当前位置:文档之家› 顺序阀

顺序阀

顺序阀
顺序阀

1.顺序阀的结构和工作原理

直动型顺序阀的结构和图形符号。南通监控生产的压力油从进油腔(两个)3进入,经阀体10上孔道4和端盖13上的阻尼孔6流到活塞12底部,当作用于控制活塞12上的液压力足以克服作用阀芯11上的弹簧8的弹簧力时,则阀芯11上移,油液便从出油腔2流出。该阀称为内控式顺序阀。

若将直动型顺序阀的结构(a)中的端盖13旋转90。安装,即切断进油口通向控制活塞12下腔的通道,并去掉外控121 5的螺塞,引入控制压力油,便成为外控式顺序阀。

若再将阀盖9旋转90。安装,还可使弹簧腔与出油口相连(阀体上开有沟通孔道,图中未剖出),并将外泄油腔1堵塞,便成为外控内泄顺序阀。外控内泄顺序阀只用于出口接油箱的场合,常用于使泵卸荷,故又称卸荷阀。

顺序阀的开启压力可用调节螺钉7调节。直动型顺序阀的控制活塞12直径很小,因而仿丝棉阀芯11受到的向上推力不大,所以弹簧8不需太硬,用较软的弹簧就可提高阀的P—q性能。这种直动型顺序阀的最高工作压力可达14 MPa,最高控制压力可达7MPa。一般的直动型顺序阀用于低压系统,对性能要求较高的高压大流量系统,需采用先导型顺序阀。

先导型顺序阀的结构原理与先导型溢流阀类似,其工作原理也基本相同,这里不再重述。先导型顺序阀与直动型顺序阀一样也有内控外泄、外控外泄和外控内泄的控制方式.[注:1一外泄油腔L 2一出油腔P2 3一进油腔Pl 4—孔道5一外控口 6一阻尼孔7一调节螺钉8一弹簧9一阀盖10一阀体11--阀芯12--燃13--端盖]

顺序阀与溢流阀不同之处是:顺序阀的出油口通向系统的另一折弯机压力油路,即工作油路,而溢流阀出口接油箱;由于顺序阀进、出油口均为压力油,所以它的泄油El L必须单独外接油箱,否则将无法工作,而溢流阀的泄油可在内部连通回油口直接流回油箱;按控制压力来源的不同,溢流阀是进口油压控制,即内控式,而顺序阀既有内控又有外控两种方式。

2.顺序阀的应用

顺序阀主要用来控制液压缸(或液压马达)的顺序动作,此外,还可作卸荷阀、背压阀和平衡阀用。机床上的元件先定位后夹紧的液压系统中常用顺序阀控制。专用车床的横向和纵向进给液压缸的顺序动作实例,其顺序动作是:①车刀先横向进给;②纵向进给;③横向退刀;④纵向退刀。

当二位四通电磁换向阀1YA断电时,油液首先进入折弯机横向液压缸A的下腔,车刀横向进给,完成①的动作;碰上死挡铁后横向进给停止,油压升高打开顺序阀C,油液进入纵向液压缸B的右腔,车刀纵向进给完成②的动作;当进给结束,1YA通电,二位四通电磁换向阀换向,液压缸A上腔进油,下腔回油,车刀横向退回,完成③的动作;当退至终点,系统压力升高,打开顺序阀D,液压缸B左腔进油,车刀纵向退回完成④的动作,到此完成一个循环。

3.使用顺序阀的注意事项

顺序阀是液压系统中自动控制元件,其弹簧压力的调定应高于前一执行元件所需压力,但应低于溢流阀的调定压力。除作卸荷阀用之外,顺序阀的出油口必须接系统,推动负载进行工作,而泄漏油口一定单独接回油箱,不能与出油口相通。当顺序阀作平衡阀使用时,必须具有良好的密封性能,不能产生内部泄漏。

第三节-顺序阀

顺序阀 学习完后的目的:掌握各种阀的工作原理及应用场合。一、目的: 是利用油液压力作为控制信号来控制多个执行元件按一定的顺序动作。 二、顺序阀的主要作用有: (1)控制多个元件的顺序动作; (2)用于保压回路; (3)防止因自重引起油缸活塞自由下落而做平衡阀用; (4)用外控顺序阀做卸荷阀,使泵卸荷; (5)用内控顺序阀作背压阀。 三、对顺序阀还有其特殊的要求: (1)为了使执行元件准确实现顺序动作,要求顺序阀的 调压精度高,偏差小; (2)为了顺序动作的准确性,要求阀关闭时内泄漏量小; (3)对于单向顺序阀,要求反向压力损失及正向 压力损失值均应较小。 四、顺序阀分类: ㈠按结构分类 ①直动式:适用于低压。 ②先导式:适用于高压。

㈡按控制压力来源分类 ①内控式:控制阀芯开启的压力油来自顺序阀进口。 ②外控式:控制阀芯开启的压力油从外控口外部引入。 ㈢按泄油方式分类 ①内泄式:弹簧腔内的油液直接从出油口泄漏。 ②外泄式:弹簧腔内的油液直接从外泄油口泄漏到油箱。 顺序阀有内控外泄、内控内泄、外控外泄、外控内泄六、工作原理: ㈠直动式顺序阀 直动式顺序阀通常为滑阀结构,其工作原理与直动式溢流阀相似,均为进油口测压,但顺序阀为减小调压弹簧刚度,还设置了断面积比阀芯小的控制活塞A。 顺序阀与溢流阀的区别还有: ■其一,出口不是溢流口,因此出口p2不接回油箱,而是与某一执行元件相连,弹簧腔泄漏油口L必须单独接回油箱; ■其二,顺序阀不是稳压阀,而是开关阀,它是一种利用压力的高低控制油路通断的“压控开关”,严格地说,顺序阀是一 个二位二通液动换向阀。

㈡先导型顺序阀 ⑴如果在直动型顺序阀的基础上,将主阀芯上腔的调压弹簧用先导调压回路代替,且将先导阀调压弹簧腔引至外泄口上,就可以构成先导式顺序阀。 ⑵这种先导式顺序阀的原理与先导式溢流阀相似,所不同的

单阀与顺序阀切换的实实现

单阀和顺序阀的对比 1、单阀控制方式即所有进入汽轮机的蒸汽都经过几个同时启闭的调节阀后进入第一级喷嘴,也称节流配汽方式。节流配汽的汽轮机在工况变动时第一级的进汽度是不变的,因此可以把包括第一级在内的全部级作为级组,也就是说除了工作原理不同外,调节级与其余各级并无其他区别。采用节流配汽的汽轮机在设计工况下调节阀全开,机组的理想焓降到最大值;低负荷时调节阀关小,减少汽轮机的进汽量,主蒸汽受到节流作用使第一级级前压力下降,其值与蒸汽流量成正比。此时,汽轮机的理想焓降减小但并不是很多,可见节流配汽主要是通过减少蒸汽流量来降低负荷。当然,理想焓降的减少虽然不是很多,但仍然使机组的相对内效率降低,且负荷越低,节流损失越大,机组效率也就越低。因此,节流配汽方式的应用范围不太广泛,一般用于小功率机组和带基本负荷的机组。高参数、大容量机组在启动初期为使进汽部分的温度分布均匀,在负荷突变时不致引起过大的热应力和热变形,也经常使用节流配汽方式。 2、顺序阀控制方式即蒸汽经过几个依次启闭的调节阀后再通向第一级喷嘴,也称喷嘴配汽方式。这种配汽方式在运行当中只有一个调节阀处于部分开启状态,而其余的调节阀均处于全开(或全关)状态,蒸汽只在部分开启的调节阀中受到节流作用,因此,在部分负荷时喷嘴配汽方式比节流配汽方式效率高,所以被广泛应用。

采用喷嘴配汽方式时,第一级喷嘴的通流面积随着调节阀的开启数目不同而变化。调节级的变工况特性也和其余各级有很大区别。当调节级通流面积改变时,蒸汽流量将发生变化,达到调节机组负荷的目的。同时,在部分开启的调节阀中蒸汽流量受到节流作用,改变了理想焓降,但因流经该阀的蒸汽流量只占总流量的一部分,因此蒸汽 焓降的改变对机组功率的影响较小。 采用喷嘴配汽方式时,在第一只调节阀刚刚全开时调节级的压力比为最小,调节级的理想焓降为最大,此时,通过第一组喷嘴的蒸汽流量也达到最大值,故第一组喷嘴蒸汽流量和焓降的乘积也达到最大值,工作在其后的动叶片所承受的应力也达到最大值。可见,调节级的危险工况并不是在最大工况下,而是在第一只调节阀刚刚全开时。 3、单阀、顺序阀控制方式的应用 实际生产中,汽轮机在部分负荷下运行时喷嘴配汽方式比节流配汽方式的效率高,且较稳定。但在变工况下采用喷嘴配汽方式会使汽轮机高压部分的金属温度变化较大,调节级所对应的汽缸壁产生较大的热应力,从而降低了机组快速改变负荷的能力。为了发挥两种不同配汽方式的优点,我们采取了节流配汽——喷嘴配汽联合调节的方式,即第一只喷嘴和第二只喷嘴同时开启,使汽缸均匀受热。待第一、二只调节阀全开后再根据机组负荷需要依次开启其他调节阀。这样,就同时发挥了节流配汽和喷嘴配汽两者的优点。

浅谈汽轮机顺序阀门控制

浅谈汽轮机顺序阀门控制 The Discussion About Turbine Sequence Valve Control (江苏太仓环保发电公司 江苏 太仓 215433)刘铁祥 摘要:介绍电厂汽轮机顺序阀门控制原理,列举工程中的实际应用经验,揭示了汽轮机阀门管理设计的科学性以及在调试和应用中需要掌握的知识点。 关键词:电厂 汽轮机DEH 阀门控制 Abstract: This paper intorduces the principle of turbine sequence valve control and lists some application experiences, interprets the scientificity of turbine valve control as well as the knowledge should be know in commission and practice. Key word: power plant; turbine DEH; valve control 1 前言 现代大、中型发电机组中汽轮机均采用数字电液控制系统即DEH进行控制,各进汽阀门是由电信号控制、高压油动机驱动。其中进汽阀门的管理显然是DEH系统的重要功能,特别是顺序阀控制其管理程序更为科学和复杂。在调试和实际应用中顺序阀控制的参数整定同样非常严谨。如果参数整定不当则单阀与顺序阀的切换扰动过大,汽轮机主要运行参数出现异常,影响机组的安全。由此顺序阀门控制的参数整定是DEH调试的一项重要内容。 2 DEH阀门管理功能 新建机组在试运期间一般采取全周进汽的单阀运行方式,使得转子和定子的温差较小,在变负荷运行时温差影响较小,有利于机组初期的磨合。另外在机组启动过程或调峰方式运行时,也同样需要采用单阀控制。但单阀运行,高压调节阀都参与开度调节,且一般高压调门开度不大,蒸汽通过调节阀门时有较大的节流损失。机组运行要求尽量减少调节阀门的节流损失,提高汽轮机的效率。通常阀门的节流损失在阀门接近全关或接近最大流量时达到最小。顺序阀门控制方式下,只有一个高压调节阀进行开度调节,其余的调门保持全开或全关,这样减少了节流损失,提高机组热效率。下图为顺序阀门控制和单阀控制的热效率比较曲线。从中能明显的看出两者之间的差异。 降低 ( 热 效 率 ) 50 60708090100(负荷百分率)

平衡阀特点及原理作用

平衡阀特点及原理作用 平衡阀是一种特殊功能的阀门,它具有良好的流量特性,有阀门开启度指示,开度锁定装置及用于流量测定的测压小阀。利用专用智能仪表,输入阀门型号和开度值,根据测得的压差信号就可直接显示出流经该平衡阀的流量值,只要在各支路及用户入口装上适当规格的平衡阀,并用专用智能仪表进行一次性调试,就可使各用户的流量达到设定值。 平衡阀是在水力工况下,起到动态、静态平衡调节的阀门。如:静态平衡阀,动态平衡阀。 静态平衡阀亦称平衡阀、手动平衡阀、数字锁定平衡阀、双位调节阀等,它是通过改变阀芯与阀座的间隙(开度),来改变流经阀门的流动阻力以达到调节流量的目的,其作用对象是系统的阻力,能够将新的水量按照设计计算的比例平衡分配,各支路同时按比例增减,仍然满足当前气候需要下的部份负荷的流量需求,起到热平衡的作用。 动态平衡阀分为动态流量平衡阀,动态压差平衡阀,自力式自身压差控制阀等。平衡阀属于调节阀范畴,它的工作原理是通过改变阀芯与阀座的间隙(即开度),改变流体流经阀门的流通阻力,达到调节流量的目的。 平衡阀相当于一个局部阻力可以改变的节流元件,对不可压缩流体,由流量方程式可得。与其它阀门相比,平衡阀主要有以下特点: (1)直线型流量特性,即在阀门前后压差不变情况下,流量与开度大体上成线性关系; (2)有精确的开度指示; (3)有开度锁定装置,非管理人员不能随便改变开度;表连接,可方便地显示阀门前后的压差及流经阀门的流量。尽管平衡阀具有很多优点,但它在空调水系统的应用还存在不少问题。如果这些问题解决不好,平衡阀的特点并不能充分显现出来。平衡阀的作用是为了调节系统内,各个分配点的(如每一个楼座)的预定流量。每一座楼的入口处都安装平衡阀,可以使供暖系统的总流量得到合理分配。 平衡阀的原理是阀体内的反调节,当入口处压力加大时,自动减小通径,减少流量的变化,反之亦然。如果反接,这套调节系统就不起作用。而且起调节作用的阀片,是有方向性的,反向的压力甚至可以减少甚至封闭流量。既然安装平衡阀是为了更好的供暖,就不存在反装的问题。如果是反装,就是人为的错误,当然就会纠正。平衡阀属于调节阀范畴,它的工作原理是通过改变阀芯与阀座的间隙(即开度),改变流体流经阀门的流通阻力,达到调节流量的目的。平衡阀相当于一个局部阻力可以改变的节流元件,对不可压缩流体,由流量方程式可得。 Kv为平衡阀的阀门系数。它的定义是:当平衡阀前后差压为1bar(约1kgf/cm2)时,流经平衡阀的流量值(m3/h)。平衡阀全开时的阀门系数相当于普通阀门的流通能力。如果平衡阀开度不变,则阀门系数Kv不变,也就是说阀门系数Kv由开度而定。通过实测获得不同开度下的阀门系数,平衡阀就可做为定量调节流量的节流元件。 在管网平衡调试时,用软管将被调试的平衡阀的测压小阀与专用智能仪表连接,仪表可显示出流经阀门的流量值(及压降值),经与仪表人机对话,向仪表输入该平衡阀处要求的流量值后,仪表通过计算、分析、得出管路系统达到水力平衡时该阀门的开度值。平衡阀属于调节阀范畴,它的工作原理是通过改变阀芯与阀座的间隙,改变流体流经阀门的流通阻力,达到调节流量的目的。 1.不应随意变动平衡阀开度管网系统安装完毕,并具备测试条件后,使用专用智能仪表对全部平衡阀进行调试整定,并将各阀门开度锁定,使管网实现水力工况平衡。在管网系统正常运行过程中,不应随意变动平衡阀的开度,特别是不应变动开度锁定装置。 2.不必再安装截止阀。在检修某一环路时,可将该环路上的平衡阀关闭,此时平衡阀起到截止阀截断水流的作用,检修完毕后再回复到原来锁定的位置。因此安装了平衡阀,就不必再安装截止阀。 3.系统增设(或取消)环路时应重新调试整定在管网系统中增设(或取消)环路时,除应增加(或关闭)相应的平衡阀之外,原则上所有新设的平衡阀及原有系统环路中的平衡阀均应重新调试整定(原环路中支管平衡阀不必重新调整)。在空调及采暖系统中,作为输配能量的水循环系统的水力平衡是非常重要的。一个平

如何对汽轮机的进行单阀和顺序阀进行切换

?如何对汽轮机的进行单阀和顺序阀进行切换在实际的工作中,为了进一步提高汽轮机的使用效率,经常会 需要对汽轮机进行单阀和顺序阀的切换,但是在操作的过程中,经常会发生各种各样的问题,因此本文就简单介绍如何对汽轮机进行单阀和顺序阀的切换。 单阀方式下,蒸汽通过高压调节阀和喷嘴室,在360°全周进入调节级动叶,调节级叶片加热均匀,有效地改善了调节级叶片的应力分配,使机组可以较快改变负荷;但由于所有调节阀均部分开启,节 流损失较大。 假设阀门切换过程中汽机运行工况稳定,即真空和主蒸汽参数不变,不考虑抽汽的影响,汽机的负荷仅由蒸汽流量决定,而各个调节阀所控制的流量也只和阀门开度有关,那么可以认为汽机负荷进仅是阀门开度的单函数。单阀系数乘以单阀开度指令与顺序阀系数乘以顺序阀开度指令相加后得到的就是各个阀门实际的开度指令。单阀指令和顺序阀指令是当前负荷指令分别经过单阀曲线和顺序阀曲线转换 后得出的。 在实际的阀门切换过程中,上述分析中的假设条件是难以成立的,所以不可避免地会有负荷扰动;但如果投入闭环控制,负荷扰动在一 定程度上可以得到改善,即如果投入功率闭环回路,当实际功率与负荷设定值相差大于4%时,切换自动中止;当负荷调节精度达到3%以 内时,切换又自动恢复。投入调节级压力控制回路与此类似。 对于定压运行带基本负荷的工况,调节阀接近全开状态,这时节

流调节和喷嘴调节的差别很小,单阀/顺序阀切换的意义不大。对于滑压运行调峰的变负荷工况,部分负荷对应于部分压力,调节阀也近似于全开状态,这时阀门切换的意义也不大。对于定压运行变负荷工况,在变负荷过程中希望用节流调节改善均热过程,而当均热完成后,又希望用喷嘴调节来改善机组效率,因此这种工况下要求运行方式采用单阀/顺序阀切换来实现两种调节方式的无扰切换。 电力工作者在实际的工作中,需要不断总结经验,掌握汽轮机单阀和顺序阀间切换的规律,保障汽轮机即高效又安全的运行。

单阀顺序阀切换

单阀/顺序阀切换的目的是为了提高机组的经济性和快速性,实质是通过喷嘴的节流配汽(单阀控制)和喷嘴配汽(顺序阀控制)的无扰切换,解决变负荷过程中均匀加热与部分负荷经济性的矛盾。单阀方式下,蒸汽通过高压调节阀和喷嘴室,在360°全周进入调节级动叶,调节级叶片加热均匀,有效地改善了调节级叶片的应力分配,使机组可以较快改变负荷;但由于所有调节阀均部分开启,节流损失较大。顺序阀方式则是让调节阀按照预先设定的次序逐个开启和关闭,在一个调节阀完全开启之前,另外的调节阀保持关闭状态,蒸汽以部分进汽的形式通过调节阀和喷嘴室,节流损失大大减小,机组运行的热经济性得以明显改善,但同时对叶片存在产生冲击,容易形成部分应力区,机组负荷改变速度受到限制。因此,冷态启动或低参数下变负荷运行期间,采用单阀方式能够加快机组的热膨胀,减小热应力,延长机组寿命;额定参数下变负荷运行时,机组的热经济性是电厂运行水平的考核目标,采用顺序阀方式能有效地减小节流损失,提高汽机热效率。 对于定压运行带基本负荷的工况,调节阀接近全开状态,这时节流调节和喷嘴调节的差别很小,单阀/顺序阀切换的意义不大。对于滑压运行调峰的变负荷工况,部分负荷对应于部分压力,调节阀也近似于全开状态,这时阀门切换的意义也不大。对于定压运行变负荷工况,在变负荷过程中希望用节流调节改善均热过程,而当均热完成后,又希望用喷嘴调节来改善机组效率,因此这种工况下要求运行方式采用单阀/顺序阀切换来实现两种调节方式的无扰切换。 假设阀门切换过程中汽机运行工况稳定,即真空和主蒸汽参数不变,不考虑抽汽的影响,汽机的负荷仅由蒸汽流量决定,而各个调节阀所控制的流量也只和阀门开度有关,那么可以认为汽机负荷进仅是阀门开度的单函数。单阀系数乘以单阀开度指令与顺序阀系数乘以顺序阀开度指令相加后得到的就是各个阀门实际的开度指令。单阀指令和顺序阀指令是当前负荷指令分别经过单阀曲线和顺序阀曲线转换后得出的。 在实际的阀门切换过程中,上述分析中的假设条件是难以成立的,所以不可避免地会有负荷扰动;但如果投入闭环控制,负荷扰动在一定程度上可以得到改善,即如果投入功率闭环回路,当实际功率与负荷设定值相差大于4%时,切换自动中止;当负荷调节精度达到3%以内时,切换又自动恢复。投入调节级压力控制回路与此类似。上述限制过程对运行人员的操作没有任何要求。这样,阀门切换过程中如果投入功率闭环,则功率控制精度在3%以内;如果投入调节级压力闭环,则调节级压力控制精度在1.5%以内。单阀/顺序阀切换也可以开环进行,显然,此时负荷扰动的大小与阀门特性曲线的准确性及汽机运行工况有关。 在单阀向顺序阀切换过程中或阀门已处于顺序阀方式时,如果汽机跳闸或出现任一个GV紧急状态,即实际阀位和阀定位卡的阀位指令之间偏差大于设定的限值,则强行将阀门置于单阀方式。这种情况下强制成单阀方式可以减小负荷扰动。

空调水系统平衡阀合理应用

空调水系统的阻力平衡是保证空调系统正常、有效运行的前提,以较低的能耗,获得舒适的室内环境,是暖通设计者比较关心重视的问题。为了达到水系统的阻力平衡,设计师一般尽可能采用同程式水系统,倘若条件不允许时则采用异程式水系统,此时系统可能存在水力平衡失调。当各分区环路采用同程式系统时,各系统环路间也可能存在严重的阻力不平衡而导致水力平衡失调。因此必须通过各种调节手段使系统达到平衡。近年来,平衡阀因其较为完备的功能和良好的调节性能,正在越受重视和欢迎。许多设计师在设计水系统时倾向于使用平衡阀来进行水力平衡,但笔者发现,在很多工程中,平衡阀的设置不尽合理,设计人员对各种平衡阀的应用场合考虑不周。本文从平衡阀的原理入手介绍在工程实践中如何合理地选择平衡阀及相应的系统形式。 1平衡阀的工作原理 水力平衡设备可分为静态水力平衡设备和动态水力平衡设备。静态水力平衡设备主要有静态平衡阀,动态水力平衡设备主要有动态流量平衡阀、动态压差控制阀、动态平衡电动二通开关阀、组合式或一体式动态平衡电动调节阀等。 静态平衡阀在水系统中的作用主要是消除静态水力失调、使系统实现静态水力平衡。动态水力平衡设备在水系统中的作用主要是消除动态水力失调,使系统实现动态水力平衡。 1.1 静态平衡阀 静态平衡阀亦称为手动平衡阀或手动调节阀,是可进行流量测定和调节的阀门,其操作方式是人工手动调节。该平衡阀原理为可变流量的孔板,并带有关断功能。通过测量阀门前后测量孔的压降,结合阀门开度的读数,便能换算出阀门调节后的流量。静态平衡阀实质上是一个具有明确的“流量-压差-开度”关系、清晰可调的开度指示以及良好调节特性的阻尼调节元件。 1.2 动态流量平衡阀 动态流量平衡阀亦称自力式流量控制阀、定流量平衡阀等,是一种在阀体前后一定的压差范围内能自动保持管道的流量始终不变的阀门。 其工作原理:q=k √△p。通过改变平衡阀的阀芯的过流面积来适应阀门前后压 v 差(如图1所示)的变化,从而达到控制流量的目的。即在一定压差范围内无论阀门入口流量如何变化均可保证其出口流量恒定。它相当于一个局部阻力可变的节流元件,该元件由可变过流面积的阀胆和高精度(±5%)的弹簧及支撑装置构成。弹簧受压差的作用自动控制阀胆上过流面积的大小,从而使通过阀门的流量恒定。流量值的大小可以根据系统要求进行定制。

电厂汽轮机单阀顺序阀切换的实现

电厂汽轮机单阀/顺序阀切换的实现 作者: 时间: 2010 年 2 月

电厂汽轮机单阀/顺序阀切换的实现 摘要:汽轮机单阀/顺序阀切换的逻辑,是电厂节能降耗的手段之一,本文主要针对汽轮机的单阀/顺序阀切换逻辑的分析、存在问题的提出、分析以及解决过程,及切换功能的实现进行全过程论述。 关键词:单阀顺序阀切换逻辑 一.概述 “十一五”规划明确要求,到2010年我国单位GDP的能耗要比“十五”末期下降20%,衡量一个发电厂经济性的好坏,就是要看它的综合指标——发电成本,即对外供1度电所需的成本费用。火力发电厂汽轮机作为能量转换的中间设备,运行方式的优化是节能降耗的主要手段,对保证机组的安全性和经济性起到关键作用。 **发电厂隶属**,电厂的主要设备是:锅炉采用**锅炉厂高温超高压一次中间再热、单汽包自然循环、****蒸汽锅炉(YG—***/13.74—M),汽轮机采用**汽轮机厂的超高压、单轴、双缸双排汽、一次中间再热、凝汽式汽轮机(N***—**.24/***/***型),发电机是**发电设备厂的WX**Z-073LLT。热控系统主网主要采用DCS集散控制方式,辅网采用PLC控制系统。汽轮机采用DEH控制方式,DEH控制系统为纯电调系统,整套系统采用北京ABB贝利控制有限公司的Symphony控制系统(软硬件由北京ABB贝利控制有限公司提供),液压部分采用常规低压透平油系统。直接由DEH通过电液转换器进行控制调节汽阀油动机,以达到控制汽机转速和负荷的目的。 **积极响应国家的节能降耗的政策,立足于本厂实际,多方面、全方位的实施全厂的节能降耗各项工作。本文重点介绍汽轮机单阀/顺序阀切换功能的实现。 所谓汽机单阀控制方式,是指根据负荷的给定值,经过汽机阀门管理程序的逻辑判断,所有高压调门开启方式相同,且各高调门的开度均一致。因控制汽阀沿汽轮机的径向对称布置,因此这种方式将使汽轮机的高压缸第一级汽室内温度的分布比较均匀,在负荷变化时汽轮机的转子和定子之间的温差最小,减少了机组的热应力,使机组可以承受较大的符合变化率。但是,从机组的运行经济上看,

新型顺序阀及其在液压机上的应用

收稿日期:2000—08—18 作者简介:汪大鹏,男,53岁,副教授,主攻液压传动技术 新型顺序阀及其在液压机上的应用 410003 长沙大学 汪大鹏 刘 白 何晓敏 摘要 介绍了一种新型顺序阀———常开式和复合式顺序阀的结构、原理、特点及其在液压机增速缸增速控制回路中的应用。 关键词 顺序阀 液压机 增速缸 应用 中图分类号 TH137.52+11 新型顺序阀的结构原理 顺序阀是利用液压系统中的压力变化来控制油路的通断,从而实现多个液压元件按一定顺序动作的元件。顺序阀按结构分为直动型和先导型,按控制油来源分又有内控式和外控式,按常态时油口的连通状态又可分为常闭式(传统顺序阀)、常开式和复合式(新型顺序阀,本文即将介绍)。内控式还可以根据控制油来源分为进油口控制式和出油口控制式。而出油口控制式顺序阀如果有常开和常闭两个出油口,又可进一步细分为常开出口内控式与常闭出口内控式。 图1a 所示为传统顺序阀的结构原理图。常态时,油口A 与B 不通,本文称之为常闭式 。 图1 常闭式直动型顺序阀及其图形符号1.调压螺钉 2.弹簧 3.上盖 4.阀体 5.阀芯 6.控制活塞 7.下盖 图2a 所示为新型顺序阀的结构原理图之一。常态时,油口A 与B 相通,阀芯动作后,油口A 与B 变为截止不通,本文称之为常开式。 图3a 所示为新型顺序阀的结构原理图之二。 常态时,油口A 与B 不通,而油口A 与C 相通,本文称之为复合式 。 图2 常开式直动型顺序阀及其图形符号1.调压螺钉 2.弹簧 3.上盖 4.阀体 5.阀芯 6.控制活塞 7. 下盖 图3 复合式直动型顺序阀及其图形符号1.调压螺钉 2.弹簧 3.上盖 4.阀 体 5.阀芯 6.控制活塞 7.下盖 该三种顺序阀,当压力油由进油口A 经阀体4 24 锻压机械 1/2001 DOI :10.16316/j .issn .1672-0121.2001.01.015

平衡阀介绍及其工作原理

暖通空调系统 一、暖通空调系统常见得几种水力平衡设备:?暖通空调系统常见得水力平衡设备主要有用于消除静态水力失调、实现静态水力平衡得静态水力平衡阀与用于消除动态水力失调、实现动态水力平衡得动态压差平衡阀、动态流量平衡阀、动态平衡电动开关阀、“动态压差平衡阀与电动调节阀组合"以及一体式动态平衡电动调节阀等。?1、静态平衡阀: 静态平衡阀就是消除暖通空调水系统静态水力失调、实现静态水力平衡得主要设备、?静态平衡阀实质上就是一个具有明确得“流量—压差-开度”关系、清晰可调得开度指示以及良好调节特性得阻尼调节元件。?在暖通空调水系统中,静态平衡阀保证得不就是系统中单个管道得流量值,它要维持得就是在系统初调试时,通过静态平衡阀得调节作用,使系统中各个管路得流量比值与设计流量得比值一致,这样当系统得总流量等于设计总流量时,各个末端设备及管道得流量也同时达到设计流量、?静态平衡阀主要应用于系统分集水器、分支管道以及末端设备处。 2、动态压差平衡阀:?动态压差平衡阀就是消除暖通空调系统动态水力失调、实现动态平衡得主要设备之一、?动态压差平衡阀具有关键点定压差功能,它通过阀门内部得自力式机构,能自动地将系统两个关键点之间得压差恒定在设定压差值。?基于全面水力平衡系统对分系统定压、分级定压以及设备定压得要求,动态压差平衡阀广泛地应用在系统主管、分支管道以及各种末端设备处。? 3、动态流量平衡阀: 动态流量平衡阀就是消除系统动态水力失调得设备之一。 动态流量平衡阀实质就是在一定得压差范围内维持管道得流量始终不变,流量值得大小可以根据系统要求进行定制,因此它又叫做“定流量平衡阀”。?动态流量平衡阀主要应用于水力系统中要求保持流量不变得管道,如冷水机组冷冻、冷却水管以及采用变风量调节系统制冷供热量得末端设备管道处、?4、动态平衡电动开关阀: 动态平衡电动开关阀就是暖通空调水系统消除动态水力失调、实现动态平衡得主要设备之一、?动态平衡电动开关阀具有动态平衡与电动开关功能,当阀门开启时,它能动态地将管道得实际流量恒定在设计流量值,并不受系统压力波动得影响。?动态平衡电动开关阀主要应用于风机盘管处,一方面,它具有传统电动开关阀得电动开关功能;另一方面,它又能在阀门开启时将流量始终恒定在风机盘管得设计流量、 5、“动态压差平衡阀与电动调节阀”组合:?动态压差平衡阀与电动调节阀组合就是暖通空调水系统消除动态水力失调、实现动态平衡得主要设备之一。 动态压差平衡阀与电动调节阀组合既具有动态平衡功能,即能动态地平衡系统得压力波动,使流经管道得流量不受系统压力波动得影响,又具有电动调节功能,即能根据目标区域得负荷变化自动地调节开度从而调节流量值,保证目标区域得温度始终恒定在设定温度。 动态压差平衡阀与电动调节阀组合主要应用于空调箱、空气处理机组与新风机组等处。?6、一体式动态平衡电动调节阀:

减压阀的工作原理

本文为大家介绍的是减压阀的工作原理,首先介绍减压阀的定义,所谓的减压阀是通过调节,将进口压力减至某一需要的出口压力,并依靠介质本身的能量,使出口压力自动保持稳定的阀门。从流体力学的观点看,减压阀是一个局部阻力可以变化的节流元件,即通过改变节流面积,使流速及流体的动能改变,造成不同的压力损失,从而达到减压的目的。然后依靠控制与调节系统的调节,使阀后压力的波动与弹簧力相平衡,使阀后压力在一定的误差范围内保持恒定。 下面我们通过减压阀的三个结构分别为大家介绍减压阀的工作原理。 减压阀是气动调节阀的一个必备配件,主要作用是将气源的压力减压并稳定到一个定值,以便于调节阀能够获得稳定的气源动力用于调节控制。按结构形式可分为薄膜式、弹簧薄膜式、活塞式、杠杆式和波纹管式;按阀座数目可分为单座式和双座式;按阀瓣的位置不同可分为正作用式和反作用式。 减压阀的工作原理 一组合式减压阀的内部结构 1、组合式减压阀自动调节原理: 组合式减压阀是一种在复杂多变的工况下亦可利用水压进行自我调节的减压阀稳压阀,在进口压力和流量产生变化的时候保持出口的压力和流量稳定。其完全实现自力控制,调试简单,运行可靠。 2、组合式减压阀的双反馈切换的工作原理: 组合式减压阀的反馈系统是根据减压阀出口压力的变化信号来控制过流面积(节流锥开度)的独立系统。减压阀装备有互为备用的双反馈系统,启用A系统即停用B系统的运行模式可以达到减压阀不停机检修的目的。 3、组合式减压阀反冲排污的工作原理: 水电站的运行工况比较复杂,尤其水质的好坏直接关系到设备的安全运行。针对泥沙含量较大的水电站,除了在减压阀的过流位置采用不锈钢材质并堆焊镍基合金防磨蚀外,减压阀的反冲排污装置亦能有效地防止反馈控制系统的堵塞,使减压阀在多泥沙杂物的水质中保持良好的工况。(反冲排污系统标配为手动控制,根据水质实际情况把握反冲排污频率,或直接

平衡阀和差压阀原理

1.基础知识 一个局部阻力可以改变的节流元件,对不可压缩流体,由流量方程式可得: 式中:Q--流经平衡阀的流量 ξ--平衡阀的阻力系数 P1--阀前压力P2--阀后压力 F--平衡阀接管截面积 ρ--流体的密度 由上式可以看出,当F一定(即对某一型号的平衡阀),阀门前后压降P1-P2不变时,流量Q仅受平衡阀阻力影响而变化。ξ增大(阀门关小时),Q减小;反之,ξ减小(阀门开大时),Q增大。 平衡阀就是以改变阀芯的开度来改变阻力系数,达到调节流量的目的。 Kv为平衡阀的阀门系数。 它的定义是:当平衡阀前后差压为1bar(约1kgf/cm2)时,流经平衡阀的流量值(m3/h)。 平衡阀全开时的阀门系数相当于普通阀门的流通能力。 如果平衡阀开度不变,则阀门系数Kv不变,也就是说阀门系数Kv由开度而定。 通过实测获得不同开度下的阀门系数,平衡阀就可做为定量调节流量的节流元件。在管网平衡调试时,用软管将被调试的平衡阀的测压小阀与专用智能仪表连接,仪表可显示出流经阀门的流量值(及压降值),经与仪表人机对话,向仪表输入该平衡阀处要求的流量值后,仪表通过计算、分析、得出管路系统达到水力平衡时该阀门的开度值。 2.差压阀: 作用:差压阀在密封油系统中用以调整空侧密封油压,使之与发电机内气

体压力始终保持一定的压差。 结构和工作原理: 此阀门是通过输入信号的差值变化带动滑杆上下移动,而改变阀门的开度,以起到对油压的调节作用。 密封油系统通常设有二只差压阀,一只差压阀即空侧油调压阀,它接于空侧油泵的进口与出口之间,起旁路调压作用,信号分别取自机内氢气压力和空侧密封油压,该阀门可以根据信号来源的压力变化自动调节旁路的流量,从而保证空侧密封油压始终高于机内氢压0.084MPa。另一只差压阀即空侧油备用调压阀,它接于空侧高压和低压备用密封油管路中,信号分别取自发电机内氢压和空侧密封油压,通过调节备用密封油流量来保证备用空侧密封油压力始终高于机内气体压力0.056MPa。 密封油系统中差压阀的工作原理? 答:压差阀的活塞上面引入机内氢气压力(压力为p1),活塞下面引入被调节并输出的空侧密封油(压力为p),活塞自重及其配重片重量(或调节弹簧)之和为p2(可调节),则使p=p1+p2(上下力平衡)。当机内氢气压力p1上升时,作用于活塞上面的总压力(p1+p2)增大,使活塞向下移动,加大三角形工作油孔的开度,使空侧油量增加,则进入空侧密封瓦的油压随之增加,直到达到新的平衡;当机内氢气压力p1下降时,动作相反。 3.平衡阀: 平衡阀的工作原理:平衡阀属于调节阀范畴,它的工作原理是通过改变阀芯与阀座的间隙,改变流体流经阀门的流通阻力,达到调节流量的目的。平衡阀相当于 4.总结: 差压阀的控制器上面是氢气的压力,下面是密封油,通过连杆控制阀门开度,当氢气的压力高时,阀门关小,相当于关小再循环一样,密封油油压升高~压差低时,动作相反,从而保证机内氢压和空侧密封油压差压在0.084MPa范围内(正常运行),当高压备用油源作为空侧密封油时,保证机内氢压和空侧密封油压差压在0.056MPa范围内。当空侧直流油泵启动,作为空侧密封油时,保证机内氢压和空侧密封油压差压在0.084MPa范围内,这个差压通过负重或者可调弹簧来实现。

平衡阀介绍及其工作原理

一、暖通空调系统常见的几种水力平衡设备: 暖通空调系统常见的水力平衡设备主要有用于消除静态水力失调、实现静态水力平衡的静态水力平衡阀和用于消除动态水力失调、实现动态水力平衡的动态压差平衡阀、动态流量平衡阀、动态平衡电动开关阀、“动态压差平衡阀与电动调节阀组合”以及一体式动态平衡电动调节阀等。 1、静态平衡阀: 静态平衡阀是消除暖通空调水系统静态水力失调、实现静态水力平衡的主要设备。 静态平衡阀实质上是一个具有明确的“流量-压差-开度”关系、清晰可调的开度指示以及良好调节特性的阻尼调节元件。 在暖通空调水系统中,静态平衡阀保证的不是系统中单个管道的流量值,它要维持的是在系统初调试时,通过静态平衡阀的调节作用,使系统中各个管路的流量比值与设计流量的比值一致,这样当系统的总流量等于设计总流量时,各个末端设备及管道的流量也同时达到设计流量。 静态平衡阀主要应用于系统分集水器、分支管道以及末端设备处。 2、动态压差平衡阀: 动态压差平衡阀是消除暖通空调系统动态水力失调、实现动态平衡的主要设备之一。 动态压差平衡阀具有关键点定压差功能,它通过阀门内部的自力式机构,能自动地将系统两个关键点之间的压差恒定在设定压差值。 基于全面水力平衡系统对分系统定压、分级定压以及设备定压的要求,动态压差平衡阀广泛地应用在系统主管、分支管道以及各种末端设备处。 3、动态流量平衡阀: 动态流量平衡阀是消除系统动态水力失调的设备之一。 动态流量平衡阀实质是在一定的压差范围内维持管道的流量始终不变,流量值的大小可以根据系统要求进行定制,因此它又叫做“定流量平衡阀”。 动态流量平衡阀主要应用于水力系统中要求保持流量不变的管道,如冷水机组冷冻、冷却水管以及采用变风量调节系统制冷供热量的末端设备管道处。 4、动态平衡电动开关阀: 动态平衡电动开关阀是暖通空调水系统消除动态水力失调、实现动态平衡的主要设备之一。动态平衡电动开关阀具有动态平衡和电动开关功能,当阀门开启时,它能动态地将管道的实际流量恒定在设计流量值,并不受系统压力波动的影响。 动态平衡电动开关阀主要应用于风机盘管处,一方面,它具有传统电动开关阀的电动开关功能;另一方面,它又能在阀门开启时将流量始终恒定在风机盘管的设计流量。 5、“动态压差平衡阀与电动调节阀”组合: 动态压差平衡阀与电动调节阀组合是暖通空调水系统消除动态水力失调、实现动态平衡的主要设备之一。 动态压差平衡阀与电动调节阀组合既具有动态平衡功能,即能动态地平衡系统的压力波动,

顺序动作回路工作原理

顺序动作回路 顺序动作回路的作用是保证执行元件按照预定的先后次序完成各种动作。按照控制方式不同,可以分为行程控制和压力控制两种。 1.行程控制顺序动作回路 图7.32为行程阀控制的动作回路,在图示状态下,1, 2两油缸活塞均在左端。当推动手柄,使阀3左位工作,缸1的活塞右行,完成动作①;当缸1的活塞运动到终点后挡块压下行程阀4,缸2右行,完成动作②;手动换向阀C复位后,实现动作③;随着挡块的后移,阀4复位,缸2活塞退回,实现动作④。利用行程阀控制的优点是位置精度高、平稳可靠;缺点是行程和顺序不容易更改 图7. 33为行程开关控制的动作回路,在图示状态下,1, 2两油缸活塞均在左端。电磁阀1YA通电时使阀左位工作,缸I的活塞右行,完成动作①;当缸1的活塞运动到终点后触动行程开关2S,使电磁阀2YA通电换到左位,缸2的活塞右行,完成动作②;当缸2的活塞运动到终点后触动行程开关4S,电磁阀1Y A断电复位,实现动作③;油缸1的活塞运动到终点后触动行程开关15,电磁阀2Y A断电复位,缸2的活塞退回实现动作④。行程开关控制的顺序动作回路优点是位置精度高,调整方便,且可以更改顺序,所以应用较广,适合于工作循环经常要更改的场合。 2.压力控制顺序动作回路 利用液压系统中的工作压力变化控制各个执行元件的顺序动作是液压系统独具的控制特性。压力控制的优点是动作灵敏,安装布置比较方便;缺点是可靠性不高,位置精度低。 图7.34为顺序阀控制的动作回路。当换向阀左位接入回路且顺序阀4的调定压力大于液压缸活塞伸出最大工作压力时,顺序阀4关闭,压力油进入液压缸1的左腔,缸1的右腔经顺序阀3的单向阀回油,实现动作①;当缸1的伸出行程结束到达终点后,压力升高,压力油打开顺序阀4进人液压缸2的左腔,缸2的右腔回油,实现动作②;同样道理,当换向阀右位接入回路且顺序阀3的调定压力大于液压缸活塞缩回最大供油压力时,顺序阀3关闭,压力油进入缸2的右腔,缸2的左腔经顺序阀2的单向阀回油,实现动作③;当液压缸2的缩回行程结束到达终点后,压力升高,压力油打开顺序阀3进入缸1的右腔,缸I的左腔回油,实现动作④。为了保证顺序动作的可靠性,顺序阀的压力调定值应比前一个动作的最大工作压力高出0. 8MPa-1.OMPa,以免系统中的压力波动使顺序阀出现误动作,所以这种回路只适应于油缸数目不多且阻力变化不大的场合。 图7. 35为压力继电器控制的顺序动作回路。其T作过程如下:当电磁铁1YA通电时,

单阀及顺序阀控制

单阀及顺序阀控制汽轮机控制原理 随着发电机组容量的日益扩大,对机组自动化程度要求越来越高,DEH (Digital Ele ctro- Hydraulic ControlSystem,简称DEH)系统作为控制汽轮发电机组功率的一种有效方法其技术日益成熟与完善,顺序阀控制和单阀控制作为DEH 系统控制调节汽门的基本方法,比较而言顺序阀控制方式节能效果明显 汽轮机控制原理,针对单阀及顺序阀控制的特点,重点阐述了DEH 系统两个重要参数优化对机组安全与经济运行的影响,为解决同类型问题提供了参考。 随着发电机组容量的日益扩大,对机组自动化程度要求越来越高,DEH (Digital Electro-Hydraulic ControlSystem,简称DEH)系统作为控制汽轮发电机组功率的一种有效方法其技术日益成熟与完善,顺序阀控制和单阀控制作为DEH 系统控制调节汽门的基本方法,比较而言顺序阀控制方式节能效果明显,能为电厂带来更大的经济效益,所以顺序阀控制方式越来越来被电厂所采纳与使用。顺序阀控制按照设定的高压调节汽门(GovernorValve,简称GV)开启顺序,对汽轮机流量指令进行计算与分配,通过按顺序调节汽轮机阀门开度进而调节汽轮机进汽流量,最终达到精确控制机组功率的目的。 1 凸轮曲线原理 从1 看出,不管是在单阀还是顺序阀控制方式,都要对阀门开度进行凸轮曲线修正,这是因为调节汽门在开启过程中,流量与阀门开度不是完全的线性对应关系,当阀门小开度、阀前/ 阀后大压差时,调节汽门内蒸汽为临界流动,此时通过调节汽门的流量线性地正比于调节汽门的开度。随着调节汽门继续开大,虽然汽门的通流面积在增大,但汽门前后的压差减小,蒸汽流量随阀门开度增大的趋势变缓。所以,即使汽门升程继续加大,由于受汽门喉部尺寸限制,蒸汽流量增加已很小。通常认为:汽门前后的压力比p(门前)/p(门后)为0.95~0.98 时,即认为汽门已全开。因此,理想情况下,应当在调节汽门接近全开时,通过阀位传动机构非线性变换,增大调节汽门升程相对于油动机行程的变化率,以校正调节汽门接近全开时流量的非线性特性。但现在厂家已基本不用凸轮或楔形斜面传动机构进行流量校正,阀门反馈装置几乎全采用直行程的LVDT(线性差动传感器)。为解决位与流量的非线性带给调节系统的影响,通常在DEH 系统内部设置电凸轮曲线进行修正,达到改变流量指令与阀门开度关系的目的。在调汽门的升程达到电凸轮拐点后,通过改变阀位指令将阀门快开至全开位置,以补充调节汽门开启不足产生的流量不足。 2 凸轮曲线修改对协调控制的影响 国华太电2×600 MW 超临界汽轮机由上海汽轮机有限公司(STC)与西门子西屋(SWPC)联合设计制造,为超临界、一次中间再热、单轴、三缸、四排汽凝汽式汽轮机,设计共有四个高压调节汽门(分别定义为GV1、GV2、GV3、GV4),在机组投产初期DEH 系统采用单阀控制,协调控制系统(CCS,coordination control system)采用滑压运行方式,在运行过程中(尤其在变负荷阶段)发现高压调门很容易进入设定的电凸轮曲线拐点区,调门一旦进入拐点区后变化速率非常快,加之电凸轮曲线没有经过试验验证,实际流量与初始设计值差别较大,高压调门来回大范围波动造成调

4号机组单阀切至顺序阀的安全技术措施

4号机组单阀切至顺序阀的安全技术措施 编写: 审核: 批准: 开滦协鑫发电有限公司 二〇一六年六月二十日

4号机组单阀切至顺序阀的安全技术措施我厂4号机组从2015年4月30日19:45首次并网至2016年6月20日09:00,累计运行时间达到180天,计划在2016年06月21日将汽轮机的进汽方式由单阀切至顺序阀运行。 1.单阀、顺序阀规定 1)哈尔滨汽轮机厂规定机组在最初六个月的运行期间,为了提高 调节级叶片的可靠性,汽轮机应采用全周进汽,即单阀控制方 式,蒸汽通过高压调节汽门和喷嘴室,在360°全周进入调节 级动叶,调节级叶片加热均匀、温度较高,有效的改善了调节 级叶片的应力分配,使机组可以较快改变负荷,但单阀运行期 间由于所有高压调节汽门均部分开启,节流损失较大。 2)机组运行六个月后,所有控制装置已经准确投运,所有系统工 作正常时,可将汽轮机的进汽方式切换至顺序阀运行,蒸汽以 部分进汽的形式通过高压调节汽门和喷嘴室,高压调节汽门节 流损失大大减小,机组运行的热经济性明显改善,但顺序阀运 行同时会使调节级叶片处于最恶劣的工作条件下运行,容易形 成部分应力区,机组负荷改变速度受到限制,在部分负荷下, 与单阀运行相比较,调节级承受较大的机械载荷和压降。 3)我厂顺序阀运行时高压调节汽门的开启顺序为GV#1/GV#2→ GV#3→GV#4,即GV#1和GV#2同时开启,然后是GV#3,GV#4 最后开启。关闭顺序与此相反。汽轮机高压调节汽门布置见下 图:

汽机高压缸汽门布置 (由机头向发电机方向看) 2.单阀/顺序阀切换注意事项 1)单阀/顺序阀切换过程中,为尽量减少负荷扰动和对锅炉燃烧 的影响,应将机炉协调切至基本方式,投入DEH功率回路,在 功率回路投入方式下进行切换,切换过程中功率控制精度在 3%以内;单阀/顺序阀切换也可在DEH开环状态(即操作员自 动方式)下进行,但负荷扰动较大,负荷扰动的大小与阀门特 性曲线的准确性及汽机运行工况有关。 2)进行单阀/顺序阀切换操作时,应选择机组负荷在180MW~ 200MW期间进行,切换过程中保持负荷稳定、锅炉燃烧稳定。 3)单阀/顺序阀切换过程中及顺序阀运行期间,应密切监视功率、 主蒸汽压力、汽包水位、轴承振动(特别是#1、#2轴承振动)、轴承金属温度(特别是#1、#2轴承金属温度)、轴向位移、推 力轴承金属温度、胀差、调节级蒸汽压力、调节级蒸汽温度、 调节级金属温度等参数的变化情况,切换过程中就地安排专人 监视高调门动作情况,发现异常时应及时将顺序阀切回单阀运

液压平衡阀的工作原理

液压平衡阀的工作原理 标签:平衡阀动态流量平衡阀阀门系数水力平衡 平衡阀是一种特殊功能的阀门,它具有良好的流量特性,有阀门开启度指示,开度锁定装置及用于流量测定的测压小阀。利用专用智能仪表,输入阀门型号和开度值,根据测得的压差信号就可直接显示出流经该平衡阀的流量值,只要在各支路及用户入口装上适当规格的平衡阀,并用专用智能仪表进行一次性调试,就可使各用户的流量达到设定值。平衡阀是在水力工况下,起到动态、静态平衡调节的阀门。如:静态平衡阀,动态平衡阀。静态平衡阀亦称平衡阀、手动平衡阀、数字锁定平衡阀、双位调节阀等,它是通过改变阀芯与阀座的间隙(开度),来改变流经阀门的流动阻力以达到调节流量的目的,其作用对象是系统的阻力,能够将新的水量按照设计计算的比例平衡分配,各支路同时按比例增减,仍然满足当前气候需要下的部份负荷的流量需求,起到热平衡的作用。动态平衡阀分为动态流量平衡阀,动态压差平衡阀,自力式自身压差控制阀等.平衡阀属于调节阀范畴,它的工作原理是通过改变阀芯与阀座的间隙(即开度),改变流体流经阀门的流通阻力,达到调节流量的目的。平衡阀相当于一个局部阻力可以改变的节流元件,对不可压缩流体,由流量方程式可得。与其它阀门相比,平衡阀主要有以下特点: (1)直线型流量特性,即在阀门前后压差不变情况下,流量与开度大体上成线性关系; (2)有精确的开度指示; (3)有开度锁定装置,非管理人员不能随便改变开度;表连接,可方便地显示阀门前后的压差及流经阀门的流量。尽管平衡阀具有很多优点,但它在空调水系统的应用还存在不少问题。如果这些问题解决不好,平衡阀的特点并不能充分显现出来。平衡阀的作用是为了调节系统内,各个分配点的(如每一个楼座)的预定流量。每一座楼的入口处都安装平衡阀,可以使供暖系统的总流量得到合理分配。 平衡阀的原理是阀体内的反调节,当入口处压力加大时,自动减小通径,减少流量的变化,反之亦然。如果反接,这套调节系统就不起作用。而且起调节作用的阀片,是有方向性的,反向的压力甚至可以减少甚至封闭流量。既然安装平衡阀是为了更好的供暖,就不存在反装的问题。如果是反装,就是人为的错误,当然就会纠正。平衡阀属于调节阀范畴,它的工作原理是通过改变阀芯与阀座的间隙(即开度),改变流体流经阀门的流通阻力,达到调节流量的目的。平衡阀相当于一个局部阻力可以改变的节流元件,对不可压缩流体,由流量方程式可得。 Kv为平衡阀的阀门系数。它的定义是:当平衡阀前后差压为1bar(约1kgf/cm2)时,流经平衡阀的流量值(m3/h)。平衡阀全开时的阀门系数相当于普通阀门的流通能力。如

相关主题
文本预览
相关文档 最新文档