球赛积分表问题
- 格式:doc
- 大小:37.00 KB
- 文档页数:2
球赛积分表问题基础知识1.比赛总场数=胜场数+平场数+负场数比赛总积分=胜场积分+平场积分+负场积分2. 解决有关表格的问题时,首先要根据表格中给出的相关信息,找出数量间的关系,然后再运用数学知识解决问题.3.用方程解决实际问题时,要注意检验方程的解是否正确,且符合问题的实际意义.典型例题例某次篮球联赛共有十支队伍参赛,部分积分表如下:根据表格提供的信息,你能求出胜一场、负一场各积多少分吗?【提示:先观察C队的得分,可知胜场得分+负场得分=_____,然后再设未知数列方程求解】想一想:某队的胜场总积分能等于它的负场总积分吗?巩固练习一.选择题1. 某球队参加比赛,开局9场保持不败,积21分,比赛规则:胜一场得3分,平一场得1分,则该队共胜( )A. 4场B. 5场C. 6场D. 7场2.某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知七年级一班在8场比赛中得到13分,则七年级一班胜了()A.7B.6场C.5场D.4场3.爸爸和儿子共下12盘棋(未出现和棋)后,得分相同,爸爸赢一盘记1分,儿子赢一盘记2分,则爸爸赢了()A.9盘B.8盘C.4盘D.3盘4.A,B,C,D四支足球队分在同一小组进行单循环足球比赛,争夺出线权.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线.小组赛结束后,如果A队没有全胜,那么A 队的积分至少要()分才能保证一定出线.【注:单循环比赛就是小组内的每一个队都要和其他队赛一场】A.7B.6C.4D.35.足球比赛积分规则为:胜一场记3分,平一场得1分,负一场得0分,一个队进行了13场比赛,其中负了4场共得19分,那么这个队胜了()场.A.3B.2C.41D.5一.填空题6.校园记者贝贝为了报道学校球队在市中学生运动会上的情况,她从领队老师那里得知校篮球队参赛16场得28分,按规则知胜一场得2分,平一场得1分,输一场记0分,老师说校球队创下了不败的纪录。
第3课时球赛积分表问题设计意图检验方程的解是否符合问题的实际意义,发展推理能力.由表中第一行数据可列方程10x+4×1=24.解得x=2.用表中其他行可以验证,得出结论:胜一场积2分,负一场积1分.问题3用代数式表示一支球队的总积分与胜、负场数之间的数量关系.若一支球队胜m场,则总积分为m+14.问题4 某队的胜场总积分能等于它的负场总积分吗?设一支球队胜了y场,则负了(14-y)场.若这支球队的胜场总积分能等于负场总积分,则得方程2y=14-y.解得y=143因为y(所胜的场数)的值必须是整数,所以y=143不符合实际,由此可以判定没有哪支球队的胜场总积分能等于负场总积分.总结:【对应训练】1.阳光体育季,赛场展风采.七年级组织迎新拔河比赛,每班代表队都需比赛10场,下表是此次比赛积分榜的部分信息:班次比赛场次胜场负场积分A班1010030B班108226C班1001010(1)结合表中信息可知:胜一场积_____分,负一场积_____分.(2)已知D班的积分是24分,求D班的胜场数.(3)某个班的胜场总积分能否是负场总积分的2倍?请说明理由.解:(2)设D班的胜场数为x,则负场数为10-x.由D班的积分是24分,得3x+1×(10-x)=24.解得x=7.因此,D班的胜场数为7.(3)能.理由:设这个班的胜场数为y,则负场数为10-y.若胜场总积分是负场总积分的2倍,则3y=2×1×(10-y).解得y=4.因此,当某个班的胜场数为4时,这个班的胜场总积分是负场总积分的2倍.2.教材P137练习第2题.教学建议【教学建议】问题4的分析过程中渗透了反证法的思想,即先假设某队的胜场总积分等于它的负场总积分,由此列出方程,解得获胜场次不是整数而是分数,这显然不合乎实际情况,由这种矛盾现象可知先前的假设不能成立,从而作出否定的判断.建议教学中不要提及反证法,只要引导学生注意这里方程的解应是整数,由此作出判断就够了.上面的问题说明,用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.31教学步骤师生活动活动三:知识升华,巩固提升设计意图学会解决不同规则下的比赛积分问题.例在一次有12个队参加的足球循环赛中(每两队之间比赛一场),规定胜一场积3分,平一场积1分,负一场积0分,某队在这次循环赛中所胜场数比所负场数多2场,结果共积19分.求该队在这次循环赛中的平场数.解:设该队的负场数为x,则胜场数为x+2,平场数为11-x-(x+2).根据题意,得3(x+2)+1×[11-x-(x+2)]=19.解得x=4.所以11-x-(x+2)=1.答:该队在这次循环赛中的平场数为1.【对应训练】教材P137练习第1题.【教学建议】给学生说明:不同的比赛,规则各不相同.对于比赛结果,除了有胜、负外,可能还有平局.但一般来说,有以下相等关系(以有平局的情况为例):①比赛总场数=胜场数+平场数+负场数;②比赛总积分=胜场总积分+平场总积分+负场总积分.活动四:随堂训练,课堂总结【随堂训练】“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.我们是怎样根据表格中的信息,得出篮球联赛的胜、负积分规则的?2.在实际问题中,通过一元一次方程求出解后,还要注意什么问题?【作业布置】1.教材P140习题5.3第7,12,13题.2.相应课时训练.板书设计第3课时球赛积分表问题1.从球赛积分表中读取信息2.用一元一次方程解决球赛积分问题教学反思球赛积分问题能较好地引起学生的学习兴趣.部分学生不能熟练地从表格中提炼自己需要的信息,今后要更注意对学生这方面能力的培养.另外,通过对方程解的实际意义的检验,学生更全面地理解了方程在实际问题中的应用.解题大招不同规则下的比赛问题不同的比赛,规则各不相同,如篮球比赛中,有2分球、3分球、罚球(罚中一次得1分);另外有些比赛,除了有得正分和零分的情况,还有得负分的情况.不管是哪种类型的比赛,按对应规则计算总分即可.例1为了增强学生的安全防范意识,某校九年级(3)班举行了一次安全知识抢答赛,抢答题一共30道,记分规则如下:每答对一道得5分,每答错或不答一道扣1分.张丹一共得84分,则张丹答对的道数为多少?解:设张丹答对的道数为x,则答错或不答的道数一共为30-x.由题意,得5x-(30-x)=84.解得x=19.答:张丹答对的道数为19.例2某篮球运动员在一次篮球比赛中20投16中(含罚球),得30分(罚球命中1次得1分),已知他投中了1个3分球,则他投中了几个2分球?解:设他投中了x个2分球,则罚球罚进的个数为16-x-1.由题意得2x+3×1+1×(16-x-1)=30.解得x=12.答:他投中了12个2分球。
3.4实际问题与一元一次方程
球赛积分表问题
教学目标:
知识技能
1、一元一次方程解决实际问题。
2、知道用一元一次方程解决实际问题
过程与方法
1、通过探索球赛积分与胜、负场之间的数量关系,进一步体会方程是解决实际问题的数
学模型
2、将实际问题转化为数学问题,应用方程解决
情感态度
通过学习,更加关注生活,增强用数学的意识,从而激发数学学习的热情。
重点、难点:
1、把实际问题转化为数学问题,不仅回利用方程求出问题的解,还会进行推理判断
2、将实际问题转化为数学问题,通过列方程解决问题
教学过程:
某次篮球联赛积分榜
问题1:观察表格,那位学生知道篮球的计分标准?
通过表格最后一行可得知:负一场得1分,再通过其他任意一行可算出胜一场得2分。
问题2:列式表示积分与胜、负场数之间的数量关系?
如果一个队胜m场,则负(14-m)场,胜场积分为2m,负场积分为14-m,总积分为:
2m+(14-m)= m+14
问题3:某队的胜场总积分能等于它的负场总积分吗?
设一个队生胜了x 场,则负了(14-x )场,如果这个队的胜场总积分等于负场总积分,则得方程:
2x = 14-x
解得:x =
3
14 思考:x 表示什么量?它可以是分数吗?由此你能得出什么结论?
答:解决实际问题时,要考虑得到的结果是不是符合实际.x (所胜的场数)的值必须是整数,所以x = 3
14
不符合实际,由此可以判定没有哪个队的胜场总积分等于负场总积分.
这个问题说明:利用方程不仅能求出具体数值,而且还可以进行推理判断,是否存在某种数量关系.
另外,上面的问题还说明,用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合实际意义.
练习:
某工程甲、乙合作6天完成,甲一人做需要5天完成,问乙一人做需几天完成?这是小明给小华出的一道题,可小华说:“这道题有错,不能做”,你说呢?
小结:
通过本节课的探究活动,使我们更加明白利用一元一次方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.同时还利用方程对一些问题进行推理判断。