页数:2
第3课时球赛积分表问题【知识与技能】通过对实际问题的分析,掌握用方程计算球赛积分一类问题的方法.【过程与方法】培养学生分析问题、解决问题的能力.【情感态度】学生在从事探索性活动的学习过程中,形成良好的学习方式和学习态度,借助学生身边熟悉的例子认识数学的应用价值.【教学重点】1.让学生知道球赛积分的算法.2.把生活中的实际问题抽象成数学问题.【教学难点】弄清题意,分析实际问题中的数量关系,找出解决问题的等量关系.一、情境导入,初步认识上一课时我们探究了有关销售中的盈亏问题,通过学习学生应初步掌握了有关一元一次方程实际问题的解决办法.本课时我们继续探讨有关球赛积分表的问题,先来看一个问题:暑假里,《新晚报》组织了“我们的小世界杯”足球邀请赛,勇士队在第一轮比赛中共赛了9场,得分17分.比赛规定胜一场得3分,平一场得1分,负一场得0分,勇士队在这一轮中只负了2场,那么这个队胜了几场?又平了几场呢?二、思考探究,获取新知探究球赛积分表问题(教材第103~104页探究2)设问1:通过观察积分榜,你能选择出其中哪一行最能说明负一场积几分吗?进而你能得到胜一场积几分吗?【教学说明】教师让学生观察教材或课件中的积分表进行思考.观察积分榜,从最下面一行数据可以看出:负一场积1分;设胜一场积x分,从表中其他任何一行可以列方程,求出x的值,如可以从第一行列方程10x+4=24.由此得x=2.即:负一场积1分,胜一场积2分.设问2:你能用式子表示总积分与胜、负场数之间的数量关系吗?教师引导学生分析:如果一个队胜m场,则负(14-m)场,胜场积分2m分,负场积分(14-m)分,总积分为2m+(14-m)=m+14.设问3:某队的胜场总积分能等于它的负场总积分吗?教师引导学生分析:设一个队胜了x场,则负了(14-x)场.如果这个队的胜场总积分等于负场总积分,则得方程2x-(14-x)=0.由此得x=14/3.由于x的值必须是整数,所以x=143不符合实际,因此没有哪个队的胜场总积分等于负场总积分.【教学说明】以上探究中,教师通过逐层提出问题,根据具体情况放手让学生充分发表自己的见解,探索解题思路,最终达到解决问题的思路,这样能培养学生的独立思考问题的习惯.另外,探究解决问题的方法,体验解决问题的思维方式,渗透特殊值法、分类讨论思想,有利于提高学生的数学建模能力.三、运用新知,深化理解一份试卷共25道题,每道题都给出四个答案,其中只有一个是正确的,要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分,如果一个学生得90分,那么他选对几题?现有500名学生参加考试,有得83分的同学吗?为什么?【教学说明】本题要注意其结果是否符合实际,这题可让学生板演后再讲解.【答案】一个学生得90分,他选对23题;若有500名学生参加考试,不可能有得83分的同学.四、师生互动,课堂小结教师通过以下问题引导学生小结:(1)由学生谈谈本节课学到了哪些知识?学后有何感受?(2)由学生说说在积分问题中有哪些基本等量关系?1.布置作业::从教材习题3.4中选取.2.完成练习册中本课时的练习.积分问题的解题思路告诉我们:表格数据能够给我们提供重要的解题信息,而利用方程解决这类问题不仅可求得具体数值,而且还可以进行推理判断.另外,用方程解决实际问题时要注意让学生进行检验.由于本课时的学习有了上一课时作为基础,所以教学时教师应注意让学生进行独立思考并合作交流,而教师仅起引导作用.作者留言:非常感谢!您浏览到此文档。
《球赛积分表问题》教案设计意图检验方程的解是否符合问题的实际意义,发展推理能力.由表中第一行数据可列方程10x+4×1=24.解得x=2.用表中其他行可以验证,得出结论:胜一场积2分,负一场积1分.问题3用代数式表示一支球队的总积分与胜、负场数之间的数量关系.若一支球队胜m场,则总积分为m+14.问题4 某队的胜场总积分能等于它的负场总积分吗?设一支球队胜了y场,则负了(14-y)场.若这支球队的胜场总积分能等于负场总积分,则得方程2y=14-y.解得y=143因为y(所胜的场数)的值必须是整数,所以y=143不符合实际,由此可以判定没有哪支球队的胜场总积分能等于负场总积分.总结:【对应训练】1.阳光体育季,赛场展风采.七年级组织迎新拔河比赛,每班代表队都需比赛10场,下表是此次比赛积分榜的部分信息:班次比赛场次胜场负场积分A班1010030B班108226C班1001010(1)结合表中信息可知:胜一场积_____分,负一场积_____分.(2)已知D班的积分是24分,求D班的胜场数.(3)某个班的胜场总积分能否是负场总积分的2倍?请说明理由.解:(2)设D班的胜场数为x,则负场数为10-x.由D班的积分是24分,得3x+1×(10-x)=24.解得x=7.因此,D班的胜场数为7.(3)能.理由:设这个班的胜场数为y,则负场数为10-y.若胜场总积分是负场总积分的2倍,则3y=2×1×(10-y).解得y=4.因此,当某个班的胜场数为4时,这个班的胜场总积分是负场总积分的2倍.2.教材P137练习第2题.教学建议【教学建议】问题4的分析过程中渗透了反证法的思想,即先假设某队的胜场总积分等于它的负场总积分,由此列出方程,解得获胜场次不是整数而是分数,这显然不合乎实际情况,由这种矛盾现象可知先前的假设不能成立,从而作出否定的判断.建议教学中不要提及反证法,只要引导学生注意这里方程的解应是整数,由此作出判断就够了.上面的问题说明,用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.31教学步骤师生活动活动三:知识升华,巩固提升设计意图学会解决不同规则下的比赛积分问题.例在一次有12个队参加的足球循环赛中(每两队之间比赛一场),规定胜一场积3分,平一场积1分,负一场积0分,某队在这次循环赛中所胜场数比所负场数多2场,结果共积19分.求该队在这次循环赛中的平场数.解:设该队的负场数为x,则胜场数为x+2,平场数为11-x-(x+2).根据题意,得3(x+2)+1×[11-x-(x+2)]=19.解得x=4.所以11-x-(x+2)=1.答:该队在这次循环赛中的平场数为1.【对应训练】教材P137练习第1题.【教学建议】给学生说明:不同的比赛,规则各不相同.对于比赛结果,除了有胜、负外,可能还有平局.但一般来说,有以下相等关系(以有平局的情况为例):①比赛总场数=胜场数+平场数+负场数;②比赛总积分=胜场总积分+平场总积分+负场总积分.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.我们是怎样根据表格中的信息,得出篮球联赛的胜、负积分规则的?2.在实际问题中,通过一元一次方程求出解后,还要注意什么问题?【作业布置】1.教材P140习题5.3第7,12,13题.2.《创优作业》主体本部分相应课时训练.板书设计第3课时球赛积分表问题1.从球赛积分表中读取信息2.用一元一次方程解决球赛积分问题教学反思球赛积分问题能较好地引起学生的学习兴趣.部分学生不能熟练地从表格中提炼自己需要的信息,今后要更注意对学生这方面能力的培养.另外,通过对方程解的实际意义的检验,学生更全面地理解了方程在实际问题中的应用.解题大招不同规则下的比赛问题不同的比赛,规则各不相同,如篮球比赛中,有2分球、3分球、罚球(罚中一次得1分);另外有些比赛,除了有得正分和零分的情况,还有得负分的情况.不管是哪种类型的比赛,按对应规则计算总分即可.例1为了增强学生的安全防范意识,某校九年级(3)班举行了一次安全知识抢答赛,抢答题一共30道,记分规则如下:每答对一道得5分,每答错或不答一道扣1分.张丹一共得84分,则张丹答对的道数为多少?解:设张丹答对的道数为x,则答错或不答的道数一共为30-x.由题意,得5x-(30-x)=84.解得x=19.答:张丹答对的道数为19.例2某篮球运动员在一次篮球比赛中20投16中(含罚球),得30分(罚球命中1次得1分),已知他投中了1个3分球,则他投中了几个2分球?解:设他投中了x个2分球,则罚球罚进的个数为16-x-1.由题意得2x+3×1+1×(16-x-1)=30.解得x=12.答:他投中了12个2分球课后·知能演练一、基础巩固1.某位同学连续答40道题,答对一题得5分,答错一题扣2分(不答同样算作答错),最终该同学获得144分.若所列的方程是x5+x-1442=40,则x表示的意义是()A.答对题的数目B.答错题的数目C.答对题目总得分D.答错题目总扣分2.某篮球联赛积分规则如表所示,某支球队一共打了20场比赛,共积25分.设该支球队胜了x 场,根据题意,可列方程()比赛结果胜负积分21A.2x+x=25B.2x+(20-x)=25C.2x+(15-x)=25D.2x+(25-x)=253.某县举行安全知识竞赛,共12所学校的代表参加.比赛采取双循环赛制,每所学校的代表队比赛22场(胜一场得2分,负一场得1分),最终甲学校以总分40分获得第一名,那么甲学校的胜场数为________.二、能力提升4.某中学举行“我爱祖国”知识竞答比赛,规定每名选手共要答20道题,每答对一题得5分,不答或答错一题扣2分.(1)设选手小丽答对x道题,则小丽不答或答错共________道题(用含x的代数式表示);(2)若小丽最终成绩为65分,结合(1),求小丽答对了多少道题.三、思维拓展5.“学习生活两不误,劳逸结合更健康”.某个周末,勤奋好学的小明和爸爸下棋,爸爸赢一盘记2分,输了不记分;小明赢一盘记6分,输了不记分.一共下了8盘,每盘都分出了胜负.(1)若两人得分相等,请应用方程求出两人各赢了多少盘;(2)比赛结束时,爸爸得分可能比小明多2分吗?为什么?【课后·知能演练】1.C2.B3.18解析:设甲学校胜了x场,根据每所学校的代表队比赛场数为22,则甲学校负(22-x)场,根据甲学校总分为40分,列得方程2x+(22-x)=40,解得x=18.即甲学校胜了18场.4.解:(1)20-x(2)根据小丽最终成绩为65分,列得方程5x-2(20-x)=65.解得x=15.答:小丽答对了15道题.5.解:(1)设小明赢了x盘,则爸爸赢了(8-x)盘,根据两人得分相等,列得方程6x=2(8-x),解得x=2.当x=2时,8-x=6.答:若两人得分相等,则小明赢了2盘,爸爸赢了6盘.(2)不可能,理由如下:设小明赢了n盘,假设爸爸的得分比小明多2分,列得方程6n+2=2(8-n), .解得n=74因为n为整数,所以比赛结束时爸爸的得分不可能比小明的得分多2分.。
.;.甘沟中学七年级数学球赛积分表问题[学习目标]1、学会解决信息图表问题的方法;2、经历探索球赛积分中数量关系的过程,进一步体会方程是解决实际问题的数学模型,明确用方程解决实际问题时,还要检验方程的解是否符合问题的实际意义。
[重点难点]解决信息图表问题是重点;从图表中获取有用的信息是难点。
[学习过程] 一、问题导入我们都喜欢打篮球,你知道篮球比赛胜一场积多少分,负一场积多少分吗?我们今天就来讨论与球赛积分有关的问题。
二、例题某次篮球赛积分榜(1)用式子表示总积分与胜、负场数之间的数量关系;(2)某队的胜场总积分能等于它的负场总积分吗?分析:要解决这个问题,必须求出胜一场积多少分,负一场积多少分。
你能从积分表中哪一行最容易看出负一场积多少分吗?那你从这一行看出负一场积多少分呢?你能从表中看出求胜一场积分的等量关系吗?积分是怎么算的呢?由第 行可知, +负场得分=那你一定能求出胜一场的得分哟。
试试看!用表中的其它行可以验证:负一场得1分,胜一场得2分。
解决问题的准备工作已经做好了,那下面我们开始解答我们面对的问题吧!(1)如果设一个队胜m 场,则负 场,胜场积分可以表示为 ,负场积分可以表示为 ,则总积分可以表示为 。
(2)由(1)得方程:解完之后你发现了什么问题?你能回答这个问题吗?答:注意:用方程解决实际问题时,不仅要注意解 ,还要注意 。
拓展:真正在现实生活中进行赛季比赛时可能会很少出现一个队伍全胜或全负的极端情况,那在这种情况下你还能从积分表中看出胜一场的得分或负一场的得分吗?开始我们的探究之旅吧!首先删去积分榜的最后一行,试着去求出胜一场得多少分,负一场得多少分。
. ;.前进14 10 424东方14 10 4 24光明14 9 5 23蓝天14 9 5 23雄鹰14 7 7 21远大14 7 7 21卫星14 4 10 18思考:设胜一场得x分,那么负一场得多少分?还可以怎么表示?由第行知,负一场得 ;同时又由第行知负一场得 .而根据基本相等关系:表示同一个量的两个式子,我们肯定可以根据没有极端情况的积分表求出胜一场的得分和负一场的得分。
义务教育学校课时教案备课时间上课时间:1.你能从表格中看出负一场积多少分吗?负一场积1分2.你能进一步算出胜一场积多少分吗?设:胜一场积 x 分,依题意,得10x+1×4=24解得: x=2所以,胜一场积2分.3.用式子表示总积分与胜、负场数之间的关系.若一个队胜m场,则负(14 – m)场,总积分为: 2m+(14 –m) = m+14。
即胜m场的总积分为 m +14 分4.某队的胜场总积分能等于它的负场总积分吗?设一个队胜x场,则负(14-x)场,依题意得: 2x=14-x解得: x=14/3想一想,x 表示什么量?它可以是分数吗?由此你能得出什么结论?解决实际问题时,要考虑得到的结果是不是符合实际.x的值必须是整数,所以x=14/3不符合实际,由此可以判定没有哪个队的胜场总积分等于负场总积分。
巩固练习某赛季篮球联赛部分球队积分榜:(1)列式表示积分与胜、负场数之间的数量关系;(2)某队的胜场总积分能等于它的负场总积分吗?解:观察积分榜,从最下面一行可看出,负一场积1分.设胜一场积x分根据表中其他任意一行可以列方程,求出x的值.例如,根据第一行可列方程:18x+1×4=40.由此得出 x=2.用表中其他行可以验证,得出结论:负一场积1分,胜一场积2分.如果一个队胜m场,则负(22-m)场,胜场积分为2m,负场积分为22-m,总积分为 2m+(22-m)=m+22.(2)设一个队胜了x场,则负了(22-x)场,如果这个队的胜场总积分等于负场总积分,则有方程22x-(22-x)=0解得 x=22/3其中,x (胜场)的值必须是整数,所以解不符合实际. 由此可以判定没有哪个队伍的胜场总积分等于负场总积分.三、随堂演练1. 某人在一次篮球比赛中,包括罚球在内共出手22次,命中14球,得28分,除了3个3分球全中外,他还投中了____个2分球和____个罚球.2. 一份试卷共25道题,每道题都给出四个答案,其中只有一个是正确的,要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分.(1)如果一个学生得90分,那么他选对几题?(2)现有500名学生参加考试,有得83分的同学吗?解:(1)设他选对x道题,则不选或选错了(25 – x)道题. 由题意列出方程4x - (25 – x) = 90,解得x=23.即他选对了23题.(2)设选对了y道题,则选错了(25 – y)道题.由题意列出方程4y – (25 – y)=83,解得 y=21.6而答对的题数必须为整数,故不合题意舍去,不可能会有得83分的同学.3.下表中记录了一次实验中时间和温度的数据.(1)如果温度的变化是均匀的,21 min时的温度是多少?(2)什么时间的温度是34℃?解:(1)由题意知时间增加5 min,温度升高15℃,所以每增加1 min温度升高3℃.则21 min时的温度为10+21×3 =73(℃)(2)设时间为x min,列方程得3x+10=34,解得x=8.即第8分钟时温度为34℃.四、课堂小结通过这节课的学习,你有什么收获?现在你了解积分表了吗?你会算胜负场数与总积分的关系吗?板书设计2.你能进一步算出胜一场积多少分吗?设:胜一场积 x 分,依题意,得10x+1×4=24解得: x=2所以,胜一场积2分.作业设作业类型作业内容试做时长基础基本性作业(必做)。
人教版七年级数学上册3.4 第3课时《球赛积分表问题》教案2一. 教材分析球赛积分表问题是人教版七年级数学上册3.4节的内容,主要让学生通过实际问题情境,理解并掌握用方程和不等式解决实际问题的方法。
这部分内容既联系了生活实际,又锻炼了学生的数学思维能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对用方程和不等式解决实际问题已经有了一定的了解。
但学生在解决实际问题时,往往会因为对问题的理解不深入,找不到等量关系,或者列出的方程不正确,导致解题困难。
因此,在教学过程中,需要引导学生正确理解问题,找到等量关系,列出正确的方程。
三. 教学目标1.让学生通过实际问题情境,理解并掌握用方程和不等式解决实际问题的方法。
2.培养学生观察、分析、解决问题的能力。
3.培养学生合作交流、归纳总结的能力。
四. 教学重难点1.教学重点:理解并掌握用方程和不等式解决实际问题的方法。
2.教学难点:找到问题的等量关系,列出正确的方程。
五. 教学方法采用问题驱动法,引导学生通过观察、分析、归纳、总结,自主探索解决问题的方法。
在教学过程中,注重让学生说理,培养学生的逻辑思维能力。
六. 教学准备1.准备相关的球赛积分表问题案例。
2.准备黑板、粉笔等教学用具。
七. 教学过程1.导入(5分钟)通过一个实际的球赛积分表问题,引导学生思考如何用数学方法解决这个问题。
例如,某校举行篮球比赛,甲、乙、丙、丁四支球队进行了循环赛,每队胜一场得2分,负一场得1分,弃权一场不得分,请问哪支球队得分最高?2.呈现(10分钟)呈现球赛积分表问题,让学生观察并思考问题。
引导学生发现,要解决这个问题,需要找到每支球队的比赛场次、胜负情况以及得分。
3.操练(10分钟)让学生分组讨论,尝试解决呈现的球赛积分表问题。
教师在这个过程中,引导学生找到问题的等量关系,列出方程。
4.巩固(10分钟)对学生的解答进行讲解,让学生理解并掌握用方程解决实际问题的方法。
设胜一场积x分,从表中其他任何一行可以列方程,求出x的值,例如从第三行得方程.解方程,得用表中其他行可以验证,得出结论,负一场积1分,胜一场积2分.(1)如果一个队胜m场,则负(14-m)场,胜场积分2m,负场积分为14-m,总积分为2m+(14-m)=m+14.(2)问题(2),学生可能通过计算积分榜中各队的胜场总积分和负场总积分,说明某队的胜场总积分不能等于它的负场总积分.你能用方程,说明上述结论吗?如果设一个队胜了x场,则负了(14-x)场,•如果这个队的胜场总积分等于负场总积分,那么列方程为由此,解得x=想一想,x表示什么量?它可以是分数吗?由此你能得出什么结论?这里x表示一个队所胜的场数,它是一个整数,所以x=不符合实际意义.•由此可以判定没有哪个队的胜场总积分等于负场总积分.这个问题说明:利用方程不仅能求出具体数值,而且还可以进行推理判断,是否存在某种数量关系.另外,上面问题还说明,用方程解决实际问题时,不仅要注意方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.拓展延伸如果删去积分榜的最后一行,你还能用式子表示总积分与胜、负场数之间的数量关系吗?我们可以从积分榜中积分不相同的两行数据列方程求得胜、负一场各得几分,例如,从第一、三行.设胜一场积x分,则前进队胜场积分为10x,负场积分为(24-10x)分,•他负了4场,所以负一场积分为,同理从第三行得到负一场积分为,从中找出相等关系(1)试判断A队胜、平各几场?(2)若每赛一场每名队员均得出场费50元,那么A队的每一名队员所得奖金与出场费的和是多少元?五、教学反思:本节课的主要内容是球赛积分问题,问题与实际情况更接近,也比较复杂,例题中还包含了需要利用反证法来解决的问题,具有一定难度,我在本次教学重以学生为主体,以探究为主线,采取生生合作交流、师生合作的探究式学习法,教师设计小问题,来逐步引导学生找出积分表中的数量,以及数量之间的基本关系,找出有用的数据信息,探索列出方程的相等关系,这种启发式引导可增强学生学习的主动性,引发学生浓厚的学习兴趣,使学生的知识得到巩固的同时,也使生活经验、学习方法等得到提高,在问题情境引题中,我创设学生熟悉且感兴趣的球赛问题,激发学生的学习兴趣,使得学生能更快地投入到对问题的讨论中,同时我也明确了本节课要学的主要内容,本节课的每一个问题都鼓励学生积极动手动口,以达到教学要求,促进思维能力的发展,增强学生的自主学习能力,本节课学生对表格中有效信息的筛选会产生疑惑,不知道该找出哪些有用的信息。
七年级上册数学教案《球赛积分问题》教学目标1、理解球赛中积分的多少与胜、平、负的场数有关,同时也与比赛中的积分规定有关。
2、能找解决问题所需的关键量,从表格中提取关键信息。
3、会根据方程的解的情况,对实际问题做出判断。
教学重点从表格中提取关键信息并解决问题。
教学难点把生活中的实际问题抽象成数学问题教学过程一、创设情境,提出问题1、出示篮球比赛图片。
2、你知道篮球比赛是如何计算积分的吗?总积分与什么有关?3、如果你不知道积分规则,你能从赛后的积分表中得出来吗?二、自主探究球赛积分表问题某次篮球联赛积分榜队名比赛场次胜场负场积分前进 14 10 4 24东方 14 10 4 24光明 14 9 5 23蓝天 14 9 5 23雄鹰 14 7 7 21远大 14 7 7 21卫星 14 4 10 18钢铁 14 0 14 141、你从表格中了解到哪些信息?每队的胜场数 + 每队的负场数 = 这个队的比赛场次每队胜场总积分 + 负场总积分 = 这个队的总积分每队胜场总积分 = 胜一场得分× 胜场数每队负场总积分 = 负一场积分× 负场数2、你能从表格中看出负一场积多少分吗?由钢铁队得分可知负一场积1分。
分析:设胜一场积x分,根据表中其他任何一行(除钢铁队)可以列方程求解,这里以第一行为例。
解:设胜一场积x分,依据题意,得:10x + 1×4 = 24x = 2经过检验,x=2 符合题意,所以胜一场积2分。
3、怎样用式子表示总积分与胜、负场数之间的关系?解:若一个队胜m场,则负(14-m)场,胜场积分为2m,负场积分为(14-m)分,总积分为:2m+(14-m) = m+14,即胜m场的总积分为(m+14)分。
4、某队胜场总积分能等于它的负场总积分吗?解:设某队胜场x场,则负(14-x)场,依据题意得:2x = 14 - xx = 14/3x表示所胜得场数必须是整数,所以x = 14/3不符合实际。
甘沟中学七年级数学球赛积
分表问题
[学习目标]
1、学会解决信息图表问题的方法;
2、经历探索球赛积分中数量关系的过程,进一步体会方程是解决实际问题的数学模型,明确用方程解决实际问题时,还要检验方程的解是否符合问题的实际意义。
[重点难点]
解决信息图表问题是重点;从图表中获取有用的信息是难点。
[学习过程] 一、问题导入
我们都喜欢打篮球,你知道篮球比赛胜一场积多少分,负一场积多少分吗?我们今天就来讨论与球赛积分有关的问题。
二、例题
某次篮球赛积分榜
(1)用式子表示总积分与胜、负场数之间的数量关系;
(2)某队的胜场总积分能等于它的负场总积分吗?
分析:要解决这个问题,必须求出胜一场积
多少分,负一场积多少分。
你能从积分表中哪一行最容易看出负一场积多少分吗?那你从这一行看出负一场积多少分呢?
你能从表中看出求胜一场积分的等量关系吗?积分是怎么算的呢?
由第 行可知, +负场得分=
那你一定能求出胜一场的得分哟。
试试看!
用表中的其它行可以验证:负一场得1分,胜一场得2分。
解决问题的准备工作已经做好了,那下面我们开始解答我们面对的问题吧!
(1)如果设一个队胜m 场,则负 场,胜场积分可以表示为 ,负场积分可以表示为 ,则总积分可以表示为 。
(2)由(1)得方程:
解完之后你发现了什么问题?你能回答这个问题吗?
答:
注意:用方程解决实际问题时,不仅要注意解 ,还要注意 。
拓展:真正在现实生活中进行赛季比赛时可能会很少出现一个队伍全胜或全负的极端情况,那在这种情况下你还能从积分表中看出胜一场的得分或负一场的得分吗?开始我们的探究之旅吧!首先删去积分榜的最后一行,试着去求出胜一场得多少分,负一场得多少分。
前进14 10 4
24
东方14 10 4 24
光明14 9 5 23
蓝天14 9 5 23
雄鹰14 7 7 21
远大14 7 7 21
卫星14 4 10 18
思考:设胜一场得x分,那么负一场得多少
分?还可以怎么表示?
由第行知,负一场得 ;同
时又由第行知负一场得 .而
根据基本相等关系:表示同一个量的两个式
子,我们肯定可以根据没有极端情况的
积分表求出胜一场的得分和负一场的得分。
解:
当然了,上面的问题还可以抓住胜一场得
分不变作为相等关系列方程哟!
从这里我们发现表格给我们提供了大量的
信息,我们要充分挖掘对我们有用的信息,帮助
我们解决问题。
三、课堂练习
1. 下表记录了一次实验中时间和温度的
数据:
(1)如果温度的变化是均匀的,21分的温度是
多少?
(2)什么时间的温度是34℃?
2.某商场正在热销2008年北京奥运会吉祥
物“福娃”玩具和徽章两种奥运商品,根据下图
提供的信息,求一盒“福娃”玩具和一枚徽章价
格各是多少元?
四、课堂小结
1、解决有关图表信息问题,要充分利用图
表中的数据信息;
2、利用方程解决实际问题时,不仅可以求
解,还要看解是否符合实际意义,由此,可
以利用方程对一些问题进行推理判断。
作业:
课本108-7、8题。
(注:文档可能无法思考全面,请
浏览后下载,供参考。
可复制、编
制,期待你的好评与关注)时间/分0510152025温度/℃102540557085
共计145元共计280元。