第1章飞机结构特点
- 格式:ppt
- 大小:14.58 MB
- 文档页数:117
机身结构1 机身的结构类型1)构架式机身隔框立柱图1.225构架式机身2)半硬壳式机身(2)桁条式机身。
ill'亦质慕皮(1)桁梁式机身。
图1.226桁梁式机身2 机身主要构件机身主要部件包括蒙皮、桁条、桁梁和隔框。
1) 蒙皮机身蒙皮的作用与机翼蒙皮的作用一样,用来维持机身外形;同时蒙皮与支撑它的构件一起承受和传递局部气动载荷和弯矩。
2) 桁条和桁梁桁条和桁梁都是机身结构的纵向构件 3) 龙骨梁龙骨梁是机身的一个主要纵向部件,它由上、下两个受压的弦杆和一个带有加强筋的承剪腹板结构件组成。
龙骨梁位于中央翼下方、两主轮舱之间的机身中心线上,如图1.229所示。
3)硬壳式机身桁条式机身结构图1.227 ■罐皮隔梃-图1.228硬壳式机身阻力揑杆连播到孙梁中删严捲头/也机纵轴缄惦流也皮茧捽框一龙骨陀支傑枇一刖图1.229机身龙骨梁4)隔框机身隔框可分为普通隔框和加强隔框两种。
(1)普通隔框。
(a)(b)图1.230普通隔框(2)加强隔框。
图1.231壁板板式加强隔框5)机身上骨架元件与蒙皮的连接机身蒙皮同骨架元件的连接有两种方式:第一种:蒙皮只与桁条相连,如图1.232(a)所示;第二种,蒙皮既与框相连,又与桁条相连,如图1.232(b)所示。
(a)⑹(c)图1.232蒙皮与骨架元件的连接方式1—蒙皮;2—桁条;3—框;4—补偿片(a)(b)图1.233框与桁条的连接1—蒙皮;2—桁条;3—框;4—弯边;5—角片3 增压密封现代飞机大都在空气稀薄的高空中飞行,为了保证空勤人员和旅客在高空飞行时的正常工作条件和生理要求,以及保证仪表、设备可靠地工作,都采用了增压气密座舱。
图1.234所示为波音B737飞机的增压气密座舱区域。
STA{站位)^TA17K1016ISTAS'fASTASTASiA227.S294.5540663727匚二|增压区墜非增压区图1.234B737飞机增压区增压气密舱内需要密封的地方有:各骨架构件与蒙皮的对接处(铆接和螺栓连接);蒙皮与壁板之间;飞机和发动机操纵系统的拉杆和钢索在座舱内增压区和非增压区交界面的进出口处;飞机液压系统、引气系统、空调系统的导管、电缆束进出口;座舱盖口和应急出口;舱口和窗口等。
第一章- 飞机结构摘要:飞机结构是第一章,主要讲述了飞机的机身,机翼,尾翼,起落架,和发动机这几个主要结构部分。
根据美国联邦法规全书(CFR)第14篇第一部分的定义和缩写,飞行器(Aircraft)是一种用于或者可用于飞行的设备。
飞行员执照的飞行器分类包括飞机(Airplane),直升机,气球类(lighter-than-air),动力升力类(powered-lift),以及滑翔机。
还定义了飞机(Airplane)是由引擎驱动的,比空气重的固定翼飞行器,在飞行中由作用于机翼上的空气动态反作用力支持。
本章简单介绍飞机和它的主要组成部分。
主要组成部分尽管飞机可以设计用于很多不同的目的,大多数还是有相同的主要结构。
它的总体特性大部分由最初的设计目标确定。
大部分飞机结构包含机身,机翼,尾翼,起落架和发动机。
机身机身包含驾驶舱和/或客舱,其中有供乘客使用的坐位和飞机的控制装置。
另外,机身可能也提供货舱和其他主要飞机部件的挂载点。
一些飞行器使用开放的桁架结构。
桁架型机身用钢或者铝质管子构造。
通过把这些管子焊接成一系列三角形来获得强度和刚性,成为桁架结构。
图1-2就是华伦桁架。
华伦桁架结构中有纵梁,斜管子和竖直的管子单元。
为降低重量,小飞机一般使用铝合金管子,可能是用螺钉或者铆钉通过连接件铆成一个整体。
随着技术进步,飞行器设计人员开始把桁架单元弄成流线型的飞机以改进性能。
在最初使用布料织物来实现的,最终让位于轻金属比如铝。
在某些情况下,外壳可以支持所有或者一主要部分的飞行载荷。
大多数现代飞机使用称为单体横造或者半单体构造的加强型外壳结构。
单体横造设计使用加强的外壳来支持几乎全部的载荷。
这种结构非常结识,但是表面不能有凹痕或者变形。
这种特性可以很容易的通过一个铝的饮料罐来演示。
你可以对饮料罐的两头施加相当的力量管子不受什么损坏。
然而,如果罐壁上只有一点凹痕,那么这个罐子就很容易的被扭曲变形。
实际的单体造型结构主要由外壳,隔框,防水壁组成。
(上册)第1章飞机结构1、飞机在匀速直线飞行,这些外载荷必须满足下列平衡方程:(图1.1-1)ΣX=0 P0=D0(发动机推力等于气动阻力)ΣY=0 L0=W(气动升力等于飞机重力)ΣM=0 M A=M B(抬头力矩等于低头力矩)2、飞机过载分为机动过载和突风过载。
飞机过载n y的定义是:作用在飞机上的升力L和飞机飞行重量W之比。
即n y=L/W飞机过载是代数值,不但有大小而且有正负。
3、机动过载:滚转角越大,过载值越大。
n y=1/cosγ(图1.1-2)4、对飞机结构受力影响比较大的是垂直突风。
垂直突风主要是改变气流对飞机运动速度的方向,从而产生较大的突风过载n y。
5、当飞机进行水平飞行或垂直上升、下滑时,飞机各部位运动的加速度与飞机重心处运动的加速度相同,此时附加过载等于零Δn y=0,部件过载等于全机过载。
6、当飞机以角加速度绕机体纵轴向右转动时,左侧机翼过载大于右侧机翼过载。
7、当以大速度、小迎角飞行时,机翼上、下表面的吸力都很大。
8、最大使用过载和最小使用过载是对飞机结构进行总体强度设计的主要依据。
9、所谓速度-过载飞行包线就是分别以空速和过载系数为横坐标和纵坐标,根据飞行使用限制条件(最大过载、最小过载、最大速度、最小速度等)画出一条封闭的曲线,形成飞机飞行的限制包线。
10、设计载荷与使用载荷之比叫做安全系数f, f=P设计/P使用使用载荷(限制载荷)是飞机在使用过程中预期的最大载荷;设计载荷又叫极限载荷。
11、结构强度:飞机结构必须能够承受极限载荷至少3秒而不破坏。
12、机构的刚度:结构受力时抵抗变形的能力叫做结构的刚度。
在直到限制载荷的任何载荷作用下,变形不得妨害安全飞行。
13、结构在载荷作用下保持原平衡状态的能力叫做结构的稳定性。
杆件受压有两种破坏形式:一种是杆件轴线变弯,杆件不能保持直杆形状与载荷平衡,这种失稳被称为总体失稳。
另一种是杆件轴线保持直线,组成杆件的薄壁产生了皱折,这种失稳被称为局部失稳。