工程热力学第三章 热力学第一定律
- 格式:ppt
- 大小:812.50 KB
- 文档页数:39
工程热力学三大定律
工程热力学是研究能量转化和传递的学科,其中三大定律是工程热力学的三个基本定律。
这三大定律分别是:
第一定律:能量守恒定律。
它指出,能量不能被创造或销毁,只能从一种形式转换为另一种形式。
在一个封闭系统中,能量的增加等于它的减少。
这一定律是热力学的基础,也是工程热力学的基础。
第二定律:熵增定律。
它指出,任何封闭系统中的熵都不会减少,只会增加或保持不变。
熵是一个系统混乱程度的度量,因此这个定律意味着所有自然过程都会使系统变得更加混乱。
这一定律在工程热力学中被广泛应用,特别是在热力学循环和能量转换中。
第三定律:绝对零度定律。
它指出,当一个物体的温度降到绝对零度时,它的熵将达到最小值。
这一定律是热力学的最终定律,也是工程热力学的一个基本定律。
它被用来确定理想气体的热力学性质,以及热力学循环的效率。
这三大定律是工程热力学的基础,它们在能源转换和利用中具有重要的应用价值。
了解这些定律可以帮助工程师设计更高效的能源系统,提高能源利用效率。
- 1 -。
第三章 热力学第一定律热力学第一定律是研究热力学的主要基础之一,也是分析和计算能量转化的主要依据,并且在我们以后的几章分析中也离不开它。
对其他热力学理论的建立也起着非常重要的作用。
热一律的建立1840—1851年间,迈耶、焦耳、赫尔姆霍茨建立了热力学第一定律,它指出了能量转化的数量关系,随着分子运动论的建立和发展,肯定了热能与机械能相互转化的实质是热能与机械能都是物质的运动,其相互转化就是物质由一种运动形态转变为另一种运动形态的运动且转化时能量守恒,把能量守恒定律应用于热力学,就叫做热力学第一定律,至此热力学第一定律完全建立。
本章重点:1 讨论热力学第一定律的实质。
2 能量方程的建立及工程实际中的应用。
3—1 热力学第一定律的实质实质:热一律的实质是能量转化与守恒定律在热现象上的应用。
能量转化守恒定律指出:在自然界中,物质都具有能量,能量有各种不同的形式,既不能创造,也不能随意消失,而只能从一种形态转化成另一种形态。
由一个系统转逆到另一个系统。
在能量转化和传递过程中,能量的总和保持不变,这个定律对任何一个系统都可写成∆⇒⇒//系统进入 离开即输入系统的能量-输出系统的能量=系统储存的能量的变化量。
能量守恒定律不适从任何理论推导出来的,而是人类在长期的生产斗争和科学实验中积累的丰富经验的总结,并为无数实践所证实。
它是自然界中最普遍、最基本的规律之一。
普遍适用于机械的、热能的、电磁的、原子的、化学的等多变过程。
物理学中的功能原理、工程力学中的机械能守恒定律等。
其实质都是能量守恒与转化定律,热一律就是能量转化与守恒定律在热现象上的应用。
这个定律指出,热能与其它形式的能量相互转化和总能量守恒。
机械能 热能 化学能 电磁能在本课程范围内主要是热能与机械能的相互转化,因此:热一律也可表示为:热→功,功→热。
一定量热消失时,必产生与之数量相当的功。
消耗一定量的功时,必产生相当数量的热。
用数学形式表示:Q AW = 1427kcalA kg m =⋅W TQ = 1kg m J kcal A⋅=Q W = kJ这一关系表明,热一律确立了热与机械能相互转化时,热量与功量在数量上的关系。
第3章 热力学第一定律3-1 一辆汽车 1 小时消耗汽油 34.1 升,已知汽油发热量为 44000kJ/kg ,汽油密度 0.75g/cm3 。
测得该车通过车轮出的功率为 64kW ,试求汽车通过排气,水箱散热等各种途径所放出的热量。
解: 汽油总发热量Q = 34.1×10-3m3 ×750kg/m3 ×44000kJ/kg =1125300kJ汽车散发热量Qout = Q-W ×3600 = (1125300-64×3600)kJ/h = 894900kJ/h3-2 气体某一过程中吸收了 50J 的热量,同时,热力学能增加 84J ,问此过程是膨胀过程还是压缩过程?对外作功是多少 J ?解 取气体为系统,据闭口系能量方程式 Q = ΔU +WW = Q -ΔU = 50J -84J = -34J所以过程是压缩过程,外界对气体作功 34J 。
3-3 1kg 氧气置于图 3-1 所示气缸内,缸壁能充分导热,且活塞与缸壁无磨擦。
初始时氧气压力为 0.5MPa ,温度为 27℃,若气缸长度 2l ,活塞质量为 10kg 。
试计算拔除钉后,活塞可能达到最大速度。
解:由于可逆过程对外界作功最大,故按可逆定温膨胀计算:w = RgT ln V2/ V1 = 0.26kJ/(kg •K)×(273.15+ 27)K图3-1 图3-2×ln(A×2h)/ (A×h)= 54.09kJ/kgW =W0 + m'/2*Δc 2 = p0(V2 -V1)+ m'/2*Δc 2 (a )V1 =m1RgT1/ p1=1kg×260J/(kg•K)×300.15K /0.5×106Pa = 0.1561m3 V2 = 2V1 = 0.3122m3代入(a)c2 = (2×(54.09J/kg×1kg×103-0.1×106Pa×0.1561m3)/10kg)1/2= 87.7m/s3-4 有一飞机的弹射装置,如图 3-2,在气缸内装有压缩空气,初始体积为 0.28m3 ,终了体积为0.99m3,飞机的发射速度为61m/s ,活塞、连 杆和飞机的总质量为 2722kg 。
工程热力学的公式大全1.热力学第一定律:ΔU=Q-W其中,ΔU表示系统内能的变化,Q表示系统所吸收的热量,W表示系统所做的功。
2.理想气体状态方程:PV=nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的物质的分子数,R表示气体常数,T表示气体的温度。
3.等温过程:Q=W在等温过程中,系统所吸收的热量等于所做的功。
4.绝热过程:P1V1^γ=P2V2^γ在绝热过程中,气体的压强与体积之积的γ次方是一个常数,γ为气体的绝热指数。
5.等容过程:ΔU=Qv在等容过程中,系统内能的变化等于吸收的热量。
6.等压过程:Q=ΔH在等压过程中,系统所吸收的热量等于焓的变化。
7.等焓过程:ΔH=Qp在等焓过程中,焓的变化等于吸收的热量。
8.热机效率:η=1-,Qc,/,Qh热机效率表示热机从高温热源吸收的热量减去放出的低温热量占高温热量的比例。
9.士温定理:η=1-(Tc/Th)士温定理是热力学第二定律的一种表述,表示热机效率与高温热源温度和低温热源温度的比值有关。
10.开尔文恒等式:η=1-(Tc/Th)=1-(,Qc,/,Qh,)开尔文恒等式是士温定理的另一种形式,表示任何热机的效率都不可能达到100%。
11.准静态过程:ΔS=∫(dQ/T)准静态过程中,系统的熵变等于系统吸收的微小热量除以系统的温度积分得到。
12.绝热可逆过程:ΔS=0在绝热可逆过程中,系统的熵不发生变化。
13.熵的增加原理:ΔS总=ΔS系统+ΔS环境≥0根据熵的增加原理,系统与环境的熵的变化之和大于等于0。
14.卡诺循环效率:η=1-(Tc/Th)卡诺循环是理想热机,其效率由高温热源温度和低温热源温度决定。
15.等温膨胀系数:β=(1/V)*(∂V/∂T)p等温膨胀系数表示单位温度升高时体积的变化与体积的比值。
16.等压热容量:Cp=(∂Q/∂T)p等压热容量表示在等压条件下单位温度升高吸收的热量与温度的比值。
17.等容热容量:Cv=(∂Q/∂T)v等容热容量表示在等容条件下单位温度升高吸收的热量与温度的比值。