高考复习中解析几何题型分析及解法梳理
- 格式:docx
- 大小:36.48 KB
- 文档页数:1
高考数学中的立体几何解析题目攻略高考是学生人生中最为重要的一次考试,而数学作为高考科目中的一项重要内容,也让很多学生感到压力重重。
其中,立体几何解析题目更是高考数学难题中的难题,给很多学生带来了极大的挑战和困扰。
本文将给大家详细介绍高考数学中的立体几何解析题目攻略,帮助广大考生更轻松地应对高考数学。
一、了解题目类型首先,我们需要了解高考数学中的立体几何解析题目类型。
这些题目主要涉及到平面与空间直角坐标系、点、直线、平面、曲线、曲面等几何概念。
具体来说,立体几何解析题目分为直线方程和平面方程两类。
在解答这些题目时,考生需要掌握向量叉乘,点到直线距离、点到平面距离等相关知识点。
二、理清思路其次,为了更好地解答立体几何解析题目,考生需要在解题过程中理清思路。
一般来说,解析几何题目的解法多样,但也有一定的规律可循。
在处理立体几何题目时,考生需要注意以下几点:1. 将题目所给定的条件转化为方程,根据坐标系中的几何意义,将条件表达为相应的几何关系。
2. 根据条件以及题目所求,确定所需坐标变量,代入方程求解。
3. 合理应用向量叉乘、点到直线、点到平面距离等相关知识点,加深理解,提高效率。
三、多练习案例掌握解题思路之后,考生需要多练习案例锻炼解题技巧。
练习过程中,可以参照老师给出的案例,从简单到复杂逐步提升难度,掌握不同类型题目解答技巧。
同时,平时也要多积累题目解答经验,及时总结和复习已解题目,巩固所学知识点。
四、关注考试趋势最后,考生还需要关注高考数学趋势,抓住重点。
通过分析历年高考数学题目,有助于考生了解题目难易程度、考点关注程度、解答技巧等方面的趋势,从而更加有效地备考。
此外,还可以了解高考数学命题的规律,例如命题者偏爱的几何图形、习惯使用的解题方法等等,对于应对高考数学考试会极为有利。
总之,掌握解题思路、多练习案例、关注考试趋势,是解决高考数学立体几何解析题目的有效方法。
各位考生在复习高考数学立体几何解析题时,希望能够认真备考,保持良好的心态,以稳定和高效的态度面对高考,共创美好未来。
相信很多同学都知道,解析几何其实并不难,解题思路也相对简单,但是它却折磨着大多数的考生们!
为什么?因为它的计算量实在是太大了,想找个简单快捷的方法去做都是很不容易的一件事。
在高考数学中,解析几何属于必考题,而且其所占的分值和函数也相差不大,都是在3 0分左右,但是它并没有像函数压轴题一样,让人看了就想放弃。
但是只要找对方法,你会发现其实解析几何也没有想象中的那么折磨人,而且出乎意料的简单。
今天,学长就为同学们整理了高考数学中解析几何的热点常考题和解题方法的汇总,希望同学们好好把握,在高考中取得一个更好的成绩!
需要电子打印版的同学可以私信发送,解析几何,就可以打印出来了!用起来超方便!!!。
解析几何好题点评例1:点P 为椭圆C :)0(12222>>=+b a bx a y 上一点,A ,B 为圆O :222b y x =+上的两个不同点,O 为原点,直线AB 交x,y 轴于M ,N 两点,且0,0=⋅=⋅OB PB OA PA(1)若椭圆准线为325±=y 1625||||22=ON OM ,求椭圆C 的方程; (2)椭圆C 上是否存在满足0=⋅PB PA 的点?若存在,求出b a ,须满足的条件;若不存在,请说明理由。
分析:解析几何结合平面向量的题型是近几年高考的一个热点,而探索性问题又是一个难点。
此题条件多且不很直观,从已知条件分析,准线325±=y 得到3252=c a ,再一个关键是求出M ,N 点的坐标,就须求出直线AB 的方程。
(1)设),(),,(),,(221100y x B y x A y x P ,则2222222121,b y x b y x =+=+ 由,0),(),(01210121110101=-+-=⋅--=⋅y y y x x x y x y y x x 得21010b y y x x =+,同理22020b y y x x =+, ∴A ,B 满足200b y y x x =+∴直线AB 的方程是200b y y x x =+,),0(),0,(0202y b N x b M ∴162522=+得:222242022022516,1625a b b a b y b x a =∴==+ 又3252=c a ,化为2222224925)2516(25)(259a a a b a a ⨯=-=-= 16,2522==∴b a ,11625:22=+∴x y C (2)∵,0,0=⋅=⋅∴PA ,PB 是圆O 的切线 若,0=⋅PB PA 则PA ⊥PB ,此时四边形PAOB 是正方形2220222,2||b y x b =+∴=∴,又1220220=+bxa y ,解得:⎪⎪⎩⎪⎪⎨⎧-=--=22220222220)2(b a b a y b a b a b x ∵,b a b a 时当2,0≥∴>>P 点存在;,b a b 时2<<P 点不存在。
高中数学平面解析几何的常见题型及解答方法在高中数学学习中,平面解析几何是一个重要的内容,也是考试中的重点。
平面解析几何主要研究平面上的点、直线、圆等几何图形的性质和关系,通过坐标系和代数方法进行分析和解决问题。
下面我们将介绍一些常见的平面解析几何题型及解答方法,希望能给同学们提供一些帮助。
一、直线方程的求解直线方程的求解是平面解析几何中的基础内容。
常见的题型有已知直线上的两点,求直线方程;已知直线的斜率和一点,求直线方程等。
这里我们以已知直线上的两点,求直线方程为例进行说明。
例如,已知直线上的两点为A(2,3)和B(4,5),求直线方程。
解题思路:设直线的方程为y = kx + b,其中k为斜率,b为截距。
根据已知条件,我们可以列出方程组:3 = 2k + b5 = 4k + b解方程组,得到k和b的值,从而得到直线方程。
解题步骤:1.将方程组改写为矩阵形式:| 2 1 | | k | | 3 || 4 1 | | b | = | 5 |2.利用矩阵的逆运算,求出k和b的值。
3.将k和b的值代入直线方程y = kx + b,即可得到直线方程。
通过这个例子,我们可以看到求解直线方程的方法是通过已知条件列方程组,然后通过矩阵运算求解出未知数的值,最后将值代入直线方程得到结果。
二、直线与圆的位置关系直线与圆的位置关系是平面解析几何中的一个重要内容。
常见的题型有直线与圆的切线问题、直线与圆的交点问题等。
这里我们以直线与圆的切线问题为例进行说明。
例如,已知圆的方程为x^2 + y^2 = 4,直线的方程为y = 2x - 1,求直线与圆的切点坐标。
解题思路:首先,我们需要确定直线与圆是否有交点。
当直线与圆有交点时,我们可以通过求解方程组得到交点坐标。
当直线与圆没有交点时,我们需要判断直线与圆的位置关系,进而确定是否有切点。
解题步骤:1.将直线方程代入圆的方程,得到一个关于x的二次方程。
2.求解二次方程,得到x的值。
高考专题:解析几何常规题型及方法一、高考风向分析:高考解析几何试题一般共有3--4题(1--2个选择题, 0--1个填空题, 1个解答题), 共计20多分, 考察的知识点约为20个左右,其命题一般紧扣课本, 突出重点, 全面考察。
选择题和填空题考察直线, 圆, 圆锥曲线中的根底知识,大多概念性较强,小巧灵活,思维多于计算;而解答题重点考察圆锥曲线中的重要知识点及其综合运用,重在考察直线与圆锥曲线的位置关系、轨迹方程,以向量为载体,立意新颖,要求学生综合运用所学代数、三角、几何的知识分析问题,解决问题。
二、本章节处理方法建议:纵观历年全国各省市文、理高考试卷,普遍有一个规律:占解几分值接近一半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一 半偏上的解答题得分很不理想,其原因主要表达在以下几个方面:〔1〕解析几何是代数与几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向 量等知识,形成了轨迹、最值、对称、围、参系数等多种问题,因而成为高中数学综合 能力要求最高的容之一〔2〕解析几何的计算量相对偏大〔3〕在大家的"拿可拿之分〞 的理念下,大题的前三道成了兵家必争之地,而排放位置比拟为难的第21题或22题〔有 时20题〕就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比拟普遍。
鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几容弹性很 大。
有容易题,有中难题。
因此在复习中基调为狠抓根底。
不能因为高考中的解几解答题 较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻 下,将时间用在稳固根底、对付"跳一跳便可够得到〞的常规题上,这样复习,高考时就 能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几 分算几分。
三、高考核心考点1、准确理解根本概念〔如直线的倾斜角、斜率、距离、截距等〕2、熟练掌握根本公式〔如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等〕3、熟练掌握求直线方程的方法〔如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等〕4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性规划的意义及简单应用6、熟悉圆锥曲线中根本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法〔如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等〕8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题四、常规题型及解题的技巧方法A:常规题型方面〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
2015届高三数学题型与方法专题七:解析几何1【基础知识梳理】
班级: 姓名: [例1]已知直线的斜率是,直线过坐标原点且倾斜角是倾斜角的两倍,则直线的方程为___. [例2]已知直线的方程为且不经过第二象限,则直线的倾斜角大小为( B )
A、arctanab; B、arctan(-ab); C、p+arctanab; D、p-arctanab. [例3]与圆相切,且在两坐标轴上截距相等的直线有――( B ) A、2条; B、3条; C、4条; D、5条. [例4]过点与坐标原点距离为2的直线方程是___与. [例5]直线斜率相等是的――――――――――――――――――( D ) A、充分不必要条件;B、必要不充分条件;C、充要条件;D、既不充分又不必要条件. [例6]直线过点与以为端点的线段AB有公共点,则直线倾斜
角的取值范围是______.. [例7]将一张画有直角坐标系的图纸折叠使点与点重合,若点与点D重合,则点D的坐标为 _;. [例8]抛物线C1:关于直线对称的抛物线为C2,则C2的焦点坐标为____.. [例9]已知点是圆外的一点,则直线与圆的位置关系 是( C ) A、相离; B、相切; C、相交且不过圆心; D、相交且过圆心.
[例10]若圆O:上有且只有两点到直线的距离为2,则圆的半径的取值范围是____.. [例11]二次方程表示圆的充要条件是_____; . [例12]已知圆C被轴截得的弦长是2,被轴分成的两段弧长之比为,求圆心C的轨迹方程..
[例13]直线过定点与圆交于A、B两点,则弦AB中点N的轨迹方程为_____;(. [例14]直线过定点与圆交于A、B两点,O是坐标原点,则△AOB面积的最大值为_______;2. [例15]已知A是圆上任意一点,点A关于直线的对称点也在圆上,那么实数的值为___3__. [例16]已知动圆C与定圆M:相切,且与轴相切,则圆心C的轨迹方程是__;与. [例17]已知,一动圆I过点M与圆N:内切. (1)求动圆圆心I的轨迹C的方程; (2)经过点作直线交曲线C于A、B两点,设,当四边形OAPB的面积最大时,求直线的方程.
重难点04 解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用.【满分技巧】定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤.定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1,0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可.关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算.方法点睛:求解椭圆或双曲线的离心率的方法如下:a c(1)定义法:通过已知条件列出方程组,求得、的值,根据离心率的定义求解离心率e的值;a c e(2)齐次式法:由已知条件得出关于、的齐次方程,然后转化为关于的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题一、单选题1.(2020·贵州贵阳一中高三月考(文))已知圆C :(x +3)2+(y +4)2=4上一动点B ,则点B 到直线l :3x +4y +5=0的距离的最小值为()A .6B .4C .2D.【答案】C【分析】因为圆心到直线的距离,Cl 4d ==所以最小值为,422-=故选:C .2.(2020·河南开封市·高三一模(文))已知双曲线的离心率与椭圆221(0)x y m m -=>的离心率互为倒数,则该双曲线的渐近线方程为( )2213x y m m +=A .B .C .D.y =y x =y x =y =【答案】B【分析】双曲线的离心率为221(0)x y m m -=>e =在椭圆中,由于,则,所以焦点在轴上2213x y m m +=0m >30m m >>y 所以椭圆的离心率为2213x y m m +=e =解得:1=2m =所以双曲线的渐近线方程为:2212x y -=y x =±故选:B3.(2020·四川成都市·高三一模(文))已知平行于轴的一条直线与双曲线x 相交于,两点,,(为坐标原()222210,0x y a b a b -=>>P Q 4PQ a=π3PQO ∠=O点),则该双曲线的离心率为().A BC D【答案】D【分析】如图,由题可知,是等边三角形,POQ △,,4PQ a =()2,P a ∴将点P 代入双曲线可得,可得,22224121a a a b -=224b a =离心率.∴c e a ===故选:D.4.(2020·河南周口市·高三月考(文))已知直线:与圆:l 340x y m -+=C 有公共点,则实数的取值范围为( )226430x y x y +-+-=m A .B .C .D .()3,37[]37,3-[]3,4[]4,4-【答案】B 【分析】因为圆的标准方程为,C ()()223216x y -++=所以,半径,()3,2C -4r =所以点到直线C :340l x y m -+=根据题意可知,解得.1745m+≤373m -≤≤故选:B5.(2020·全国福建省漳州市教师进修学校高三三模(文))已知直线:210l kx y k --+=与椭圆交于A 、B 两点,与圆交于C 、D22122:1(0)x y C a b a b +=>>222:(2)(1)1C x y -+-=两点.若存在,使得,则椭圆的离心率的取值范围是( )[2,1]k ∈--AC DB =1CA .B .C .D .10,2⎛⎤ ⎥⎝⎦1,12⎡⎫⎪⎢⎣⎭⎛ ⎝⎫⎪⎪⎭【答案】C【分析】直线,即为,可得直线恒过定点,:210l kx y k --+=(2)10k x y -+-=(2,1)圆的圆心为,半径为1,且,为直径的端点,222:(2)(1)1C x y -+-=(2,1)C D 由,可得的中点为,AC DB =AB (2,1)设,,,,1(A x 1)y 2(B x 2)y 则,,2211221x y a b +=2222221x y a b +=两式相减可得,1212121222()()()()0x x x x y y y y a b +-+-+=由.,124x x +=122y y +=可得,由,即有,2122122y y b k x x a -==--21k -- (2)2112b a……则椭圆的离心率.(0c e a ==故选:C6.(2020·全国高三其他模拟(文))已知,为的两个顶点,点()1,0A ()3,0B ABC :C在抛物线上,且到焦点的距离为13,则的面积为( )24x y =ABC :A .12B .13C .14D .15【答案】A【分析】解:因为点在抛物线上,设,C 24x y =()00,C x y 抛物线的准线方程为,24x y =1y =-根据抛物线的性质,抛物线上的点到焦点的距离等于到准线的距离.由,得,0113y +=012y =所以.()01131121222ABC S AB y =⨯⋅=⨯-⨯=△故选:A7.(2020·四川成都市·高三一模(文))已知抛物线的焦点为,过的直线24x y =F F l 与抛物线相交于,两点,.若,则( ).A B 70,2P ⎛-⎫ ⎪⎝⎭PB AB ⊥AF =A .B .C .D .322523【答案】D【分析】由题意可知,,设,,()0,1F 211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭则,,2227,42x PB x ⎛⎫=+ ⎪⎝⎭ 222,14x BF x ⎛⎫=-- ⎪⎝⎭ 因为,且,,三点共线,则由可得,PB AB ⊥A B F 0AB PB ⋅= 0BF PB ⋅=所以,即,222222710424x x x ⎛⎫⎛⎫-++-= ⎪⎪⎝⎭⎝⎭422226560x x+-=解得或(舍),所以.222x =2228x =-2x =设直线的方程为,与抛物线方程联立,AB 1y kx =+得,消去得,则,所以.214y kx x y =+⎧⎨=⎩y 2440x kx --=124x x =-1x =±则.21124x y ==所以.12213y F pA =+==+故选:D.8.(2020·四川高三一模(文))已知直线与双曲线:y kx =C ()222210,0x y a b a b -=>>相交于不同的两点,,为双曲线的左焦点,且满足,(A B F C 3AF BF=OA b=为坐标原点),则双曲线的离心率为()O C AB C .2D【答案】B【分析】设是右焦点,则,,即,F 'BF AF '=3AF BF=3AF AF '=又,∴,,而,∴22AF AF AF a''-==AF a'=3AF a=,OA b OF c'==,OA AF '⊥由得,AOF AOF π'∠+∠=cos cos 0AOFAOF '∠+∠=∴,整理得.222902b c a b bc c +-+===ce a 故选:B .9.(2020·河南新乡市·高三一模(文))已知双曲线的左、()2222:10,0x y C a b a b -=>>右焦点分别为、,过原点的右支于点,若1F 2F O C A ,则双曲线的离心率为( )1223F AF π∠=AB 1C D【答案】D 【分析】推导出,可计算出,利用余弦定理求得112F OA F AF :::1F A =2AF =,进而可得出该双曲线的离心率为,即可得解.1212F F e AF AF =-【详解】题可知,,,123F OA π∠=121AF O F AF ∠=∠ 112F OA F AF ∠=∠112F OA F AF ∴:△△,所以,可得.11112F O F AF A F F =1F A =在中,由余弦定理可得,12F AF :22212121222cos3F F AF AF AF AF π=+-⋅即,解得.2220AF c +=2AF=双曲线的离心率为.1212F F e AF AF ===-故选:D.【点睛】10.(2020·全国高三专题练习(文))已知圆,则在轴和轴上22:(2)2C x y ++=x y 的截距相等且与圆相切的直线有几条( )C A .1条B .2条C .3条D .4条【答案】C【分析】若直线不过原点,其斜率为,设其方程为,1-y x m =-+则,解得或,d 0m =4-当时,直线过原点;0m =若过原点,把代入,()0,0()2200242++=>即原点在圆外,所以过原点有2条切线,综上,一共有3条,故选:C .二、解答题11.(2020·四川成都市·高三一模(文))已知椭圆的离心率()2222:10x y C a b a b +=>>,且直线与圆相切.1x ya b +=222x y +=(1)求椭圆的方程;C(2)设直线与椭圆相交于不同的两点﹐,为线段的中点,为坐标原l C A B M AB O 点,射线与椭圆相交于点,且,求的面积.OM C P OP OM=ABO :【答案】(1);(2.22163x y +=【分析】(1,∴(为半焦距).c a=c∵直线与圆.1x ya b +=222x y +==又∵,∴,.222c b a +=26a =23b =∴椭圆的方程为.C 22163x y +=(2)(ⅰ)当直线的斜率不存在时,l 设直线的方程为.l (x nn =<<∵,∴.OP OM==225n =∴.ABOS ==△(ⅱ)当直线的斜率存在时,设直线,l ():0l y kx m m =+≠,.()11,A x y ()22,B x y 由,消去,得.22163y kx mx y =+⎧⎪⎨+=⎪⎩y ()222214260k x kmx m +++-=∴,即.()()()2222221682138630k m k m k m ∆=-+-=-+>22630k m -+>∴,.122421kmx x k +=-+21222621m x x k -=+∴线段的中点.AB 222,2121kmm M k k ⎛⎫- ⎪++⎝⎭当时,∵,∴.0k =OP OM==215m =∴.ABOS =△当时,射线所在的直线方程为.0k ≠OM 12y x k =-由,消去,得,.2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩y 2221221P k x k =+22321Py k =+∴M POMy OPy ===∴.经检验满足成立.22521m k =+0∆>设点到直线的距离为,则.O ld d =∴212ABOS x =-===△综上,.ABO :12.(2020·云南高三其他模拟(文))已知椭圆的左右焦点分2222:1(0)x y C a b a b +=>>别为,离心率为,椭圆上的点到点的距离之和等于4.12,F F 12C 31,2M ⎛⎫ ⎪⎝⎭12,F F (1)求椭圆的标准方程;C(2)是否存在过点的直线与椭圆相交于不同的两点,,满足()2,1P l C A B 若存在,求出直线的方程;若不存在,请说明理由.2PA PB PM ⋅= l 【答案】(1);(2)存在直线满足条件,其方程为.22143x y +=l 12y x =【分析】解:(1)由题意得,所以.2221224c a a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩21a c b ⎧=⎪=⎨⎪=⎩故椭圆的标准方程为.C 22143x y +=(2)若存在满足条件的直线,则直线的斜率存在,设其方程为.l l (2)1y k x =-+代入椭圆的方程得.C 222(34)8(21)161680k x k k x k k +--+--=设,两点的坐标分别为,,A B ()11,x y ()22,x y 所以.所以,222[8(21)]4(34)(16168)32(63)0k k k k k k ∆=---+--=+>12k >-且,.1228(21)34k k x x k -+=+21221616834k k x x k --=+因为,即,2PA PB PM ⋅= 12125(2)(2)(1)(1)4x x y y --+--=所以.2212(2)(2)(1)54x x k PM --+==即.[]2121252()4(1)4x x x x k -+++=所以,222222161688(21)44524(1)3434344k k k k k k k k k ⎡⎤---+-⋅++==⎢⎥+++⎣⎦解得.12k =±又因为,所以.12k >-12k =所以存在直线满足条件,其方程为.l 12y x =13.(2020·广西北海市·高三一模(文))已知抛物线的准线为2:2(0)C x py p =>,焦点为F .1y =-(1)求抛物线C 的方程;(2)设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,求的最小值.||||AP BQ ⋅【答案】(1);(2)2.24x y =【分析】(1)因为抛物线的准线为,12py =-=-解得,2p =所以抛物线的方程为.24x y =(2)由已知可判断直线l 的斜率存在,设斜率为k ,由(1)得,则直线l 的方程为.(0,1)F 1y kx =+设,,211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭由消去y ,得,214y kx x y =+⎧⎨=⎩2440x kx --=所以,.124x x k +=124x x =-因为抛物线C 也是函数的图象,且,214y x =12y x '=所以直线PA 的方程为.()2111142x y x x x -=-令,解得,所以,0y =112x x =11,02P x ⎛⎫ ⎪⎝⎭从而||AP =同理得||BQ =所以,||||AP BQ ⋅==,=,==当时,取得最小值2.0k =||||AP BQ ⋅14.(2020·广东东莞市·高三其他模拟(文))在平面直角坐标系中,已知两定点xOy,,动点满足.()2,2A -()0,2B P PAPB=(1)求动点的轨迹的方程;P C (2)轨迹上有两点,,它们关于直线:对称,且满足C E F l 40kx y +-=,求的面积.4OE OF ⋅=OEF ∆【答案】(1)动点的轨迹是圆,其方程为(2)P ()()22228x y -+-=【分析】(1)设动点的坐标为,则.P (),xyPAPB==整理得,故动点的轨迹是圆,且方程为.()()22228x y -+-=P ()()22228x y -+-=(2)由(1)知动点的轨迹是圆心为,半径的圆,圆上两点,关P ()2,2C R =E F 于直线对称,由垂径定理可得圆心在直线:上,代入并求得l ()2,2l 40kx y +-=1k =,故直线的方程为.l 40x y +-=易知垂直于直线,且.OC l OC R=设的中点为,则EF M ()()OE OF OM ME OM MF⋅=+⋅+()()OM ME OM ME=+⋅- ,又,.224OM ME =-= 22222OM OC CM R CM =+=+ 222ME R CM =-∴,,∴,.224CM = CM =ME==2FE ME == 易知,故到的距离等于,∴OC FE :O FE CM 12OEF S ∆=⨯=15.(2020·全国高三专题练习)在平面直角坐标系中,已知椭圆xOy 的长轴长为6,且经过点,为左顶点,为下顶点,椭22221(0)x y a b a b +=>>3(2Q A B 圆上的点在第一象限,交轴于点,交轴于点.P PA y C PB x D (1)求椭圆的标准方程(2)若,求线段的长20OB OC +=PA (3)试问:四边形的面积是否为定值?若是,求出该定值,若不是,请说明理由ABCD 【答案】(1);(2;(3)是定值,6.22194x y +=【分析】(1)解:由题意得,解得.26a =3a =把点的坐标代入椭圆C 的方程,得Q 22221x y a b +=229314ab +=由于,解得3a =2b =所以所求的椭圆的标准方程为.22194x y +=(2)解:因为,则得,即,20OB OC += 1(0,1)2OC OB =-=(0,1)C 又因为,所以直线的方程为.(3,0)A -AP 1(3)3y x =+由解得(舍去)或,即得221(3)3194y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩30x y =-⎧⎨=⎩27152415x y ⎧=⎪⎪⎨⎪=⎪⎩2724,1515P ⎛⎫ ⎪⎝⎭所以||AP ==即线段AP (3)由题意知,直线的斜率存在,可设直线.PB 2:23PB y kx k ⎛⎫=-> ⎪⎝⎭令,得,0y =2,0D k ⎛⎫⎪⎝⎭由得,解得(舍去)或222194y kx x y =-⎧⎪⎨+=⎪⎩()2249360k x kx +-=0x =23649kx k =+所以,即2218849k y k -=+22236188,4949k k P k k ⎛⎫- ⎪++⎝⎭于是直线的方程为,即AP 22218849(3)36314k k y x k k -+=⨯+++2(32)(3)3(32)k y x k -=++令,得,即,0x =2(32)32k y k -=+2(32)0,32k C k -⎛⎫ ⎪+⎝⎭所以四边形的面积等于ABDC 1||||2AD BC ⨯⨯122(32)13212326232232k k k k k k k -+⎛⎫⎛⎫=+⋅+=⋅⋅= ⎪ ⎪++⎝⎭⎝⎭即四边形的面积为定值.ABDC 16.(2020·江西南昌市·南昌二中高三其他模拟(文))已知抛物线的()220y px p =->焦点为,轴上方的点在抛物线上,且,直线与抛物线交于,F x ()2,M m -52MF =l A 两点(点,与不重合),设直线,的斜率分别为,.B A B M MA MB 1k 2k (Ⅰ)求抛物线的方程;(Ⅱ)当时,求证:直线恒过定点并求出该定点的坐标.122k k +=-l 【答案】(Ⅰ);22y x =-(Ⅱ)见解析.(Ⅰ)由抛物线的定义可以,5(2)22p MF =--=,抛物线的方程为.1p ∴=22y x =-(Ⅱ)由(Ⅰ)可知,点的坐标为M (2,2)-当直线斜率不存在时,此时重合,舍去. l ,A B 当直线斜率存在时,设直线的方程为l l y kx b=+设,将直线与抛物线联立得:()()1122,,,A x y B x y l 2222(22)02y kx bk x kb x b y x=+⎧+++=⎨=-⎩212122222,kb b x x x x k k --+==①又,12121222222y y k k x x --+=+=-++即,()()()()()()1221122222222kx b x kx b x x x +-+++-+=-++,()()()()12121212121222248248kx x k x x b x x x x b x x x x ++++-++-=--+-,()1212(2+2)(2+2)40k x x k b x x b ++++=将①代入得,222(1)0b b k b ---+=即(1)(22)0b b k +--=得或1b =-22b k =+当时,直线为,此时直线恒过;1b =-l 1y kx =-(0,1)-当时,直线为,此时直线恒过(舍去)22b k =+l 22(2)2y kx k k x =++=++(2,2)-所以直线恒过定点.l (0,1)-。
高考数学专题辅导解析几何的题型与方法解几四大热点:(一)解几的证明问题; (二)解几参数范围确定问题; (三)定值、最值问题; (四)轨迹问题与求曲线方程。
四大知识重组:(一)解几与向量组合; (二)解几与立几组合 (三)解几与数列组合; (四)解几与导数组合 重点考查知识点(一)直线与圆锥曲线; (二)各参数及其几何意义 常用数学思想与方法(1)函数方程思想; (2)等价转化; (3)分类讨论; (4)数形结合。
**(一)联系判别式和韦达定理;(二)注意运用定义解题; (三)注意平几与三角知识运用。
范例及其解法例1.椭圆的中心是原点O ,它的短轴长为22,相应于焦点)0)(0,(>c c F 的准线l 与x 轴相交于点A ,||2||FA OF =,过点A 的直线与椭圆相交于P 、Q 两点。
(I) 求椭圆的方程及离心率;(II)若,0.=OQ OP 求直线PQ 的方程;(III)设)1(>=λλAQ AP ,过点P 且平行于准线l 的直线与椭圆相交于另一点M , 证明FQ FM λ-=。
(天津2004高考理科试题)解题分析:本小题主要考查椭圆的标准方程和几何性质,直线方程,平面向量的计算,曲线和方程的关系等解析几何的基本思想方法和综合解题能力。
(重点注意:解几证明题的求解特色)(I)解:由题意,可设椭圆的方程为22221(2).x y a a b+=>由已知得2222,2().a c a c c c ⎧-=⎪⎨=-⎪⎩解得 6, 2.a c ==所以椭圆的方程为22162x y +=,离心率63e = 。
4分 (II)解: 由(I)可得(3,0).A设直线PQ 的方程为(3).y k x =-由方程组22162(3)x y y k x ⎧+=⎪⎨⎪=-⎩得 2222(31)182760.k x k x k +-+-= 依题意 212(23)0,k ∆=->得66k << 设 1122(,),(,),P x y Q x y 则212218,31k x x k +=+ ① 2122276..31k x x k -=+ ② 由直线PQ 的方程得 1122(3),(3).y k x y k x =-=-于是2212121212(3)(3)[3()9].y y k x x k x x x x =--=-++ ③1212.0,0.OPOQ x x y y =∴+= ④ 。
几何题是高考数学中的重要题型,占比较大且常常作为压轴题出现。
解析几何是几何题中的一大重点,需要掌握的知识点较多且难度较高。
下面对高考解析几何常见的压轴题型进行归类总结。
1. 平面几何1.1 直线方程直线方程的求解是解析几何中的基础内容,常常作为考查点。
包括一般式、斜截式、点斜式等形式的直线方程。
总结如下:1.直线一般式方程:Ax + By + C = 0;2.直线斜截式方程:y = kx + b;3.直线点斜式方程:y - y₁ = k(x - x₁)。
1.2 平面方程平面方程是通过点法式方程和一般式方程进行求解。
常见的平面方程有以下几种:1.点法式方程:A(x - x₀) + B(y - y₀) + C(z - z₀) = 0;2.一般式方程:Ax + By + Cz + D = 0。
1.3 直线与直线的位置关系直线与直线的位置关系主要有平行、垂直以及相交三种情况。
常见的题型包括:1.求直线的交点;2.判断两直线是否平行/垂直;3.确定两直线的夹角。
1.4 直线与平面的位置关系直线与平面的位置关系常常涉及到直线在平面上的投影、直线与平面的交点等问题。
常见的题型如下:1.直线在平面上的投影;2.直线与平面的交点;3.判断直线与平面的位置关系。
1.5 圆的方程圆的方程是解析几何中的重要内容。
常见的圆的方程有以下几种形式:1.圆心半径式方程:(x−a)2+(y−b)2=r2;2.一般式方程:x2+y2+Dx+Ey+F=0。
1.6 圆与直线的位置关系圆与直线的位置关系涉及到切线的斜率、交点的确定等问题。
常见的题型包括:1.确定直线与圆的位置关系(相离、相切、相交);2.求直线与圆的交点;3.求直线在圆上的切点。
2. 空间几何2.1 直线与直线的位置关系直线与直线的位置关系同平面几何中的情况类似,常见的题型包括:1.直线是否平行/垂直;2.直线的交点;3.两直线的夹角。
2.2 空间曲线空间曲线主要涉及到直线、平面和曲线的方程及其位置关系。
高考数学解析几何题如何运用几何知识解题解析几何是高考数学中的重要内容,也是一道考察学生运用几何知识解题能力的重要题型。
本文将以高考数学解析几何题为例,介绍如何运用几何知识解题。
一、直线与平面的交点解析几何中,直线与平面的交点是较为常见的题型。
当需要求解直线与平面的交点时,我们可以先列出直线和平面的方程,然后联立求解。
例如,已知直线L:2x+3y-4=0与平面α:x+y+z-6=0相交,求交点的坐标。
解:首先,我们可以化简直线和平面的方程为参数方程:直线L:x=2-3t, y=t, z=t平面α:x+y+z=6然后,将直线的参数方程代入平面的方程,得到:(2-3t) + t + t = 64t = 4t = 1将t=1代回直线的参数方程,得到交点的坐标为:x = 2-3(1) = -1z = 1所以,交点的坐标为(-1, 1, 1)。
二、直线与平面的位置关系除了求解交点外,直线与平面的位置关系也是解析几何中常见的题型。
当需要判断直线与平面的位置关系时,我们可以比较直线与平面的方程的系数。
例如,已知直线L:2x-y+1=0与平面α:x-y+z+2=0的位置关系是相交,求直线L在平面α上的投影长度。
解:首先,我们可以化简直线和平面的方程为参数方程:直线L:x=1+t, y=2t+1, z=0平面α:x=y-2z-2然后,将直线的参数方程代入平面的方程,得到:(1+t) = (2t+1)-2(0)-21+t = 2t-1t = 2将t=2代回直线的参数方程,得到直线L在平面α上的交点坐标为:x = 1+2 = 3y = 2(2)+1 = 5所以,直线L在平面α上的交点坐标为(3, 5, 0)。
三、直线与直线的位置关系除了与平面的位置关系外,直线与直线的位置关系也是解析几何中常见的题型。
当需要判断直线与直线的位置关系时,我们可以比较两条直线的方程的系数。
例如,已知直线L1:2x+y-1=0与直线L2:x+2y-3=0的位置关系是相交,求交点坐标。
高考丨搞定解析几何,这些运算技巧超实用,建议收藏我们都知道,数学在高考中是重点,也是难点。
而在数学当中,解析几何可谓是重中之重,让很多考生伤透了脑筋,特别是大题,很多同学都被复杂的图形给吓到了。
今天就总结几点关于几何题的解题思路以及答题要点与模版,希望能帮助广大考生,一定要用心看完哦。
一、空间感可以练出来我们初中几何都是平面图,而到了高中,就接触立体图形了,这是一次艰难的飞跃,很多初中几何学得好的同学都折在这了。
但凡事需要一个过程啊,没有空间感,咱们就建立空间感。
同学们可以自制一些空间几何模型,反复观察练习,这有益于建立空间观念,是个好办法。
也可选择对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。
二、基础知识要记牢要用图形、文字、符号三种形式表达概念、定理、公式,要及时不断地复习前面学过的内容。
这是因为几何的知识点前后联系紧密,前面内容是后面内容的基础,后面内容既巩固了前面的内容,又延伸了前面内容。
在解题中,要注意书写规范,①如用平行四边形ABCD表示平面时,可以写成平面AC,但不可以把平面两字省略掉;②要写出解题根据,不论对于计算题还是证明题都应该如此,不能想当然或全凭直观;③对于文字证明题,要写已知和求证,要画图;用定理时,必须把题目满足定理的条件逐一交待清楚,自己心中有数而不把它写出来是不行的。
④要学会用图帮助解决问题;要掌握求各种角、距离的基本方法和推理证明的基本方法。
三、积累解决问题的方法、提高分析的能力要注意积累解决问题的方法。
如将立体几何问题转化为平面问题,又如将求点到平面距离的问题,或转化为求直线到平面距离的问题,再继而转化为求点到平面距离的问题;或转化为体积的问题。
不断提高分析问题、解决问题的水平,加深对理论的认识水平,养成良好逻辑思维能力,几何题目便不在话下。
四、“转化”思想解立体几何的问题,要运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,什么是变量、两者之间存在的联系,这是非常关键的。
高考专题:解析几何常规题型及方法一、高考风向分析:高考解析几何试题一般共有3--4题(1--2个选择题, 0--1个填空题, 1个解答题), 共计20多分, 考查的知识点约为20个左右,其命题一般紧扣课本, 突出重点, 全面考查。
选择题和填空题考查直线, 圆, 圆锥曲线中的基础知识,大多概念性较强,小巧灵活,思维多于计算;而解答题重点考查圆锥曲线中的重要知识点及其综合运用,重在考察直线与圆锥曲线的位置关系、轨迹方程,以向量为载体,立意新颖,要求学生综合运用所学代数、三角、几何的知识分析问题,解决问题。
二、本章节处理方法建议:纵观历年全国各省市文、理高考试卷,普遍有一个规律:占解几分值接近一半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一 半偏上的解答题得分很不理想,其原因主要体现在以下几个方面:(1)解析几何是代数与 几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向 量等知识,形成了轨迹、最值、对称、范围、参系数等多种问题,因而成为高中数学综合 能力要求最高的内容之一(2)解析几何的计算量相对偏大(3)在大家的“拿可拿之分” 的理念下,大题的前三道成了兵家必争之地,而排放位置比较尴尬的第21题或22题(有 时20题)就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比较普遍。
鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几内容弹性很 大。
有容易题,有中难题。
因此在复习中基调为狠抓基础。
不能因为高考中的解几解答题 较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻 下,将时间用在巩固基础、对付“跳一跳便可够得到”的常规题上,这样复习,高考时就 能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几 分算几分。
三、高考核心考点1、准确理解基本概念(如直线的倾斜角、斜率、距离、截距等)2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等)3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等)4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性规划的意义及简单应用6、熟悉圆锥曲线中基本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等)8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题四、常规题型及解题的技巧方法A:常规题型方面(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
高考数学解析几何复习建议(1)基础知识很重要。
对于基础知识,不仅一个知识点都要熟稔于心,还要有能力将这些零散的知识点串联起来。
只有这样,才能形成属于自己的知识框架,才能更从容的应对考试。
(3)解题思路。
考生应在二轮复习过程中学会解决不同问题的方法,并进行分门别类的及时总结,勤加复习,做到熟稔于心。
对于向量方法,最长用的地方就解决与斜率有关的问题;对于“设而不求”的方法,最常用到的地方就是两种不同的平面几何图形相交的情况下求弦长的问题;设点法,最长用到的地方就是两种曲线相切以及求最值得问题等。
高考数学解析几何公式两点距离、定比分点直线方程|AB|=|||P1P2|=y-y1=k(某-某1)y=k某+b两直线的位置关系夹角和距离或k1=k2,且b1≠b2l1与l2重合或k1=k2且b1=b2l1与l2相交或k1≠k2l2⊥l2或k1k2=-1l1到l2的角l1与l2的夹角点到直线的距离圆椭圆标准方程(某-a)2+(y-b)2=r2圆心为(a,b),半径为R一般方程某2+y2+D某+Ey+F=0其中圆心为(),半径r(1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系(2)两圆的位置关系用圆心距d与半径和与差判断椭圆焦点F1(-c,0),F2(c,0)(b2=a2-c2)高考数学学习方法(1)制定计划明确学习目的。
合理的学习计划是推动我们主动学习和克服困难的内在动力。
计划先由老师指导督促,再一定要由自己切实完成,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
(2)课前预习是取得较好学习效果的基础。
课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。
预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
(3)上课是理解和掌握基本知识、基本技能和基本方法的关键环节。
上课专心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。
一、解析几何题型分析:
1. 直线问题:主要考察直线的性质及其特征,如平行、垂直、中心弦定理等。
2. 圆形问题:主要考察圆形的性质及其特征,如圆心角定理、外切内接定理等。
3. 正多面体问题:主要考察正多面体的性质及其特征,如三角形内心定理、四面体最大最小化原理等。
4. 三角形问题:主要考察三角形的性质及其特征,如勾股定理、海伦-泰勒斯定理等。
5. 几何评价法问题: 主要是透过几何图型来评价各部分之间的大小或者数量上的差异,例如由于不同图彩之间存在一些明显差异,所以能够根据这些差异来作出正确判断或者作出正确估测。
二、解法收拾:
1. 第一步应该是将所有信息数字化,即将所有信息由文字表述方式数字化;
2. 第二步应该是根据所数字化后的信息来选用适合的几何方法;
3. 第三步应该是根据前两部中所使用方法来进行相应的代数或者几何运算;
4. 最后一步应该是核对并汇总前三部中所得到的信息,然后作出最合适书写样子上呈上。