备战2018高考数学二轮复习难点2.9解析几何中的面积,共线,向量结合的问题测试卷理
- 格式:doc
- 大小:1.03 MB
- 文档页数:13
(江苏版)2018年高考数学二轮复习 第2部分 八大难点突破 难点1与三角变换、平面向量综合的三角形问题学案高考数学命题注重知识的整体性和综合性,重视在知识的交汇处考察,对三角形问题的考察重点在于三角变换、向量综合,它们之间互相联系、互相交叉,不仅考察三角变换,同时深化了向量的运算,体现了向量的工具作用,试题综合性较高,所以要求学生有综合处理问题的能力,纵观最近几年高考,试题难度不大,但是如果某一知识点掌握不到位,必会影响到整个解题过程 ,本文从以下几个方面阐述解题思路,以达到抛砖引玉的目的. 1.向量运算与三角形问题的综合运用解答这类题,首先向量的基本概念和运算必须熟练,要很好的掌握正弦定理、余弦定理的应用条件,其次要注意把题目中的向量用三角中边和角表示,体现向量的工具作用.【例1】 (镇江市2017届高三上学期期末)已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎪⎫0,π2,且m ⊥n .(1)求cos 2α的值; (2)若sin(α-β)=1010,且β∈⎝⎛⎭⎪⎫0,π2,求角β的值.[解] 法一(1)由m ⊥n 得,2cos α-sin α=0,sin α=2cos α, 代入cos 2α+sin 2α=1,得5cos 2α=1,且α∈⎝⎛⎭⎪⎫0,π2,则cos α=55,sin α=255, 则cos 2α=2cos 2α-1=2×⎝⎛⎭⎪⎫552-1=-35. (2)由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2得,α-β∈⎝ ⎛⎭⎪⎫-π2,π2.因sin(α-β)=1010,则cos(α-β)=31010. 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =255×31010-55×1010=22,因β∈⎝⎛⎭⎪⎫0,π2,则β=π4.法二(1)由m ⊥n 得,2cos α-sin α=0,tan α=2,故cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-41+4=-35. (2)由(1)知,2cos α-sin α=0,且cos 2α+sin 2α=1,α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,则sin α=255,cos α=55,由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2得,α-β∈⎝ ⎛⎭⎪⎫-π2,π2. 因sin(α-β)=1010,则cos(α-β)=31010. 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =255×31010-55×1010=22, 因β∈⎝ ⎛⎭⎪⎫0,π2,则β=π4.2.三角函数与三角形问题的结合三角函数的起源是三角形,所以经常会联系到三角形,这类型题是在三角形这个载体上的三角变换,第一:既然是三角形问题,就会用到三角形内角和定理和正、余弦定理以及相关三角形理论,及时边角转换,可以帮助发现问题解决思路;第二:它也是一种三角变换,只不过角的范围缩小了,因此常见的三角变换方法和原则都是适用的. 【例2】 (2017·江苏省无锡市高考数学一模)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边.若a cos B =3,b cos A =1,且A -B =π6.(1)求边c 的长; (2)求角B 的大小.【导学号:56394089】[解] (1)∵a cos B =3,b cos A =1,∴a ×a 2+c 2-b 22ac =3,b ×b 2+c 2-a 22bc=1,化为:a 2+c 2-b 2=6c ,b 2+c 2-a 2=2c . 相加可得:2c 2=8c ,解得c =4. (2)由(1)可得:a 2-b 2=8.由正弦定理可得:a sin A =b sin B =4sin C,又A -B =π6,∴A =B +π6,C =π-(A +B )=π-⎝ ⎛⎭⎪⎫2B +π6,可得sin C =sin ⎝⎛⎭⎪⎫2B +π6. ∴a =4sin ⎝⎛⎭⎪⎫B +π6sin ⎝ ⎛⎭⎪⎫2B +π6,b =4sin B sin ⎝⎛⎭⎪⎫2B +π6.∴16sin 2⎝ ⎛⎭⎪⎫B +π6-16sin 2B =8sin 2⎝⎛⎭⎪⎫2B +π6, ∴1-cos ⎝ ⎛⎭⎪⎫2B +π3-(1-cos 2B )=sin 2⎝ ⎛⎭⎪⎫2B +π6,即cos 2B -cos ⎝ ⎛⎭⎪⎫2B +π3=sin 2⎝⎛⎭⎪⎫2B +π6, ∴-2sin ⎝ ⎛⎭⎪⎫2B +π6sin ⎝ ⎛⎭⎪⎫-π6=sin 2⎝ ⎛⎭⎪⎫2B +π6,∴sin ⎝ ⎛⎭⎪⎫2B +π6=0或sin ⎝ ⎛⎭⎪⎫2B +π6=1,B ∈⎝ ⎛⎭⎪⎫0,5π12. 解得:B =π6.3.三角变换、向量、三角形问题的综合高考会将几方面结合起来命题,三角函数主要考察它的图象、常见性质;三角形主要考察正弦定理、余弦定理以及有关的三角形性质;向量主要考察向量的运算、向量的模、向量的夹角、向量的垂直以及向量的共线,体现向量的工具作用,三角变换主要考察求值、化简、变形.【例3】 (扬州市2017届高三上学期期中)在△ABC 中,AB =6,AC =32,AB →·AC →=-18.(1)求BC 的长; (2)求tan 2B 的值.[解] (1)因为AB →·AC →=AB ×AC ×cos A =-18,且AB =6,AC =32,BC =AB 2+AC 2-2AB ×AC ×cos A=62+22--=310.(2)法一:在△ABC 中,AB =6,AC =32,BC =310,cos B =BA 2+BC 2-AC 22BA ×BC=62+102-222×6×310=31010,又B ∈(0,π),所以sin B =1-cos 2B =1010, 所以tan B =sin B cos B =13,所以tan 2B =2tan B1-tan 2B=231-⎝ ⎛⎭⎪⎫132=34. 法二:由AB =6,AC =32,AB →·AC →=AB ×AC ×cos A =-18可得cos A =-22,又A ∈(0,π),所以A =3π4.在△ABC 中,BC sin A =ACsin B,所以sin B =AC ×sin A BC =32×22310=1010, 又B ∈⎝⎛⎭⎪⎫0,π4,所以cos B =1-sin 2B =31010,所以tan B =sin B cos B =13,所以tan 2B =2tan B1-tan B=231-⎝ ⎛⎭⎪⎫132=34. 4.实际应用中的三角形问题在实际生活中往往会遇到关于距离、角度、高度的测量问题,可以借助平面图形,将上述量放在一个三角形中,借助解三角形知识达到解决问题的目的.【例4】 (2017·江苏省淮安市高考数学二模)一缉私艇巡航至距领海边界线l (一条南北方向的直线)3.8海里的A 处,发现在其北偏东30°方向相距4海里的B 处有一走私船正欲逃跑,缉私艇立即追击,已知缉私艇的最大航速是走私船最大航速的3倍,假设缉私艇和走私船均按直线方向以最大航速航行.图1(1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领海内拦截成功;(参考数据:sin 17°≈36,33≈5.744 6) (2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明理由. [解] (1)设缉私艇在C 处与走私船相遇(如图),则AC =3BC .△ABC 中,由正弦定理可得sin ∠BAC =sin 120°3=36,∴∠BAC =17°,∴缉私艇应向北偏东47°方向追击,△ABC 中,由余弦定理可得cos 120°=16+BC 2-AC28BC,∴BC ≈1.686 15.B 到边界线l 的距离为3.8-4sin 30°=1.8,∵1.686 15<1.8,∴能用最短时间在领海内拦截成功.(2)以A 为原点,建立如图所示的坐标系,则B (2,23),设缉私艇在P (x ,y )处与走私船相遇,则PA =3PB ,即x 2+y 2=9[(x -2)2+(y -23)2],即⎝ ⎛⎭⎪⎫x -942+⎝ ⎛⎭⎪⎫y -9432=94,∴P 的轨迹是以⎝ ⎛⎭⎪⎫94,943为圆心,32为半径的圆, ∵圆心到边界线l :x =3.8的距离为1.55,大于圆的半径, ∴无论走私船沿何方向逃跑,缉私艇总能在领海内成功拦截.5.综合上述几个方面的阐述,解三角形问题不是孤立的,而是跟其他相关知识紧密联系在一起,通过向量的工具作用,将条件集中到三角形中,然后利用三角恒等变换、正弦定理和余弦定理及其相关知识解题,是常见的解题思路,为此,熟练掌握向量的基本概念和向量的运算,熟练进行三角变换和熟练运用正弦定理以及余弦定理是解题的关键. 6.向量与三角形问题的结合向量具有“双重身份”,既可以像数一样满足“运算性质”进行代数形式的运算,又可以利用它的几何意义进行几何形式的变换,同时向量加、减法的几何运算遵循三角形法则和平行四边形法则,这为向量和三角形问题的结合,提供了很好的几何背景.6.1 向量与三角形谈“心”内心(三角形内切圆圆心 ):三角形三条内角平分线的交点; 外心(三角形外接圆的圆心):三角形各边中垂线的交点; 垂心:三角形各边上高的交点; 重心:三角形各边中线的交点, 用向量形式可表示为如下形式:若P 是△ABC 内的一点,⎩⎪⎨⎪⎧AP →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ>0BP →=t ⎝ ⎛⎭⎪⎫BA →|BA →|+BC →|BC →|,t >0⇒P 是△ABC 的内心;若D 、E 两点分别是△ABC 的边BC 、CA 上的中点,且 ⎩⎨⎧DP →·PB →=DP →·PC →EP →·PC →=EP →·PA→⇒P 是△ABC 的外心;若GA →+GB →+GC →=0,则G 是△ABC 的重心;若P 是△ABC 所在平面内的一点,且PA →·PB →=PA →·PC →=PC →·PB →,则P 是△ABC 的垂心. 【例5】 (2017·江苏省泰州市高考数学一模)在△ABC 中,若BC →·BA →+2AC →·AB →=CA →·CB →,则sin A sin C的值为________. 【导学号:56394090】[解析] 在△ABC 中,设三条边分别为a 、b 、c ,三角分别为A 、B 、C , 由BC →·BA →+2AC →·AB →=CA →·CB →,得ac ·cos B +2bc ·co s A =ba ·cos C ,由余弦定理得:12(a 2+c 2-b 2)+(b 2+c 2-a 2)=12(b 2+a 2-c 2),化简得a 2c 2=2,∴a c =2,由正弦定理得sin A sin C =ac= 2.故答案为: 2.[答案] 26.2 判断三角形形状三角形的边可以看做向量的模长,三角形的内角可以看做向量的夹角,所以可利用向量的数量积和夹角公式或者其他线性运算,结合平面几何知识来判断三角形的形状 【例6】 △ABC 的三个内角A 、B 、C 成等差数列,(BA →+BC →)·AC →=0,则△ABC 一定是________三角形.[解析] △ABC 的三个内角A 、B 、C 成等差数列,则有2B =A +C ,所以B =π3,设D是AC 边的中点,则BA →+BC →=2BD →,所以2BD →·AC →=0,BD →⊥AC →,所以△ABC 一定是等边三角形. [答案] 等边。
一.方法综述向量具有代数与几何形式的双重身份,平面向量与解析几何的交汇是新课程高考命中的热点问题。
它们具体结合体现在夹角、平行、垂直、共线、轨迹等问题的处理,目标是将向量语言坐标化、符号化、数量化,从而将推理转化为运算,或者考虑向量运算的几何意义,利用其几何意义解决有关问题. 二.解题策略类型一 利用向量垂直的充要条件,化解解析几何中的垂直问题【例1】已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为1F ,2F ,过点1F 且斜率为247-的直线与双曲线在第二象限的交点为A ,若1212()0F F F A F A +⋅=,则双曲线C 的渐近线方程是( ) A .43y x =±B .34yx C.y = D.y x = 【来源】陕西省西安市长安区2021届高三下学期二模理科数学试题 【答案】A【解析】依题意221212121112112()()()0F F F A F A F F F A F A F F F A F F +⋅=+⋅-=-=,所以1212F F F A c ==,1247AF k =-,设直线1F A 的倾斜角为α,则α为钝角,sin 24tan cos 7ααα==-,结合22sin cos 1αα+=解得247sin ,cos 2525αα==-,设()00,A x y ,则()07392cos 22525x c c c c c α⎛⎫=⋅+-=⨯--=- ⎪⎝⎭,024482sin 22525y c c c α=⋅=⋅=,将A 点坐标代入双曲线方程得2222394825251c c a b ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭-=,而222c a b =+,所以()()222222152123046256251a b a b a b ++-=,化简得22221521140823040b a a b ⋅--⋅=, 42241521140823040b a b a ⋅--⋅=,()()22229161691440b a b a -+=,229160b a -=,434,3b b a a ==,所以双曲线的渐近线方程为43y x =±.故选:A 【举一反三】解析几何与平面向量相结合问题1.(2020南宁模拟)已知双曲线2222:1(0,0)x y E a b a b-=>>的右顶点为A ,抛物线2:8C y ax =的焦点为F .若在E 的渐近线上存在点P ,使得AP FP ⊥,则E 的离心率的取值范围是 ( )A . ()1,2B . 321,4⎛ ⎝⎦C . 324⎡⎫+∞⎪⎢⎪⎣⎭D . ()2,+∞ 【答案】B【解析】由题意得,()(),0,2,0A a F a ,设00,b P x x a ⎛⎫⎪⎝⎭,由AP FP ⊥,得2220020320c AP PF x ax a a ⋅=⇒-+=,因为在E 的渐近线上存在点P ,则0∆≥,即222222293294209884c a a a c e e a -⨯⨯≥⇒≥⇒≤⇒≤ ,又因为E 为双曲线,则3214e <≤,故选B . 【指点迷津】本题主要考查了双曲线的基本性质的应用,抛物线基本性质的应用,向量数量积坐标运算以及一元二次方程根的判别式的运用,属于中档题,首先可画一张草图,分析其中的几何关系,然后将AP FP ⊥系用代数形式表示出来,即可得到一个一元二次方程,若要使得一元二次方程有实数解, 0∆≥,水到渠成,即可得到答案,因此将几何关系转化成方程是解题的关键.2.(2020·四川高考模拟(理))已知圆1C :22(5)1x y ++=,2C :22(5)225x y -+=,动圆C 满足与1C 外切且2C 与内切,若M 为1C 上的动点,且10CM C M ⋅=,则CM 的最小值为( ) A .2 B .3C .4D .5【答案】A【解析】∵圆1C :()2251x y ++=,圆2C :()225225x y -+=, 动圆C 满足与1C 外切且2C 与内切,设圆C 的半径为r ,由题意得1211516CC CC r r +=++-=()(), ∴则C 的轨迹是以(()()505,0,,- 为焦点,长轴长为16的椭圆,∴其方程为221,6439x y += 因为10CM C M ⋅=,即CM 为圆1C 的切线,要CM 的最小,只要1CC 最小,设()00,M x y ,则()222222010001511025391164x CM CC x y x x ⎛⎫=-=++-=+++-- ⎪⎝⎭20002510641,88,64x x x =++--≤≤()()2min2581086412 2.64CM-∴==+⨯-+-= ,选A.3.(2020·江西高考模拟(理))过双曲线的左焦点,作倾斜角为的直线交该双曲线右支于点,若,且,则双曲线的离心率为__________.【答案】【解析】试题分析:因为,所以,由题意,故, ∵,∴为的中点,令右焦点为,则为的中点,则,∵,所以,∴,∵, ∴在中,,即,所以离心率.类型二 利用向量平行的充要条件,灵活转换解析几何中的平行或共线问题【例2】若椭圆2222:1(0)x y C a b a b+=>>上的点5(2,)3到右准线的距离为52,过点()0,1M 的直线l 与C 交于两点,A B ,且23AM MB =,则l 的斜率为 A .13B .13±C .12±D .19【来源】江苏省无锡市八校联盟2020-2021学年高三上学期第三次适应性检测数学试题 【答案】B【解析】解:由题意可得22222242519522a b a b c a c⎧+=⎪⎪⎪=+⎨⎪⎪-=⎪⎩,解得2229,5,4a b c ===,所以椭圆22:195x y C +=,设l :1y kx =+,设1122(,),(,)A x y B x y因为23AM MB =,所以2123x x =-,由221195y kx x y =+⎧⎪⎨+=⎪⎩得22(95)18360k x kx ++-=则12212218953695k x x k x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩结合2123x x =-,联立消去21,x x 解得13k =±故选:B.【点睛】在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”; ②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多. 【举一反三】1.(2020·四川高考模拟)已知抛物线C :()220x py p =>的焦点为F ,点1,0A ,直线FA 与抛物线C交于点P (P 在第一象限内),与其准线交于点Q ,若2PQ FP =,则点P 到y 轴距离为( ) A.1 B.2C.1D.2【答案】B 【解析】【分析】过点P 作抛物线准线的垂线,垂足为1P .根据三角形相似可得直线FA 的倾斜角为135︒,从而斜率为1-,进而可求得2p =,于是可求得点P 的纵坐标,根据点P 在曲线上可得其横坐标,即为所求.【详解】由题意得抛物线的焦点为0,2p F ⎛⎫ ⎪⎝⎭,准线方程为2py =-,设准线与y 轴交于点1F .过点P 作抛物线准线的垂线,垂足为1P ,则11PP FF ∥,∴1||||||||QP QP FP PP ==, ∴145PQP ∠=︒,∴直线FA 的倾斜角为135︒, ∴21012FApp k -==-=--,解得2p =. 又由11PP FF ∥得11||||||||PP QP QF FF ==12||PP =,∴)1||14PP ==-设(),P x y,则14y +=-∴3y =-∴()()224322421x =-=-,又点P 在第一象限, ∴()221222x =-=-,即点P 到y 轴距离为222-.故选B .2.(2020南充模拟)已知,,A B P 为双曲线2214y x -=上不同三点,且满足2PA PB PO +=(O 为坐标原点),直线,PA PB 的斜率记为,m n ,则224n m +的最小值为( )A . 8B . 4C . 2D . 1 【答案】B【指点迷津】涉及到的知识点有平面向量共线定理,直线斜率的计算公式,基本不等式等. 首先得出原点为线段AB 的中点,再求出直线PA ,PB 斜率的表达式, 算出mn 为定值,再由基本不等式求出最小值.3.(2020·江西高考模拟(理))双曲线22221x y a b-=(0a >,0b >)的左右焦点为1F ,2F ,渐近线分别为1l ,2l ,过点1F 且与1l 垂直的直线分别交1l 及2l 于P ,Q 两点,若满足11122OP OF OQ =+,则双曲线的离心率为( ) A 2B 3C .2D 5【答案】C 【解析】【详解】∵22221x y a b-=(a >0,b >0)的左右焦点为F 1,F 2,∴F 1(﹣c ,0),F 2(c ,0), 双曲线的两条渐近线方程为y b a =-x ,y ba=x , ∵过F 1的直线分别交双曲线的两条渐近线于点P ,Q . ∵11122OP OF OQ =+, ∴点P 是线段F 1Q 的中点,且PF 1⊥OP ,∴过F 1的直线PQ 的斜率k PQ ab =, ∴过F 1的直线PQ 的方程为:y ab=(x +c ),解方程组()b y x a a y x c b ⎧=-⎪⎪⎨⎪=+⎪⎩,得P (2a c -,abc ),∴|PF 1|=|PQ |=b ,|PO |=a ,|OF 1|=|OF 2|=|OQ |=c ,|QF 2|=2a , ∵tan ∠QOF 2b a =,∴cos ∠QOF 2ac=, 由余弦定理,得cos ∠QOF 2222242c c a c +-==1222a ac c-=, 即e 2﹣e ﹣2=0,解得e =2,或e =﹣1(舍)故选C .类型三 将向量的坐标表示和运算转化为点的坐标和曲线的方程 【例3】已知过抛物线22(0)y px p =>的焦点1,02F ⎛⎫⎪⎝⎭的直线与该抛物线相交于A ,B 两点,点M 是线段AB 的中点,以AB 为直径的圆与y 轴相交于P ,Q 两点,若2AF FB =,则sin MPQ ∠=( ) A .59B .37C .917D .513【来源】山西省太原市2021届高三一模数学(理)试题 【答案】A【解析】如图所示:法1:由抛物线的焦点坐标可得122p =,所以1p =, 所以抛物线的方程为:22y x =, 设直线AB 的方程为:12x my =+,设()11,A x y ,()22,B x y ,设A 在x 轴上方, 联立2122x my y x⎧=+⎪⎨⎪=⎩,整理可得:2210y my --=,可得:121y y =-①,由2AF FB =,即112211,2,22x y x y ⎛⎫⎛⎫--=-⎪ ⎪⎝⎭⎝⎭,可得122y y =-,代入①可得:2212y =, 所以222y =-12y =代入抛物线的方程可得:214x =,11x =,即(1,2)A ,12,42B ⎛⎫⎪⎪⎝⎭, 所以AB 的中点52,84M ⎛⎫ ⎪ ⎪⎝⎭, 所以22129||12424AB ⎛⎫⎛⎫=-++= ⎪ ⎪ ⎪⎝⎭⎝⎭,即圆的直径为94, 所以圆的方程为2252818464x y ⎛⎫⎛⎫-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭, 令0x =,可得14244y =±+, 所以1420,4P ⎛⎫+ ⎪ ⎪⎝⎭,1420,4Q ⎛⎫-+ ⎪ ⎪⎝⎭, 所以558tan 142221444MPQ ∠==+-,所以2255sin 95(214)MPQ ∠==+,法2.由法1可得AB 的中点M 的横坐标为58,半径98r =, 所以558tan 998MPQ ∠== 故选:A .【指点迷津】求轨迹方程是解析几何中的重要内容,是高考命题的热点和重点.主要考查学生的数形结合思想、等价转化思想、逻辑推理能力、分类讨论及创新思维,属于较高的能力考查.求轨迹方程常用的方法有:直接法、定义法、几何法、相关点法、参数法、交轨法、点差法等.本题主要是考查几何法中的三角形重心的向量表示及重心坐标公式,然后根据相关点法可以求出点P 的轨迹方程. 【举一反三】1.(2020·武汉市实验学校高考模拟)以椭圆22195x y +=的顶点为焦点,焦点为顶点的双曲线C ,其左右焦点分别是12,F F ,已知点M 的坐标为(2,1),双曲线C 上的点00(,)P x y 00(0,0)x y >>,满足11211121PF MF F F MF PF F F ⋅⋅=,则12PMF PMF S S ∆∆-= ( ) A .2B .4C .1D .1-【答案】A【解析】作出简图如下∵椭圆22195x y +=,∴其顶点坐标为3030-(,)、(,), 焦点坐标为(2020-,)、(,), ∴双曲线方程为22145x y -=,12(3,0),(3,0)F F - 由11211121PF MF F F MF PF F F ⋅⋅=,可得1 M F 在1PF 与21 F F 方向上的投影相等,1111111tan 5MA F A F B MF A MF B MF A F A ∴=∴∠=∠∠==,,,112122tan 55tan 11tan 12125MF A PF A MF A ∠∴∠===-∠-, ∴直线1PF 的方程为5312y x ()=+.即:512150x y -+=,把它与双曲线联立可得532P(,) ,2PF x ∴⊥轴,又2tan 1MF O ∠=, 所以245MF O ∠=︒,即M 是12F PF △ 的内切圆的圆心,12121114222PMF PMF SSPF PF ∴-=-⨯=⨯=().故选A . 2.直角坐标系中,已知两点,,点满足,其中,且.则点的轨迹方程为( ) A .B .C .D .【答案】A 【解析】由,且λ+μ=1,得=,∴,即,则C 、A 、B 三点共线.设C (x ,y ),则C 在AB 所在的直线上, ∵A (2,1)、B (4,5), ∴AB 所在直线方程为 ,整理得:.故P 的轨迹方程为:.故选:A.类型四 利用向量夹角,化解解析几何中的角度问题【例4】已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,左、右顶点分别为,A B ,直线l 过A 点且与x 轴垂直,P 为直线l 上的任意一点,若122AB F F =,则12F PF ∠的取值范围是( ) A .[0,]6πB .[0,]4πC .[0,]3πD .7[0,]12π【来源】数学-学科网2021年高三5月大联考(广东卷) 【答案】A【解析】由题意可知,12(,0),(,0),0F c F c c ->,直线l 的方程为x a =-, 设直线1PF ,2PF 的倾斜角分别为αβ,,由椭圆的对称性,不妨设点P 为第二象限的点,即(,),0P a t t ->, 则tan ,tan .t t c a c aαβ==--+12F PF βα∠=-,12222222tan tan 22tan tan()=1tan tan 1t t ct c c a c a F PF t b t b t c a tβαβαβα---+-∴∠=-===++-+-2222c c b b b t t ≤==⋅,当且仅当2b t t=,即t b =时取等号.122AB F F =,2a c ∴=,且满足222a b c =+,则2224c b c =+,223b c =,∴3=3c b , 则12tan F PF ∠的最大值为33,故12F PF ∠的最大值是6π.当P 为第二或第四象限的点时,12F PF ∠的取值范围是(0,]6π;当P 为x 轴负半轴上的点时,120F PF ∠=. 综上可知,12F PF ∠的取值范围为[0,]6π,故选:A. 【点睛】关键点睛:本题考查直线与椭圆中的根据向量间的线性关系求角的范围的问题,关键在于设出椭圆上的点的坐标,由向量间的线性关系表示所求的角的三角函数,再运用基本不等式求解范围. 【举一反三】1.(2020锦州一模)如图,椭圆的中心在坐标原点,焦点在x 轴上,1212,,,A A B B 为椭圆的顶点, 2F 为右焦点,延长12B F 与12A B 交于点P ,若12B PB ∠为钝角,则该椭圆的离心率的取值范围是( )A . 52,12⎛⎫⎪ ⎪⎝⎭B .520,2⎛⎫⎪ ⎪⎝⎭ C . 510,2⎛⎫⎪ ⎪⎝⎭ D . 51,12⎛⎫⎪ ⎪⎝⎭【答案】C【解析】如图所示, 12B PB ∠为22A B 与21F B 的夹角,设椭圆长半轴、短半轴、半焦距分别为, ,,a b c ,()()2221,,,A B a b F B c b =-=--,向量的夹角为钝角时, 222210,0A B F B ac b ⋅<∴<<,又22222,0b a c a ac c =-∴-->,两边除以2a 得210e e -->,即210e e +-<,解集155122e ---<<,又5101,02e e -<<∴<<,故选C . 2.已知点F 是双曲线22221(0,0)x y a b a b-=>>的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于,A B 两点,若ABE ∆是钝角三角形,则该双曲线的离心率e 的取值范围是( ) A . ()1,+∞ B . ()1,2 C . ()1,12+ D . ()2,+∞ 【答案】D类型五 利用向量数量积,求解解析几何中的数量关系问题【例6】如图,椭圆()222:124x y C a a +=>,圆222:4O x y a +=+,椭圆C 的左右焦点分别为12F F 、,过椭圆上一点P 和原点O 作直线l 交圆O 于,M N 两点,若126PF PF ⋅=,则PM PN ⋅的值为___________. 【答案】6【指点迷津】本题主要考查利用余弦定理、平面向量数量积公式及向量的几何运算、圆的性质及椭圆的定义,性质,属于难题.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系;同时,由于综合性较强,不能为了追求速度而忽视隐含条件的挖掘.本题解题的关键点是利用向量这一工具将问题转化后再利用椭圆定义及余弦定理解答.【举一反三】已知,A B 是以F 为焦点的抛物线24y x =上的两点,点A 在第一象限且3AF FB =,以AB 为直径的圆与准线的公共点为C ,则点C 的纵坐标为( ) A .1B .43C .3D .233【来源】四川省宜宾市2021届高三二模(理科)试题 【答案】D 【解析】根据抛物线的定义,可得,AA AF BB BF ''==, ∴2AA BB AD BF ''-==, ∴4AF BF BF +=, ∴060DAB ∠=,即直线AB 的倾斜角为60°,∴):1AB y x =-,与抛物线联立方程:)214y x y x⎧=-⎪⎨=⎪⎩解得:(1,,3A B ⎛ ⎝⎭设()1,C m -,因为C 为圆上的点,故AC BC ⊥,()44,23,,33AC m CB m ⎛⎫=--=-- ⎪ ⎪⎝⎭, ∴0AC BC ⋅=∴216403m --++=∴2403m +=∴3m =. 故选:D.三.强化训练一、选择题1.已知过点()0,1的直线与圆224x y +=相交于A 、B 两点,若OA OB OP +=,则点P 的轨迹方程是( ) A . 22112x y ⎛⎫+-= ⎪⎝⎭ B . ()2211x y +-= C . 22122x y ⎛⎫+-= ⎪⎝⎭ D . ()2212x y +-=【答案】B【解析】设()P x y ,,()()1122A x y B x y ,,,过点()0,1的直线为1y kx =+, 由OA OB OP +=得()()1212x y x x y y =++,,,直线1y kx =+代入224x y +=得()221230k x kx ++-= 则12221k x x k +=-+, 12221y y k+=+ 即221k x k =-+,221y k=+,所以()2211x y +-=,故选B 2.(2020烟台市届高三高考一模)已知、分别为双曲线的左、右焦点,为双曲线右支上一点且满足,若直线与双曲线的另一个交点为,则的面积为( ) A .12 B .C .24D .【答案】C 【解析】设,,∵、分别为双曲线的左、右焦点,∴,.∵,∴,∴,∴,即,∴, 解得,,设,则,在中可得,解得,∴, ∴的面积.故选:C .3.(2020·河南高考模拟(理))1F ,2F 是双曲线()222210,0x y a b a b-=>>的左右焦点,若双曲线上存在点P 满足212PF PF a ⋅=-,则双曲线离心率的取值范围为( )A .)3,⎡+∞⎣B .)2+∞,C .[)1+∞,D .(][)11-∞-+∞,,【答案】B【解析】由题,取点P 为右支上的点,设1212,,PF m PF n F PF θ==∠= 根据双曲线的定义知:2m n a -=在三角形1F PF 中,由余弦定理可得:2224cos 2m n c mnθ+-=又因为 212PF PF a ⋅=-可得2cos mn a θ=- 即222242m n c a +=- 又因为,m a c n c a ≥+≥-所以222222()()422c a c a c a c a ++-≤-⇒≥即222e e ≥∴≥4.(2020·山东高考模拟(理))已知直线l 过抛物线C :23y x =的焦点F ,交C 于A ,B 两点,交C 的准线于点P ,若AF FP =,则AB =( ) A .3 B .4 C .6 D .8【答案】B【解析】如下图所示:不妨设A 在第一象限,由抛物线C :23y x =可得3(,0)4F ,准线3:4DP x =-因为AF FP =,所以F 是AP 的中点则23AD CF ==.所以可得933(,)42A则3AF k =,所以直线AP 的方程为:33()4y x =-联立方程233()43y x y x⎧=-⎪⎨⎪=⎩ 整理得:2590216x x -+=所以1252x x +=,则1253||422AB x x p =++=+=.选B.5.(2020莆田市高三)已知直线过抛物线:的焦点,交于两点,交的准线于点.若,且,则()A .B .C .D . 【答案】B【解析】结合题意,绘制图形,可知,结合,可知,所以设,所以,解得,故设F 的坐标为,则A 的坐标为,代入抛物线方程,得到,解得,故选B. 抛物线方程,得到,解得,故选B.6.已知双曲线C :22221x y a b -=(0a >,0b >)的左、右焦点分别为1F 、2F ,过点1F 作圆Ω:2224a x y +=的切线l ,切点为M ,且直线l 与双曲线C 的一个交点N 满足122NF NF a -=,设O 为坐标原点,若12QN OF OM +=,则双曲线C 的渐近线方程为( )A . 32y x =±B . 3y x =±C . 62y x =± D . 6y x =± 【答案】C【解析】12ON PF OM +=,故1ON OM OM PF -=-,即1MN FM =,故点M 为线段1F N 的中点,连接OM ,则OM 为12NF F ∆的中位线,且1,2aOM OM F N =⊥,故22NF OM a ==,且2112,2F N F N NF NF a ⊥-=,故点N 在双曲线C 的右支上,13NF a ∴=,则在12Rt NF F ∆中,由勾股定理可得, 2221212NF NF F F +=,即()()22232a a c +=,解得221012c b a a==+,故62b a =,故双曲线C 的渐近线方程为62y x =±,故选C . 7.(2020柳州市高考模拟)已知双曲线的左、右焦点为、,双曲线上的点满足恒成立,则双曲线的离心率的取值范围是( ) A .B .C .D .【答案】C 【解析】∵是的边上的中线,∴.∵,∴,当且仅当三点共线时等号成立.又,,∴,∴,又,∴.故离心率的取值范围为.故选C.8.(2020葫芦岛市高三联考)已知,分别是双曲线的左、右焦点,过点的直线交双曲线的右支于,两点,且.过双曲线的右顶点作平行于双曲线的一条渐近线的直线,若直线交线段于点,且,则双曲线的离心率( )A.B.C.D.【答案】C【解析】因为,所以,.因为,所以是线段的中点.又直线过双曲线的右顶点且平行于双曲线的一条渐近线,,所以,化简可得,所以,所以,结合解得.本题选择C选项.9.(2020重庆市南开中学高三检测)如图,抛物线:,圆:,过焦点的直线从上至下依次交,于点,,,.若,为坐标原点,则()A .-2B .1C .4D .【答案】B【解析】由题可设A ,其中a>0,d <0.又焦点F(1,0), 所以|FD|=1+, 所以|AB|=|FA|-|OB|=,由题得.所以,所以1.故选:B10.(2020·辽宁高考模拟(理))已知双曲线22221x y a b-=(a >0,b >0)的离心率为2,F 1,F 2分别是双曲线的左、右焦点,点M (-a ,0),N (0,b ),点P 为线段MN 上的动点,当12PF PF ⋅取得最小值和最大值时,△PF 1F 2的面积分别为S 1,S 2,则21S S =( ) A .3 B .4 C .3 D .8 【答案】B【解析】由于双曲线的离心率为212c b a a ⎛⎫=+= ⎪⎝⎭,故3b a =所以直线MN 的方程为)3y x a =+,设()[]()33,0P t t a t a ∈-,焦点坐标为()()12,0,,0F c F c -,将12,,P F F 坐标代入12PF PF ⋅并化简得22313444t a a⎛⎫+- ⎪⎝⎭,由于[],0t a ∈-,故当34t a =-时取得最小值,此时344P y a a ⎛⎫=-+= ⎪⎝⎭;当0t =时取得最大值,此时P y =.故214S S ==.所以选B. 11.(2020·四川石室中学高考模拟)已知动直线l 与圆224x y +=相交于A ,B 两点,且满足2AB =,点C 为直线l 上一点,且满足52CB CA =,若M 为线段AB 的中点,O 为坐标原点,则OC OM ⋅的值为( ) A .3B .C .2D .-3【答案】A【解析】动直线l 与圆O :224x y +=相交于A ,B 两点,且满足2AB =,则OAB 为等边三角形,于是可设动直线l 为2y =+,根据题意可得()2,0B-,(A -,∵M 是线段AB的中点,∴3,22M ⎛⎫- ⎪ ⎪⎝⎭,设(),C x y ,∵52CB CA =,∴()()52,12x y x y ---=--, ∴())521252x x y y ⎧--=--⎪⎪⎨⎪-=⎪⎩,解得133x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴1,33C ⎛- ⎝⎭,∴1315,,3332222OC OM ⎛⎫⎛⎫⋅=-⋅-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故选A .12.(2020桂林高三质检)已知为椭圆上三个不同的点,为坐标原点,若,则的面积为( )A .B .C .D .【答案】C 【解析】设直线,与椭圆方程联立可得,,设,则,,代入得, ,于是 ,,故选C.13.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别是1F ,2F ,点P 是双曲线C 右支上异于顶点的点,点H 在直线x a =上,且满足1212PF PF PH PF PF λ⎛⎫ ⎪=+ ⎪⎝⎭,R λ∈.若125430HP HF HF →++=,则双曲线C 的离心率为( )A .3B .4C .5D .6【来源】四川省成都市蓉城名校联盟2021届高三第三次联考理科数学试题 【答案】C【解析】由1212PF PF PH PF PF λ⎛⎫⎪=+ ⎪⎝⎭,R λ∈,则点H 在12F PF ∠的角平分线上, 由点H 在直线x a =上,则H 是12PF F △的内心,由125430HP HF HF →++=,由奔驰定理(已知P 为△ABC 内一点,则有S △PBC ·PA +S △PAC ·PB +S △PAB ·PC =0.)知,1212::5:4:3HF F HF P HF P S S S =△△△,即1212111||:||:||5:4:3222F F r PF r PF r ⋅⋅⋅= 则1212::5:4:3F F PF PF =,设125F F λ=,14PF λ=,23PF λ=, 则125252F F c c λλ==⇒=,1222PF PF a a λλ-==⇒=,则5ce a ==.故选:C14.已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为F ,左、右顶点分别为,A B 点,P Q 是双曲线C 上关于x 轴对称的两点,且直线PQ 经过点F .如果M 是线段FQ 上靠近点Q 的三等分点,E 在y 轴的正半轴上,且E A M ,,三点共线,,,P E B 三点共线,则双曲线C 的离心率为() A .5B .C .D .6【来源】河南省安阳市2021届高三一模数学(文)试题 【答案】A【解析】设()()(),0,,0,,0F c A a B a --,点PQ 是双曲线C 上关于x 轴对称的两点,且直线PQ 经过点F ,可得PQ x ⊥轴,令x c =-可得22221c y a b-=,解得2by a =±可设22,,b b P c Q c a a ---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由M 是线段FQ 上靠近点Q 的三等分点,可得22,3b M c a ⎛⎫-- ⎪⎝⎭,由E 在y 轴的正半轴上,可设()0,E e , 由E A M ,,三点共线,可得AM EA k k =,即为223b ea a a c=-+① 由,,P E B 三点共线,可得EB BP k k =,即为2b e a ac a-=--,②由①②可得()123a c c a =+-, 即为3322c a c a -=+,即5c a =, 所以5ce a==. 故选:A.15.已知点F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,过点F 的直线l 与曲线C 的一条渐近线垂直,垂足为N ,与C 的另一条渐近线的交点为M ,若3MN FN =,则双曲线C 的离心率e 的值为( )A .3B .2C .2D 【来源】贵州省毕节市2021届高三三模数学(文)试题 【答案】A【解析】如图所示,3MN FN =,FN ON ⊥,(),0F c ,渐近线:bON y x a=,即0bx ay -=,焦点F 到渐近线ON 的距离22bc bcFN b ca b ===+,则3MN b =,而OF c =,故ON a =. Rt NOF 中,tan FN b NOF ON a ∠==,Rt NOM 中, 3tan MN bNOM ON a∠==. 由渐近线对称性可知2NOM NOF ∠=∠,故22tan tan tan 21tan NOFNOM NOF NOF∠∠=∠=-∠,故2231bb a a b a ⨯=⎛⎫- ⎪⎝⎭,化简得2213b a =, 所以222221231133a b b e a a +==+=+=.故选:A.16.(2020上海市金山区高三)正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,动点P 满足,若,其中m 、n ∈R ,则的最大值是________【答案】【解析】建立如图所示的直角坐标系,则A (﹣1,﹣1),B (1,﹣1),D (﹣1,1),P (,),所以(1,sinθ+1),(2,0),(0,2),又,所以,则,其几何意义为过点E (﹣3,﹣2)与点P (sinθ,cosθ)的直线的斜率,设直线方程为y +2k (x +3),点P 的轨迹方程为x 2+y 2=1,由直线与圆的位置关系有:,解得:,即的最大值是1,故答案为:117.(2020·辽宁高考模拟(理))已知圆22:(2)(1)1C x y -+-=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线,PA PB ,其中,A B 为切点,则•PA PB 的取值范围为__________. 【答案】12[,)5+∞ 【解析】PA?PB =PA PB cos θ=22222222(1)(12sin)(1)(1)32PC PC PC PC PC θ--=--=+-因为圆心到直线的距离5d =所以5PC ≥,25PC ≥,2223PC PC +-125≥,当25PC =时取最小值。
2018届透析高考数学23题对对碰【二轮精品】第一篇主题12 平面向量【主题考法】本热点考查形式为择题或填空题,主要考查平面向量的概念与向量的线性运算、平面向量基本定理与平面向量的数量积的概念、运算法则及性质,考查利用平面向量的知识计算向量的夹角、长度及最值或范围问题,考查分运算求解能力、数形结合思想,以向量为工具和载体与其他知识交汇命题的也是命题的一个方向,难度为基础题或中档题,分值为5分. 【主题考前回扣】 1.平面向量的两个重要定理(1)向量共线定理:向量a (a ≠0)与b 共线当且仅当存在唯一一个实数λ,使b =λa .(2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底. 2.平面向量的数量积(1)若a ,b 为非零向量,夹角为θ,则a·b =|a||b |cos θ. (2)设a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. 3.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. 4.利用数量积求长度(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|= x 2-x 1 2+ y 2-y 1 2. 5.利用数量积求夹角若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 6.三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,角A ,B ,C 所对的边长分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a2sin A . (2)O 为△ABC 的重心⇔OA →+OB →+OC →=0.(3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →.(4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0. 7.平面向量的三个锦囊(1)向量共线的充要条件:O 为平面上一点,则A ,B ,P 三点共线的充要条件是OP →=λ1OA →+λ2OB →(其中λ1+λ2=1).(2)三角形中线向量公式:若P 为△OAB 的边AB 的中点,则向量OP →与向量OA →,OB →的关系是OP →=12(OA →+OB →).(3)三角形重心坐标的求法:G 为△ABC 的重心⇔GA →+GB →+GC →=0⇔G ⎝⎛⎭⎪⎫x A +x B +x C 3,y A +y B +y C 3.【易错点提醒】1.要特别注意零向量带来的问题:0的模是0,方向任意,并不是没有方向;0与任意非零向量平行. 2.a·b >0是〈a ,b 〉为锐角的必要不充分条件;a·b <0是〈a ,b 〉为钝角的必要不充分条件.3.注意向量的数量积不满足消去率和结合律4.用向量夹角处理夹角问题时,要注意所求角与向量夹角的关系. 【主题考向】考向一 平面向量的概念与线性运算【解决法宝】1.对平面向量的线性运算问题,若已知向量的坐标或易建立坐标系,常用坐标法,否则利用三角形法则和平行四边形法则处理向量的线性运算,一般地,共起点的向量利用平行四边形法则,差用三角形法则.当M 是BC 的中点,AM =)(21AC AB +应作为公式记住. 2.对向量共线问题,要熟记平面向量共线的充要条件,①b a //(0≠a )⇔存在唯一实数λ,使得a b λ=;②已知),(11y x a =,),(22y x b =,则b a //⇔01221=-y x y x ,处理选择合适的方法.例1【西北师大附中2018届二模】已知向量()2,1a =, (),1b x =,若a b +与a b -共线,则实数x 的值是( )A. 2-B. 2C. 2±D. 4【分析】求出向量a b +与a b -的坐标,利用向量共线的充要条件的坐标形式列出关于x 的方程,即可求出x 的值.【解析】由()2,1a =, (),1b x =,则()2,2a b x +=+, ()2,0a b x -=-, 因为a b +与a b -共线,所以()()2022x x +⨯=-,解得2x =,故选B . 考向二 平面向量基本定理【解决法宝】平面向量的线性表示,常选择已知不共线的向量为基底,常从未知向量开始,逐步构造三角形,最终用已知向量表示出来,即直接法;也可用待定系数法,即所要表示的向量用基底表示出来,用两种不同逐步构造三角形的方法所要表示的向量表示出来,再利用平面向量基本定理即可列出关于参数的方程,解出参数,即可所要表示向量的表示形式,其中回路法是解题的常用方法,回路即向量从一点出发,通过一个的图形又回到起点的那个通路,构成一个回路.回路法的关键是利用条件,将我们关心的两个向量列成比例式,关联题设条件,最后将向量分解成共线形式,问题迎刃而解.例2 【陕西榆林市2018届一模】已知AB 与AC的夹角为90°,()2,1,,AB AC AM AB AC R λμλμ===+∈ ,且0AM BC = ,则λμ的值为 .【分析】建立直角坐标系,用坐标法及0AM BC = 列出关于μλ,的方程,解出μλ,的值,即可求出λμ的值.例3【山东省菏泽市2018届一模】已知在△ABC 中,D 为边BC 上的点,且BD=3DC ,点E 为AD 的中点,,则=_________.【答分析】通过构造三角形,利用向量加法的三角形法则逐步将未知向量用已知向量表示出来. 【解析】如图:.又,所以,所以.又因为与不共线,所以,,所以.考向三 平面向量的数量积【解决法宝】1.在解决与平面几何有关的数量积问题时,充分利用向量的线性运算,将所求向量用共同的基底表示出来,在利用平面向量的数量积数量积运算法则求解.2.计算向量b 在向量a 方向上的投影有两种思路:思路1,用|b |cos θ计算;思路2,利用∙a b|a |计算. 3.在计算向量数量积时,若一个向量在另一个向量上的投影已计算,可以利用向量数量积的几何意义计算. 4.利用向量数量积研究垂直问题时注意给出的形式:可以用定义式,也可以用坐标式.5.对于长度问题,可以用向量的模来处理,若向量a 是非坐标形式,用==∙22|a |a a a 求模长;若给出向量a 的坐标,则用|a |=2211x y +来求解.例4【安徽黄山市一高2018届一模】若非零向量,a b满足223a b = ,且()()32a b a b -⊥+ ,则a 与b 的夹角为( )A .4π B .3π C .2πD .34π【分析】利用向量垂直的充要条件,计算出a 与b 的数量积与a 、b模的关系,再利用向量夹角公式,即可求出向量a 与b的夹角.【解析】()()()()22223232=03203a b a b a b a b a b a b a b b -⊥+⇒-⋅+⇒--⋅=⇒⋅=r r r r r r r r r r r r r r r所以22223cos ,,.2422||||3b a b a b a b a b b π⋅<>===⇒<>=r r r r r r r r r r 选A. 考向四 向量与其他知识的交汇【解题法宝】对向量与其他知识结合的综合问题,有两种思路,思路1:需要将题中以向量形式给出的条件利用相关公式化为代数代数条件或几何条件,结合相关知识解题;思路2:将题中平行、垂直、角、长度等问题,运用向量的相关知识,转化为向量问题去处理.例5【山东省聊城市2018届一模】在ABC ∆中, BC 边上的中线AD 的长为2,点P 是ABC ∆所在平面上的任意一点,则PA PB PA PC ⋅+⋅的最小值为( ) A. 1 B. 2 C. -2 D. -1【分析】以BC 边的中点为原点,BC 上的中线为y 轴建立坐标系,设P(x,y),将PA PB PA PC ⋅+⋅用x,y 表示出来,再求出其范围.【解析】建立如图所示的平面直角坐标系,使得点D 在原点处,点A 在y 轴上,则()0,2A .设点P 的坐标为(),x y ,则()(),2,,PA x y PO x y =--=--,故()()22222PA PB PA PC PA PB PC PA PO x y y⋅+⋅=⋅+=⋅=+-()222122x y ⎡⎤=+--≥-⎣⎦,当且仅当0,1x y ==时等号成立. 所以PA PB PA PC ⋅+⋅的最小值为2-.选C . 【主题集训】1.【辽宁省沈阳市东北育才学校2018届三模】在ABC ∆中,若4AB AC AP += ,则CP=( )A. 3144AB AC -B. 3144AB AC -+C. 1344AB AC -D. 1344AB AC -+【答案】C【解析】由题意得4AB AC AP += =()4AB CP + ,解得CP =1344AB AC -,选C.2. 【河北省衡水中学2018届七调】已知向量()2,3a =, ()1,2b =- ,若ma b + 与2a b - 垂直,则实数m 的值为( )A. 65-B. 65C. 910D. 910- 【答案】B。
解析几何中的面积,共线,向量结合的问题(一)选择题(12*5=60分)1.【河北省廊坊市2018届模拟】若过抛物线214y x =焦点的直线与抛物线交于A B 、两点(不重合),则OA OB ⋅ (O 为坐标原点)的值是( ) A. 34 B. 34- C. 3 D. 3- 【答案】D2.【福建省厦门市2018届期末】ABC ∆中,23B π∠=,,A B 是双曲线E 的左、右焦点,点C 在E 上,若()0BA BC AC +⋅=,则E 的离心率为( )51- B. 31+ C.12 D. 12【答案】D 【解析】由题意得,点C 在双曲线的右支上.设AC 的中点为D ,由()0BA BC AC +⋅=得BD AC ⊥, 所以2BA BC c ==,由双曲线的定义得222CA CB a c a =+=+.在ABD ∆中,,3BD AD ABD π⊥∠=,∴sin 32ADa c AB cπ+==,即22a c c +=,整理得12c e a ==.选D . 3.【河南省安阳市2018届第一次模拟】已知12,F F 分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,P 为椭圆上一点,且()110PF OF OP ⋅+=(O 为坐标原点),若122PF PF =,则椭圆的离心率为()B.63- C. 5- 【答案】A 【解析】以1,OF OP 为邻边作平行四边形,根据向量加法的平行四边形法则,由()110PF OF OP ⋅+=知此平行四边形的对角线垂直,即此平行四边形为菱形,∴1OP OF =,∴12FPF ∆是直角三角形,即12PF PF ⊥,设2PF x =,则,∴c e a ===,故选A . 4.【黑龙江省牡丹江市2018届期末】椭圆22154x y +=的左焦点为F ,直线x a =与椭圆相交于点M ,N ,当FMN 的周长最大时,FMN 的面积是( )【答案】A5.【百校联盟2018届一月联考】根据天文物理学和数学原理,月球绕地球运行时的轨道是一个椭圆.地球位于椭圆的两个焦点位置中的一个,椭圆上的点距离地球最近的点称为近地点.已知月球的近地点约为36万千米,月球轨道上点P 与椭圆两焦点12,F F 构成的三角形12PF F 面积约为万千米)2,123F PF π∠=,则月球绕地球运行轨道的一个标准方程为( ) A. 222213614x y += B. 2221384036x y +=⨯ C. 2221484836x y +=⨯ D. 2221483624x y +=⨯ 【答案】B【解析】设月球绕地球运行轨道的一个标准方程为22221(0)x y a b a b+=>>.由椭圆的定义和余弦定理可得焦点三角形的面积22tan 6S b π===24036b =⨯.由于地球的近地点为36,所以36a c -=.∵()()2224036b a c a c a c =-=+-=⨯,∴40a c +=,∴38a =.故所求的标准方程为2221384036x y +=⨯.选B .。
省2018届高中毕业班数学学科备考关键问题指导系列之平面向量平面向量是高中数学的重要内容,也是高考考查的重要内容之一。
高考对这部分的考查常以选择、填空的形式出现,也常与解析几何交汇,题型较稳定,属中档题。
平面向量既有代数形式又有几何形式,作为工具的应用,它给平面解析几何奠定了必要的基础。
平面向量在高考中主要包含以下几个考点:1)在平面几何图形中主要考查向量加法的平行四边形法则及加减法的三角形法则;2)对共线向量定理的应用,主要考查应用向量的坐标运算求向量的模;3)应用平面向量基本定理进行向量的线性运算;4)应用向量的垂直与共线条件,求解参数;5)对平面向量数量积的运算、化简,向量平行与垂直的充要条件的应用,并以平面向量的数量积为工具,考查其综合应用性问题,常与三角函数、解析几何等相结合。
另外,空间向量是平面向量的延伸,本文主要研究平面向量,下面我将对学生存在的主要问题进行剖析,并提出相应的教学对策。
一、存在的问题及原因分析问题(一). 不能准确理解向量的相关概念概念不清主要表现在向量的概念,平行向量、单位向量的概念;向量夹角的概念等。
例1 向量(3,4)a =-,则与a 平行的单位向量的坐标为解析:因为2(3)5a =-=,所以所求的单位向量为134(3,4)(,)555aa ±=±-=±-,即与a 平行的单位向量的坐标为3434(,),(,)5555--。
评析:本题主要考查两个重要知识点,即平行向量和单位向量的概念,因混淆了“与a 同向的单位向量”和“与a 平行的单位向量”这两个不同的概念,出现错解:因为2(3)5a =-=故所求向量为134(3,4)(,)555a a =-=-,在复习时,只有深刻理解平行向量和单位向量的概念,才能达到正确解题的目的。
例2 在边长为1的正三角形ABC 中,AB BC BC CA CA AB ⋅+⋅+⋅= 解析:AB BC BC CA CA AB ⋅+⋅+⋅= cos120cos120cos120AB BC BC CA CA AB =︒+︒+︒11132222=---=- 评析:本题主要考查向量夹角的定义及数量积的计算公式,学生易错解如下:AB BC BC CA CA AB ⋅+⋅+⋅=cos 60cos 60cos 60AB BC BC CA CA AB =++11132222=++=.这是由于对两向量夹角的概念理解不到位造成的,所以教学时必须强调两向量夹角的前提是其起点要重合。
【2018年高考考纲解读】 高考对本内容的考查主要有:平面向量这部分内容在高考中的要求大部分都为B 级,只有平面向量的应用为A 级要求,平面向量的数量积为C 级要求,应特别重视.试题类型可能是填空题,同时在解答题中经常与三角函数综合考查,构成中档题. 【重点、难点剖析】 1.向量的概念(1)零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0. (2)长度等于1个单位长度的向量叫单位向量,a 的单位向量为±a|a |.(3)方向相同或相反的向量叫共线向量(平行向量).(4)如果直线l 的斜率为k ,则a =(1,k )是直线l 的一个方向向量. (5)|b |cos 〈a ,b 〉叫做b 在向量a 方向上的投影. 2.两非零向量平行、垂直的充要条件 设a =(x 1,y 1),b =(x 2,y 2),(1)若a ∥b ⇔a =λb (λ≠0);a ∥b ⇔x 1y 2-x 2y 1=0. (2)若a ⊥b ⇔a ·b =0;a ⊥b ⇔x 1x 2+y 1y 2=0. 3.平面向量的性质(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |A B →|=x 2-x 12+y 2-y 12.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.4.当向量以几何图形的形式出现时,要把这个几何图形中的一个向量用其余的向量线性表示,就要根据向量加减法的法则进行,特别是减法法则很容易使用错误,向量MN →=ON →-OM →(其中O 为我们所需要的任何一个点),这个法则就是终点向量减去起点向量.5.根据平行四边形法则,对于非零向量a ,b ,当|a +b |=|a -b |时,平行四边形的两条对角线长度相等,此时平行四边形是矩形,条件|a +b |=|a -b |等价于向量a ,b 互相垂直,反之也成立.6.两个向量夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不单纯就是其数量积小于零,还要求不能反向共线. 【题型示例】考点1、平面向量的线性运算【例1】【2017山东,文11】已知向量a =(2,6),b =(1,)λ- ,若a ||b ,则λ= . 【答案】-3【解析】由a ||b 可得162 3.λλ-⨯=⇒=-【变式探究】【2016高考新课标2文数】已知向量(1,)(3,2)a m a =-,=,且()a b b ⊥+,则m =( ) (A )-8 (B )-6 (C )6 (D )8 【答案】D【解析】向量a b (4,m 2)+=-,由(a b)b +⊥得43(m 2)(2)0⨯+-⨯-=,解得m 8=,故选D. 【举一反三】(2015·新课标全国Ⅰ,7)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC → B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →【变式探究】(2015·北京,13)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.解析 MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →, ∴x =12,y =-16.答案 12 -16【变式探究】(1)(2014·四川)平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .2(2)(2014·湖北)设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________. 【命题意图】(1)本题主要考查向量的运算、向量的夹角公式等基础知识,考查考生的计算能力、分析问题的能力和转化能力.(2)本题主要考查向量的数量积等知识,意在考查考生对基础知识的理解和运用能力. 【答案】(1)D (2)±3【感悟提升】平面向量的运算主要包括向量运算的几何意义、向量的坐标运算以及数量积的运算律的应用等. (1)已知条件中涉及向量运算的几何意义应数形结合,利用平行四边形、三角形法则求解. (2)已知条件中涉及向量的坐标运算,需建立坐标系,用坐标运算公式求解. (3)解决平面向量问题要灵活运用向量平行与垂直的充要条件列方程.(4)正确理解并掌握向量的概念及运算;强化“坐标化”的解题意识;注重数形结合思想、方程思想与转化思想的应用.注意:在利用数量积的定义计算时,要善于将相关向量分解为图形中的已知向量进行计算.【变式探究】(2013·江苏卷)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.【答案】12【规律方法】在一般向量的线性运算中,只要把其中的向量当作字母,其运算类似于代数中合并同类项的运算,在计算时可以进行类比.本例中的第(1)题就是把向量DE →用 AB →,AC →表示出来,再与题中已知向量关系式进行对比,得出相等关系式,可求相应的系数.考点2、平面向量的数量积【例2】【2017北京,文12】已知点P 在圆22=1x y +上,点A 的坐标为(-2,0),O 为原点,则AO AP ⋅的最大值为_________. 【答案】6 【解析】所以最大值是6.【变式探究】【2016高考江苏卷】如图,在ABC ∆中,D 是BC 的中点,,E F 是,A D 上的两个三等分点,4BC CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅ 的值是 ▲ .【答案】78【解析】因为222211436=42244AD BC FD BC BA CA BC AD BC AD --⋅=-⋅--==()(),2211114123234FD BCBF CF BC AD BC AD -⋅=-⋅--==-()(),因此22513,82FD BC ==,2222114167.22448ED BC FD BC BE CE BC ED BC ED --⋅=-⋅--===()() 【举一反三】(2015·山东,4)已知菱形ABCD 的边长为a ,∠ABC =60° ,则BD →·CD →=( ) A .-32a 2 B .-34a 2 C.34a 2 D.32a 2解析 如图所示,由题意,得BC =a ,CD =a ,∠BCD =120°.BD 2=BC 2+CD 2-2BC ·CD ·cos 120°=a 2+a 2-2a ·a ×⎝ ⎛⎭⎪⎫-12=3a 2,∴BD =3a .∴BD →·CD →=|BD →|·|CD →|cos 30°= 3a 2×32=32a 2. 答案 D【变式探究】(2015·安徽,8)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1D .(4a +b )⊥BC →【规律方法】求数量积的最值,一般要先利用向量的线性运算,尽可能将所求向量转化为长度和夹角已知的向量,利用向量的数量积运算建立目标函数,利用函数知识求解最值.【变式探究】(2015·四川,7)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →=( )A .20 B. 15C .9D .6题型三、平面向量基本定理及其应用例3.【2017江苏,16】 已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【答案】(1)5π6x =(2)0x =时, ()f x 取到最大值3; 5π6x =时, ()f x 取到最小值-. 【解析】(1)因为()cos ,sin a x x =, (3,b =,a ∥b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan 3x =-. 又[]0,πx ∈,所以5π6x =.(2)()()(πcos ,sin 3,3cos 6f x a b x x x x x ⎛⎫=⋅=⋅=-=+⎪⎝⎭. 因为[]0,πx ∈,所以ππ7π,666x ⎡⎤+∈⎢⎥⎣⎦,从而π1cos 6x ⎛⎫-≤+≤ ⎪⎝⎭. 于是,当ππ66x +=,即0x =时, ()f x 取到最大值3;当π6x π+=,即5π6x =时, ()f x 取到最小值-【变式探究】【2016年高考四川文数】在平面内,定点A ,B ,C ,D 满足DA =DB =DC ,DA ⋅DB =DB ⋅DC =DC ⋅DA =-2,动点P ,M 满足AP =1,PM =MC ,则2BM 的最大值是( )(A )434 (B )494(C )374+ (D )374+【答案】B【举一反三】(2015·湖南,8)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为( ) A .6 B .7 C .8 D .9解析 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故PA →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以PA →+PB →+PC →=(x -6,y ).故|PA →+PB →+PC →|=-12x +37,∴x =-1时有最大值49=7,故选B. 答案 B【变式探究】(2014·安徽,10)在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满足OQ →=2(a +b ).曲线C ={P |OP →=a cos θ+b cos θ,0≤θ<2π},区域Ω={P |0<r ≤|PQ →|≤R ,r <R }.若C ∩Ω为两段分离的曲线,则( )A .1<r <R <3B .1<r <3≤RC .r ≤1<R <3D .1<r <3<R解析 由已知可设OA →=a =(1,0),OB →=b =(0,1),P (x ,y ),则OQ →=(2,2),曲线C ={P |OP →=(cos θ,sin θ),0≤θ<2π},即C :x 2+y 2=1,区域Ω={P |0<r ≤|PQ →|≤R ,r <R }表示圆P 1:(x -2)2+(y -2)2=r 2与圆P 2:(x -2)2+(y -2)2=R 2所形成的圆环,如图所示,要使C ∩Ω为两段分离的曲线,只有1<r <R <3.答案 A【举一反三】(2015·江苏,6)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.答案 -3。
解析几何中的面积,共线,向量结合的问题圆锥曲线是解析几何部分的核心内容,以计算量大、方法灵活、技巧性强著称,既是中学数学的重点、难点,也是历年高考的热点,常以压轴题的形式出现.而直线与圆锥曲线的位置关系,集中交汇了解析几何中直线与圆锥曲线的内容, 特别是解析几何中的面积,共线,向量结合的问题是圆锥曲线综合题,解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的.综合题中常常离不开直线与圆锥曲线的位置,因此,要树立将直线与圆锥曲线方程联立,应用判别式、韦达定理的意识.解析几何应用问题的解题关键是建立适当的坐标系,合理建立曲线模型,然后转化为相应的代数问题作出定量或定性的分析与判断.常用的方法:数形结合法,以形助数,用数定形. 在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份――对称性、利用到角公式)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等. 1解析几何中的面积问题解析几何中某些问题,可以通过三角形面积的等量关系去解.研究方法:先选定一个易于计算面积的几何图形,再用不同方法计算同一图形面积,得到一个面积等式;或是用一图形面积等于其它图形面积的和或差.在教学时,适当讲解此法,是开拓学生思路,提高数学教学质量的有效手段之一.例1【西南名校联盟高三2018年元月考试】已知抛物线2:8C y x =上的两个动点()11,A x y , ()22,B x y 的横坐标12x x ≠,线段AB 的中点坐标为()2,M m ,直线:6l y x =-与线段AB 的垂直平分线相交于点Q .(1)求点Q 的坐标;(2)求AQB ∆的面积的最大值.思路分析:(1)根据题设条件可求出线段AB 的斜率,进而求出线段AB 的垂直平分线方程,联立直线:6l y x =-与线段AB 的垂直平分线方程,即可求出点Q 的坐标;(2)联立直线AB 与抛物线C 的方程,结合韦达定理及弦长公式求出线段AB 的长,再求出点Q 到直线AB 的距离,即可求出AQB S 的表达式,再构造新函数,即可求出最大值.设()2016m t =∈,, ()232561625616h t t t t =⨯+--, 则()2256323h t t t =--' ()()31616t t =-++, 令()0h t '=得16t =- (舍去), 163t =,由于1603t <<时, ()0h t '>, ()h t 单调递增,16163t ≤<时, ()0h t '≤, ()h t 单调递减,∴当2163m t ==时, ()h t 取得最大值,即AQB 的面积取得最大值,故AQB = 点评:圆锥曲线中的最值与范围问题是高考中的常考题型,常与不等式、函数等知识结合在一起,涉及的知识点较多、难度较大.解题时可先建立关于某个参数的目标函数,再求这个函数的最值,常用的方法有以下几个:①利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系; ②利用基本不等式求出参数的取值范围;③利用函数的值域的求法,确定参数的取值范围2解析几何中的共线问题 解析几何中的共线问题的处理方法,常利用向量共线定理来证,即先设出向量的坐标,利用题中给出的关系,证明坐标交叉积的差等于零即可. 正确理解向量共线与解析几何中平行、三点共线等的关系,把有关解析几何的问题转化为向量问题.三点共线是解析几何中常见问题之一,根据向量共线的充要条件,只要在三点中任意两点的向量间存在倍数关系,向量法解决共线问题更简单明了.例2已知点C 的坐标为()1,0,,A B 是抛物线2y x =上不同于原点O 的相异的两个动点,且0OA OB = . (1)求证: 点,,A C B 共线;(2)若()AQ QB R λλ=∈ ,当0OQ AB = 时,求动点Q 的轨迹方程.思路分析:(1)要证三点,,A B C 共线,只要证AC BC 即可,设()()()2211221212,,,,,0,0A t t B t t t t t t ≠≠≠ ,由0OA OB = 可得121t t =-,代入两向量平行的条件即可证AC BC ;(2) 设动点(),Q x y ,则()(),,1,OQ x y CQ x y ==- ,由OQ CQ ⊥ 即0OQ CQ =列出方程即可.点评:本题考查向量的坐标运算与数量积、抛物线的标准方程与几何性质与轨迹方程的求法,属中档题;求轨迹方程有直接法、相关点法、定义法、参数法等多种方法,当题目给出等量关系时,可用直接法,本题就是用直接法求解的.3解析几何中的与向量结合问题平面向量是高中数学新增内容,它具有代数形式和几何形式的双重身份,是数形结合的典范,能与中学数学内容的许多主干知识综合,形成知识交汇点.基于高考数学重视能力立意,在知识网络的交汇点上设计试题,平面向量与解析几何融合交汇的试题便应运而生,试题以解析几何为载体,以探讨直线和圆锥曲线的位置关系为切入点,以向量为工具,着重考查解析几何中的基本的数学思想方法和综合解题能力.由于向量既能体现"形"的直观位置特征,又具有"数"的良好运算性质,是数形结合与转换的桥梁和纽带.而解析几何也具有数形结合与转换的特征,所以在向量与解析几何知识的交汇处设计试题,已逐渐成为高考命题的一个新的亮点.例3【西藏拉萨市2018届第一次模拟】已知椭圆22221(0)x y a b a b+=>>点(.(1)求椭圆的标准方程;(2)若OAB ∆的顶点A 、B 在椭圆上, OA 所在的直线斜率为1k , OB 所在的直线斜率为2k ,若2122b k k a⋅=-,求OA OB ⋅ 的最大值. 思路分析:(1)根据椭圆长轴与短轴的关系列出一个方程,再根据椭圆过已知点列出一个方程,解方程组求出a,b,写出椭圆的标准方程;(2)由于OA 和OB 的斜率乘积为定值,因此OA 的斜率为1k ,则OB 的斜率可表示为112k -,分别把射线OA 、OB 的方程与椭圆的方程联立,求出A 、B 两点的横坐标,得出两点的横坐标的积,根据OA 、OB 方程得出A 、B 两点的纵坐标的积,从表示出数量积OA OB ⋅ ,再利用基本不等式求出最值.点评:求椭圆的标准方程一般采用待定系数法,列方程组解方程求出a,b;(2) 本题为斜率乘积为22b a-,是一种常见的典型考题,根据OA 和OB 的斜率乘积为定值,可以减元,用OA 的斜率表示OB 的斜率,分别把射线OA 、OB 的方程与椭圆的方程联立,求出A 、B 两点的横坐标,根据OA 、OB 方程得出A 、B 两点的纵坐标,从表示出数量积OA OB ⋅ ,再利用基本不等式求出最值.直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地渗透对函数方程思想和数形结合思想的考查,一直是高考考查的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考查数学思想方法的热点题型.涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.涉及到向量,就用点的坐标来表示.综合以上三类问题,平面解析几何中计算多边形的面积的方法是把多边形分为若干三角形.计算出每一个三角形的面积而后加起来.有规则的图形和不规则的图形,常将问题转化到三角形、圆、特殊四边形中,应用相关面积公式求解,有时要综合考虑问题,将不规则图形转化到规则图形中求解. 研究圆锥曲线中三角形的面积时通常采用分割的方法把要求面积的三角形分成两个同底的三角形,根据韦达定理求12y y -.解析几何中平行、共线问题,求解此类问题的关键是:正确理解向量共线与解析几何中平行、三点共线等的关系,把有关向量的问题转化为解析几何问题.利用向量夹角的坐标形式解题,求解这类问题的关键是:先把向量用坐标表示,再用解析几何知识结合向量的夹角公式使问题获解;也可以把两向量夹角问题转化为两直线所成角的问题,用数形结合方法使问题获解.向量数量积,求此类问题的关键是:利用向量数量积的坐标表示,将向量形式转化为代数形式.垂直向量,求解此类问题的关键是利用向量垂直的充要条件:“0=⋅⇔⊥”,促使问题转化,然后利用数形结合解决问题.。
解析几何中的面积,共线,向量结合的问题(一)选择题(12*5=60分)1.【河北省廊坊市2018届模拟】若过抛物线214y x =焦点的直线与抛物线交于A B 、两点(不重合),则OA OB ⋅ (O 为坐标原点)的值是( )A.34 B. 34- C. 3 D. 3- 【答案】D2.【福建省厦门市2018届期末】ABC ∆中, 23B π∠=, ,A B 是双曲线E 的左、右焦点,点C 在E 上,若()0BA BC AC +⋅=,则E 的离心率为( )51- B. 31+ C. 12 D. 12【答案】D【解析】由题意得,点C 在双曲线的右支上.设AC 的中点为D ,由()0BA BC AC +⋅=得BD AC ⊥, 所以2BA BC c ==,由双曲线的定义得222CA CB a c a =+=+.在ABD ∆中,,3BD AD ABD π⊥∠=,∴sin32AD a cABcπ+==,即22a c c +=,整理得12c e a ==.选D . 3.【河南省安阳市2018届第一次模拟】已知12,F F 分别是椭圆22221(0)x y a b a b+=>>的左、右焦点, P 为椭圆上一点,且()110PF OF OP ⋅+=(O 为坐标原点),若122PF PF =,则椭圆的离心率为( )B. 63-C. 5- 【答案】A【解析】以1,OF OP 为邻边作平行四边形,根据向量加法的平行四边形法则,由()110PFOF OP ⋅+=知此平行四边形的对角线垂直,即此平行四边形为菱形,∴1OP OF =,∴12FPF ∆是直角三角形,即12PF PF ⊥,设2PF x =,则,∴c e a ===,故选A . 4.【黑龙江省牡丹江市2018届期末】椭圆22154x y +=的左焦点为F ,直线x a =与椭圆相交于点M , N ,当FMN 的周长最大时, FMN 的面积是( )【答案】A【解析】设右焦点为F ',连接,MF NF '',因为||MF NF MN ''+≥,所以当直线x a =过右焦点时,FMN 的周长最大.由椭圆定义知FMN 周长的最大值为4a =1c ==,把x 1=代入椭圆方程得y =,所以此时FMN 的面积12225s =⨯⨯=,故选A. 5.【百校联盟2018届一月联考】根据天文物理学和数学原理,月球绕地球运行时的轨道是一个椭圆.地球位于椭圆的两个焦点位置中的一个,椭圆上的点距离地球最近的点称为近地点.已知月球的近地点约为36万千米,月球轨道上点P 与椭圆两焦点12,F F 构成的三角形12PF F 面积约为万千米)2,123F PF π∠=,则月球绕地球运行轨道的一个标准方程为( )A. 222213614x y +=B. 2221384036x y +=⨯ C. 2221484836x y +=⨯ D. 2221483624x y +=⨯ 【答案】B2221384036x y +=⨯.选B .6.【北京市朝阳区2018届期末】阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,A B 间的距离为2,动点P 与A , B ,,P A B 不共线时, PAB ∆面积的最大值是A. 3 D. 3【答案】A7.【湖南省长沙市2018届模拟卷一】已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在抛物线C 上,且AK AF =,则AFK 的面积为 ( )A. 4B. 6C. 8D. 12 【答案】C【解析】过A 作准线2x =-的垂线,垂足为E ,则2A E A FA K ==,则在Rt AEK ∆,有45AKE ∠=︒,从45AKF ∠=︒.在AKF ∆中,sin sin AF AK AKF AFK ==∠∠,从而sin 1AFK ∠=,又()0,AFK π∠∈,从而2AFK π∠=,故4AF p ==, 14482AFK S ∆=⨯⨯=,选C.8.【江西省K12联盟2018届质检】已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,存在过原点的直线交双曲线左右两支分别于A 、B 两点,满足220F A F B ⋅=且222FA F B a ⋅=,则该双曲线的离心率是( )A.32 B. 23【答案】B9.【江西省2018届1月联考】已知双曲线C : 22221x y a b-= (0,0)a b >>的离心率为2,左右焦点分别为1F , 2F ,点A 在双曲线C 上,若12AF F ∆的周长为10a ,则12AF F ∆的面积为( )A. 22C. 230a D. 215a 【答案】B【解析】点A 在双曲线C 上,不妨设点A 在双曲线C 右支上,所以122AF AF a -=,又12AF F ∆的周长为1212122c 10?AF AF F F AF AF a ++=++=.得1210?2c AF AF a +=-.解得126,4AF a c AF a c =-=-.双曲线C 的离心率为2,所以2ca=,得2c a =.所以122,AF c AF c ==. 所以112AF F F =,所以12AFF ∆为等腰三角形.边2AF 上的高为==. 12AF F ∆的面积为2221151151522c c AF c ===.故选B. 10. 【吉林省普通中学2018届第二次调研联考】 已知F 为抛物线2y x =的焦点,点,A B 在该抛物线上且位于x 轴的两侧,而且·6OAOB =(O 为坐标原点),若ABO ∆与AFO ∆的面积分别为1S 和2S ,则124S S +最小值是6 C. 132 D. 【答案】B11.【河南省郑州市2018届第一次质检】设抛物线24y x =的焦点为F ,过点)M的直线与抛物线相交于A , B 两点,与抛物线的准线相交于C , 3BF =,则BC F 与ACF 的面积之比BCF ACFSS=( )A.34 B. 45 C. 56 D. 67【答案】D【解析】画出抛物线24y x =的图象如图所示.由抛物线方程24y x =,得焦点F 的坐标为(1,0),准线方程为x =−1.过点,A B 作准线的垂线,垂足分别为,E N .由(2{4y k x y x==消去y 整理得()22224+5=0k x x k -+,设()()1122,,,A x y B x y ,则125x x =.由条件知213BF BN x ==+=,∴22x =.∴152x =,∴1712AE x =+=.∵在△AEC 中,BN ∥AE ,∴67BCF ACF BC BN S S AC AE ∆∆===.选D .12.【安徽省六安市2018届第五次月考】已知12,F F 是椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 在椭圆上,且122F PF π∠=,线段1PF 与y 轴的交点为Q , O 为坐标原点,若1FOQ ∆与四边形2OF PQ 的面积之比为1:2,则该椭圆的离心率等于( )A. 231D. 4-【答案】C(二)填空题(4*5=20分)13. 【四川省南充市2018届期中】已知F是曲线22C18yx+=:的右焦点,P是C的左支上一点.A(0, 当APF周长最小时,该三角形的面积为__________.【答案】14.【河南省2018届12月联考】一条斜率为2的直线过抛物线22(0)y px p=>的焦点F且与抛物线交于A,B两点,A,B在y轴上的射影分别为D,C,若梯形ABCD的面积为则p=__________.【答案】【解析】设()()1122,,,A x yB x y,抛物线焦点,02pF⎛⎫⎪⎝⎭,直线AB的方程为22py x⎛⎫=-⎪⎝⎭,联立22{22py xy px⎛⎫=-⎪⎝⎭=,得22460x px p-+=,所以212123+,,24p px x x x=⋅=则12-,x x p==所以12-,y y=所以()()121211+22ABCDS AD BC CD x x y y=+⋅=⋅-==梯形所以p=15.【广东省中山一中2018届第五次统测】已知椭圆方程C为221168x y+=,1F、2F为椭圆上的两个焦点,点P在C上且123F PFπ∠=.则三角形12F PF的面积为_________.【答案】3;【解析】由221168x y +=可得, 2222216,8,8a b c a b ==∴=-=,设1122,PF t PF t ==,由椭圆的定义可得128t t +=, ① ,由余弦定理得2212122cos6032t t t t +-⋅=, ② 由 ①平方-②可得12323t t =,12132836023PF F S sin ∆∴=⨯⨯=. 16.【河南省郑州市2018届第一次质检】已知双曲线2222:1x y C a b-=的右焦点为F ,过点F 向双曲线的一条渐近线引垂线,垂足为M ,交另一条渐近线于N ,若73FM FN =,则双曲线的渐近线方程为________.【答案】2y x =±(三)解答题(4*10=40分)17.【湖南师范大学附属中学2018届11月月考】已知椭圆C : 22221(0)x y a b a b+=>>的离心率为12,以椭圆长、短轴四个端点为顶点为四边形的面积为(Ⅰ)求椭圆C 的方程;(Ⅱ)如图所示,记椭圆的左、右顶点分别为A 、B ,当动点M 在定直线4x =上运动时,直线AM BM 、分别交椭圆于两点P 、Q ,求四边形APBQ 面积的最大值.18. 【福建省福州市2018届期中】已知椭圆G : 22221x y a b +=的右焦点为F ,点P ⎛- ⎝⎭在椭圆上,且PF 与y 轴交点恰为PF 中点.(1)求椭圆G 的方程;(2)过F 作两条互相垂直的直线,分别交椭圆G 于点,A C 和,B D .求四边形ABCD 的面积的最小值.19. 【河南省中原名校2018届第五次联考】已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为12,F F ,若椭圆上一点P 满足124PF PF +=,且椭圆C 过点31,2⎛⎫-- ⎪⎝⎭,过点()4,0R 的直线l 与椭圆C 交于两点,E F .(1)求椭圆C 的方程;(2)若点E '是点E 在x 轴上的垂足,延长EE '交椭圆C 于N ,求证: 2,N F F 三点共线.20. 【湖南师范大学附属中学2018届月考(五)】如图,已知曲线21:4C y x =,曲线22222:1(0)x y C a b a b+=>>的左右焦点是1F , 2F ,且2F 就是1C 的焦点,点P 是1C 与2C 的在第一象限内的公共点且253PF =,过2F 的直线l 分别与曲线1C 、2C 交于点,A B 和,M N .(Ⅰ)求点P 的坐标及2C 的方程; (Ⅱ)若1F AB ∆与1F MN ∆面积分别是1S 、2S ,求12S S 的取值范围.1243AB S S MN ==,综上有12S S 的取值范围是4,3⎡⎫+∞⎪⎢⎣⎭.。