天线辐射方向图及其matlab仿真
- 格式:pdf
- 大小:1.15 MB
- 文档页数:56
阵列天线方向图的MATLAB 实现课程名称:MATLAB程序设计与应用任课教师:周金柱班级:04091202姓名:黄文平学号:04091158成绩:阵列天线方向图的MATLAB 实现摘要:天线的方向性是指电磁场辐射在空间的分布规律,文章以阵列天线的方向性因子F(θ,φ)为主要研究对象来分析均匀和非均匀直线阵天线的方向性。
讨论了阵列天线方向图中主射方向和主瓣宽度随各参数变化的特点,借助M ATLAB绘制出天线方向性因子的二维和三维方向图,展示天线辐射场在空间的分布规律,表现辐射方向图的特点。
关键词:阵列天线;;方向图;MATLAB前言:天线是发射和接收电磁波的重要的无线电设备,没有天线也就没有无线电通信。
不同用途的天线要求其有不同的方向性,阵列天线以其较强的方向性和较高的增益在工程实际中被广泛应用。
因此,对阵列天线方向性分析在天线理论研究中占有重要地位。
阵列天线方向性主要由方向性因子F(θ,φ)表征,但F(θ,φ)在远区场是一组复杂的函数,如果对它的认识和分析仅停留在公式中各参数的讨论上,很难理解阵列天线辐射场的空间分布规律[ 1 ]。
MATLAB以其卓越的数值计算能力和强大的绘图功能,近年来被广泛应用在天线的分析和设计中。
借助MATLAB可以绘制出阵列天线的二维和三维方向图,直观地从方向图中看出主射方向和主瓣宽度随各参数的变化情况,加深对阵列天线辐射场分布规律的理解。
1 均匀直线阵方向图分析若天线阵中各个单元天线的类型和取向均相同,且以相等的间隔d 排列在一条直线上。
且各单元天线的电流振幅均为I,相位依次滞后同一数值琢,那么,这种天线阵称为均匀直线式天线阵,如图1 所示[ 2 ]:均匀直线阵归一化阵因子为[ 3 ]:Fn(θ,φ)是一个周期函数,所以除§= 0 时是阵因子的主瓣最大值外,§= ±2 mπ(m=1,2,...)都是主瓣最大值,这些重复的主瓣称为栅瓣,在实际应用中,通常希望出现一个主瓣,为避免出现栅瓣,必须把g限制在- 2π<§<2π范围内[ 4 ],其中k=λ/2π,即波数,n 表示阵元数目。
clc clear all f=3e9;N1=4;N2=8;N3=12; a=pi/2; % 馈电相位差 i=1; % 天线电流值lambda=(3e8)/f; %lambda=c/f d=lambda/2;beta=2 、 *pi/lambda;W=-2*pi:0 、 001:2*pi; y1=sin((N1 、 *W 、 /2)) 、/(N1 、 y1=abs(y1);r1=max(y1);y2=sin((N2 、 *W 、 /2)) 、/(N2 、 y2=abs(y2);r2=max(y2);y3=sin((N3 、 *W 、 /2)) 、/(N3 、y3=abs(y3);r3=max(y3);%归一化阵因子绘图程序figure(1) subplot(311);plot(W,y1) ; grid on; % 阵因子xlabel('f=3GHz,N=4,d=1/2 波长,a= n /2') subplot(312);plot(W,y2) ; grid on; % 阵因子xlabel('f=3GHz,N=8,d=1/2 波长,a= n /2')subplot(313);plot(W,y3) ; grid on; % 化阵因子 xlabel('f=3GHz,N=12,d=1/2 波长,a= n /2')% --------------- %只有参数N 改变的天线方向图 t=0:0 、0 1 :2*pi; W=a+(beta 、*d 、*cos(t));z1=(N1/2) 、*(W); z2=(1/2) 、*(W);W1=sin(z1) 、/(N1 、*sin(z2)); % 非归一化的阵因子 K1K1=abs(W1);% ---------------天线阵代码波长*(sin(W 、/2))); % *(sin(W 、/2))); % *(sin(W 、/2))); % 归一化阵因子 归一化阵因子 归一化阵因子 绘出N=4等幅等矩阵列的归一化 绘出N=8等幅等矩阵列的归一化 绘出N=12等幅等矩阵列的归一W=a+(beta 、 *d 、*cos(t)); z3=(N2/2) 、 *(W); z4=(1/2) 、*(W);W2=sin(z3) 、/(N2 、*sin(z4)); % 非归一化的阵因子 K2K2=abs(W2);% ------------------W=a+(beta 、 *d 、*cos(t)); z5=(N3/2) 、 *(W); z6=(1/2) 、*(W);W3=sin(z5) 、/(N3 、*sin(z6)); % 非归一化的阵因子 K3K3=abs(W3);% -------------- 绘图函数figure(2)subplot(131);polar(t,K1);xlabel('f=3GHz,N=4,d=1/2 subplot(132);polar(t,K2);xlabel('f=3GHz,N=8,d=1/2 subplot(133);polar(t,K3);xlabel('f=3GHz,N=12,d=1/2 % %只有阵列单元方向角 a 改变的天线方向图N4=10;d1=lambda/4;a1=0;a2=pi/2;a3=pi/2+pi/10;A=a1+(beta 、*d1 、*cos(t)) ; x1=(N4/2) 、*(A); x2=(1/2) 、*(A);A1=sin(x1) 、/(N4 、*sin(x2)); % 非归一化的阵因子 K4 K4=abs(A1);% -------------------B=a2+(beta 、*d1、*cos(t));y_1=(N4/2) 、*(B);y_2=(1/2) 、*(B);B1=sin(y_1) 、/(N4 、 *sin(y_2)) ; % 非归一化的阵因子 K5 K5=abs(B1); % -------------------C=a3+(beta 、*d1、*cos(t));v1=(N4/2) 、*(C);v2=(1/2) 、*(C);C1=sin(v1) 、/(N4 、*sin(v2)); % 非归一化的阵因子 K6 K6=abs(C1);% ------------------- 绘图函数figure(3)subplot(131);polar(t,K4);xlabel('f=3GHz,N=10,d=1/4 subplot(132);polar(t,K5);xlabel('f=3GHz,N=10,d=1/4 subplot(133);polar(t,K6);xlabel('f=3GHz,N=10,d=1/4 长,a= n /2+ n /10');% ------------------------------------------------波长,a= n /2'); 波长,a= n /2'); 波长,a= n 波长,a=0'); 波长,a= n /2');波%只有阵列单元间隔 d 改变的天线方向图N5=20;d2=lambda/4;d3=lambda/2;d4=0 、7*lambda;a4=pi/2;D=a4+(beta 、*d2 、*cos(t));p1=(N5/2) 、*(D);p2=(1/2) 、*(D);D1=sin(p1) 、/(N5 、*sin(p2)); % 非归一化的阵因子 K7K7=abs(D1);% ----------------------E=a4+(beta 、*d3、*cos(t));q1=(N5/2) 、*(E);q2=(1/2) 、*(E);E1=sin(q1) 、/(N5 、*sin(q2)); % 非归一化的阵因子 K8 K8=abs(E1);% ----------------------F=a4+(beta 、*d4、*cos(t));r_1=(N5/2) 、*(F);r_2=(1/2) 、*(F);F1=sin(r_1) 、/(N5 、 *sin(r_2)); % 非归一化的阵因子 K9 K9=abs(F1); % ---------------- 绘图函数figure(4)subplot(131);polar(t,K7);xlabel('f=3GHz,N=20,d=1/4 波长,a= n /2'); subplot(132);polar(t,K8);xlabel('f=3GHz,N=20,d=1/2波长,a= n /2'); subplot(133);polar(t,K9);xlabel('f=3GHz,N=20,d=0% ------------------------------------------------ % ---------------------------- 3D- 天线方向图n_tehta = 130; % ------------- 采样视角点的仰角n_phi = 130; % --------------- 采样点的方向角[tehta,phi]=meshgrid(eps:pi 、/(n_tehta-1):pi, 、、、 %meshgrid为矩形区域的设定范围就是epfvtehtav n 0<phi<2 n0:2*pi 、/(n_phi-1):2*pi) ;t3=tehta; % -------- 只有参数N 改变的天线方向3D 图M=a+(beta 、*d 、*cos(t3)); % --- N1=4;N2=8;N3=12;z_1=(N1/2) 、*(M);z_2=(1/2) 、*(M);M1=sin(z_1) 、/(N1、*sin(z_2)); % 非归一化的阵因子 K1K_1=abs(M1);radio_1 =K_1;X1=radio_1 、*sin(tehta) 、*cos(phi);Y1=radio_1 、*sin(tehta) 、*sin(phi);Z1=radio_1 、*cos(tehta);% ------------------------M=a+(beta 、 *d 、*cos(t3));z_3=(N2/2) 、*(M);z_4=(1/2) 、*(M);7 波长,a= n /2');函数M2=sin(z_3) 、/(N2 、*sin(z_4)); % 非归一化的阵因子K2K_2=abs(M2);radio_2 =K_2;X2=radio_2 、*sin(tehta) 、*cos(phi);Y2=radio_2 、*sin(tehta) 、*sin(phi);Z2=radio_2 、*cos(tehta);% --------------------------M=a+(beta、*d 、*cos(t3));z_5=(N3/2) 、*(M);z_6=(1/2) 、*(M);M3=sin(z_5) 、/(N3 、*sin(z_6)); % 非归一化的阵因子K3K_3=abs(M3);radio_3 =K_3;X3=radio_3 、*sin(tehta) 、*cos(phi);Y3=radio_3 、*sin(tehta) 、*sin(phi);Z3=radio_3 、*cos(tehta);% -------------------------- 3D 绘图函数figure(5)surf(X1,Y1,Z1); % 三维绘图函数surf, 采用伪彩色表示曲面的高度camlight right lightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=4,d=1/2 波长,a= n /2');figure(6) surf(X2,Y2,Z2);camlight rightlightcolorbaraxis imagerotate3D on title('f=3GHz,N=8,d=1/2 波长,a= n /2');figure(7) surf(X3,Y3,Z3)camlight rightlightcolorbaraxis imagerotate3D on title('f=3GHz,N=12,d=1/2 波长,a= n /2');% ---------------------------------% -------------- 只有阵列单元方向角 a 改变的天线方向图N4=10;d1=lambda/4;a1=0;a2=pi/2;a3=pi/2+pi/10;A_3d=a1+(beta、*d1、*cos(t3));x_1=(N4/2) 、*(A_3d);x_2=(1/2) 、*(A_3d);A_1=sin(x_1) 、/(N4 、*sin(x_2)); % 非归一化的阵因子K4 K_4=abs(A_1);radio_4 =K_4;X4=radio_4 、*sin(tehta) 、*cos(phi);Y4=radio_4 、*sin(tehta) 、*sin(phi);Z4=radio_4 、*cos(tehta); %B_3d=a2+(beta 、*d1 、*cos(t3)); y_1_3d=(N4/2) 、*(B_3d);y_2_3d=(1/2) 、*(B_3d);B_1=sin(y_1_3d) 、/(N4 、*sin(y_2_3d)); % 非归一化的阵因子K5 K_5=abs(B_1); radio_5 =K_5;X5=radio_5 、*sin(tehta) 、*cos(phi);Y5=radio_5 、*sin(tehta) 、*sin(phi);Z5=radio_5 、*cos(tehta); %C_3d=a3+(beta、*d1、*cos(t3));v_1=(N4/2) 、*(C_3d);v_2=(1/2) 、*(C_3d);C_1=sin(v_1) 、/(N4 、*sin(v_2)); % 非归一化的阵因子K6 K_6=abs(C_1);radio_6 =K_6;X6=radio_6 、*sin(tehta) 、*cos(phi);Y6=radio_6 、*sin(tehta) 、*sin(phi);Z6=radio_6 、*cos(tehta);% -------------------------figure(8)surf(X4,Y4,Z4); % 三维绘图函数surf, 采用伪彩色表示曲面的高度camlight right lightcolorbaraxis imagerotate3D on title('f=3GHz,N=10,d=1/4 波长,a=0');figure(9) surf(X5,Y5,Z5);camlight rightlight colorbar axis image rotate3D on title('f=3GHz,N=10,d=1/4 figure(10)surf(X6,Y6,Z6) camlight rightlight colorbar axis image rotate3D ontitle('f=3GHz,N=10,d=1/4 波长,a= n /2+ n /10'); %% ------------ 只有阵列单元波长,a= n /2');间隔d改变的天线方向3D图N5=20;d2=lambda/4;d3=lambda/2;d4=0 、7*lambda;a4=pi/2;D_3d=a4+(beta、*d2、*cos(t3));p_1=(N5/2) 、*(D_3d);p_2=(1/2) 、*(D_3d);D_1=sin(p_1) 、/(N5、*sin(p_2)); % 非归一化的阵因子K7K_7=abs(D_1);radio_7 =K_7;X7=radio_7 、*sin(tehta) 、*cos(phi);Y7=radio_7 、*sin(tehta) 、*sin(phi);Z7=radio_7 、*cos(tehta);% ----------------------------E_3d=a4+(beta、*d3、*cos(t3));q_1=(N5/2) 、*(E_3d);q_2=(1/2) 、*(E_3d);E_1=sin(q_1) 、/(N5 、*sin(q_2)); % 非归一化的阵因子K8K_8=abs(E_1);radio_8 =K_8;X8=radio_8 、*sin(tehta) 、*cos(phi);Y8=radio_8 、*sin(tehta) 、*sin(phi);Z8=radio_8 、*cos(tehta);% ------------------------------F_3d=a4+(beta 、*d4、*cos(t3));r_1_3d=(N5/2) 、*(F_3d);r_2_3d=(1/2) 、*(F_3d);F_1=sin(r_1_3d) 、/(N5 、*sin(r_2_3d)); % 非归一化的阵因子K9K_9=abs(F_1);radio_9 =K_9;X9=radio_9 、*sin(tehta) 、*cos(phi);Y9=radio_9 、*sin(tehta) 、*sin(phi);Z9=radio_9 、*cos(tehta);% -------------------------figure(11)surf(X7,Y7,Z7); % 三维绘图函数surf, 采用伪彩色表示曲面的高度camlight right lightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=20,d=1/4 波长,a= n /2'); figure(12)surf(X8,Y8,Z8);camlight rightlightcolorbaraxis imagerotate3D on title('f=3GHz,N=20,d=1/2 波长,a= n /2');figure(13)surf(X9,Y9,Z9)camlight rightlightcolorbaraxis imagerotate3D on title('f=3GHz,N=20,d=0 、7 波长,a= n /2');二、% ------------ 均匀直线阵列天线的应用之一: 边射阵clcclear allf=3e10; %30GH z,厘米波i=1; % 天线电流值lambda=(3e8)/f; %lambda=c/f 波长beta=2、*pi/lambda;N=15;t=0:0 、01:2*pi;d1=lambda/4; %没有栅瓣效应的边射阵,即间隔d<波长W1=beta、*d1 、*cos(t); % 定义kdcos( 方向角) z1=(N/2) 、*W1; z2=(1/2) 、*W1;F1=sin(z1) 、/(N、*sin(z2));K1=abs(F1);d2=lambda*1、5; %有栅瓣现象的边射阵,即间隔d>波长W2=beta、*d2、*cos(t); % 定义kdcos( 方向角)z3=(N/2) 、*W2;z4=(1/2) 、*W2;F2=sin(z3) 、/(N 、*sin(z4));K2=abs(F2);figure(1)subplot(121);polar(t,K1);title('subplot(122);polar(t,K2);title(' 波长');% ------------ 均匀直线阵列天线的应用之二 : 普通端射阵clc clear all f=3e10; %30GHz, 厘米波 i=1; % 天线电流值lambda=(3e8)/f; %lambda=c/f 波长 beta=2 、 *pi/lambda;N=15;t=0:0 、01:2*pi;d1=lambda/4; % 没有栅瓣效应的普通端射阵 , 即间隔 d<1/2 波长W1=beta 、 *d1 、 *cos(t); % 定义 kdcos( 方向角 ) z1=((N/2) 、*W1)+N/2*beta*d1;z2=((1/2) 、 *W1)+1/2*beta*d1;F1=sin(z1) 、/(N 、*sin(z2));K1=abs(F1); d2=lambda*0、7; %有栅瓣现象的普通端射阵 ,即间隔 d>1/2 波长 W2=beta 、 *d2 、 *cos(t); % 定义 kdcos( 方向角 ) z3=((N/2) 、*W2)+N/2*beta*d2;z4=((1/2) 、 *W2)+1/2*beta*d2;F2=sin(z3) 、/(N 、*sin(z4));K2=abs(F2); figure(2) subplot(121);polar(t,K1);title(' 普通端射阵 f=30GHz,N=15,d=1/4 波长 ');subplot(122);polar(t,K2);title(' 普通端射阵 ( 有栅瓣) f=30GHz,N=15,d=0、7倍波长 ');四% ------------ 均匀直线阵列天线的应用之三 : 强方向性端射阵clc clear all f=3e10; %30GHz, 厘米波 i=1; % 天线电流值lambda=(3e8)/f; %lambda=c/f 波长 beta=2 、 *pi/lambda;N=15;t=0:0 、01:2*pi;d1=lambda/4; % 没有栅瓣效应的强方向性端射阵 , 即间隔 d<(1/2 波 长)*(1-1/N)W1=beta 、 *d1 、 *cos(t); % 定义 kdcos( 方向角 ) z1=((N/2) 、*W1)+N/2*(beta*d1+pi/N);z2=((1/2) 、*W1)+1/2*(beta*d1+pi/N);F1=sin(pi/2/N) 、*sin(z1) 、/(sin(z2));K1=abs(F1);d2=lambda*0、5; %有栅瓣现象的强方向性端射阵,即间隔d>1/2波长*(1-1/N) W2=beta 、 *d2、 *cos(t); % 定义 kdcos( 方向角) z3=((N/2) 、 边射阵 f=30GHz,N=15,d=1/4 波长 '); 边射阵(有栅瓣) f=30GHz,N=15,d=1 、5倍*W2)+N/2*(beta*d2+pi/N);z4=((1/2) 、*W2)+1/2*(beta*d2+pi/N);F2=sin(pi/2/N) 、*sin(z3) 、/(sin(z4));K2=abs(F2);figure(3)subplot(121);polar(t,K1);title(' 强方向性端射阵f=30GHz,N=15,d=1/4 波长');subplot(122);polar(t,K2);title(' 强方向性端射阵(有栅瓣)f=30GHz,N=15,d=0、5倍波长');。
偶极子天线辐射场图——MATLAB动态仿真【摘要】天线遍布于生活中的每一个角落,为了更好地学习天线,本文对直线天线的简单模型——半波偶极子进行分析。
应用MATLAB这个学习软件,对偶极子天线进行了动态仿真,通过结果分析,很好地符合书本中的实验结论,对抽象的天线理论很好地结合到了实际理解当中。
【关键字】偶极子天线元辐射场MATLAB动态仿真偶极子(dipole)定义:指相距很近的符号相反的一对电荷或“磁荷”。
在电磁学的概念里,有两种偶极子:电偶极子和磁偶极子。
电偶极子是两个分隔一段距离,电量相等,正负相反的电荷。
应用有偶极子天线。
磁偶极子是一圈封闭循环的电流,例如一个有常定电流运行的线圈,称为载流回路。
偶极子的性质可以用它的偶极矩描述。
电偶极矩由负电荷指向正电荷,大小等于正电荷量乘以正负电荷之间的距离。
磁偶极矩的方向,根据右手法则,是大拇指从载流回路的平面指出的方向,而其它拇指则指向电流运行方向,磁偶极矩的大小等于电流乘以线圈面积。
而将两个辐射单元(天线元或者阵元),也就是偶极子,按照一定方式排列的列阵天线,如果排列在直线上,称线阵天线(图一),如果排列在一个平面上,则称为面阵天线。
而这里媒质是线性的,根据线性系统的叠加定理,列阵天线的辐射场就是这两个天线元辐射场的矢量和。
并且适当地各天线元激励电流的大小和相位,就可以得到所需的辐射特性。
从而也很好地讨论由相似天线元组成的线阵天线的方向性。
偶极子天线用来发射和接收固定频率的信号。
虽然在平时的测量中都使用宽带天线,但在场地衰减和天线系数的测量中都需要使用偶极子天线。
SCHWARZBECK 偶极子天线的频率范围由30MHz~4GHz。
其中的VHAP和UHAP是一套精确偶极子天线,特别适用于场地衰减和天线系数的测量。
同时该天线为日本VCCI等标准机构指定的电波暗室和开阔场场地衰减测量等的唯一专用天线。
该天线为众多实验室所采用,作为实验室的天线标准。
垂直天线实际上是一种偶极子天线。
微波技术与天线作业电工1001,lvypf(12)1、二元阵天线辐射图matlab实现1)matlab程序:theta = 0 : .01*pi : 2*pi; %确定θ的范围phi = 0 : .01*pi : 2*pi; %确定φ的范围f = input('Input f(Ghz)='); %输入频率fc = 3*10^8; %常量clambda = c / (f*10^9); %求波长λk = (2*pi) / lambda; %求系数kd = input('Input d(m)='); %输入距离dzeta = input('Input ζ='); %输入方向系数ζE_theta=abs(cos((pi/2)*cos(theta))/sin(theta))*abs(cos((k*d*sin(theta)+zeta)/2));%二元阵的E面方向图函数H_phi=abs(cos((k*d*cos(phi)+zeta)/2)); %二元阵的H面方向图函数subplot(2,2,1);polar(theta,E_theta);title('F_E_θ')subplot(2,2,2);polar(phi,H_phi);title('F_H_φ');subplot(2,2,3);plot(theta,E_theta);title('F_E_θ');gridxlim([0,2*pi])subplot(2,2,4);plot(phi,H_phi);gridxlim([0,2*pi])title('F_H_φ');2)测试数据生成的图形:a)f=2.4Ghz,d=lambda/2,ζ=0图1,f=2.4Ghz,d=lambda/2,ζ=0b)f=2.4Ghz,d=lambda/2,ζ=pi图2,f=2.4Ghz,d=lambda/2,ζ=pic)f=2.4Ghz,d=lambda/4,ζ=-pi/2图3,f=2.4Ghz,d=lambda/4,ζ=-pi/22、均匀直线阵matlab实现1)matlab程序:phi = 0 : .01*pi : 2*pi; %确定φ的范围f = input('Input f(Ghz)='); %输入频率fc = 3*10^8; %常量clambda = c / (f*10^9); %求波长λk = (2*pi) / lambda; %求系数kd = input('Input d(m)='); %输入距离dzeta = input('Input ζ='); %输入方向系数ζN = input('Input N=');psai = k*d*cos(phi)+zeta;A_psai = abs((sin(N.*psai./2)./sin(psai./2)))./N;polar(theta,A_psai);title('A_ψ')2)测试数据生成的图形:A.边射阵(ζ=0)a)f=2.4Ghz,d=lambda/2,ζ=0,N=3b)f=2.4Ghz,d=lambda/2,ζ=0,N=4d)f=2.4Ghz,d=lambda/2,ζ=0,N=6f)f=2.4Ghz,d=lambda/2,ζ=0,N=8B.端射阵(ζ=0)a)f=2.4Ghz,d=lambda/2,ζ=-k*d,N=3b)f=2.4Ghz,d=lambda/2,ζ=-k*d,N=4c)f=2.4Ghz,d=lambda/2,ζ=-k*d,N=5d)f=2.4Ghz,d=lambda/2,ζ=-k*d,N=6e)f=2.4Ghz,d=lambda/2,ζ=-k*d,N=7f)f=2.4Ghz,d=lambda/2,ζ=-k*d,N=8。
半波振子天线Matlab 程序:cleardelta=pi/100; theta=0:2*delta:pi; phi=0:2*delta:2*pi;[phi,theta]=meshgrid(phi,theta);rho=(cos((pi/2)*cos(theta)))./(2*pi*sin(theta)); r=rho.*sin(theta); x=r.*cos(phi); y=r.*sin(phi); z=rho.*cos(theta); list=find(y<0); z(list)=nan; surf(x,y,z) axis('square') Xlabel('x') Ylabel('y') Zlabel('z')title('半波振子天线方向图')-0.20.20.2x半波振子天线方向图yz-0.06-0.04-0.0200.020.040.06-0.20.20.2x半波振子天线方向图yz-0.06-0.04-0.0200.020.040.06分析:表征天线方向性的方向因子是方位角theta 及Phi 的),(φθF 函数,使用归一化方向性因子描述方向性比较方便。
其定义为:m),(),(f f F φθφθ=,式中,fm 为方向性因子的最大值。
归一化方向性因子的最大值 Fm=1。
任何天线的辐射场振幅可用归一化方向性因子表示为 ),(|| ||m φθF E E =式中,m ||E 为最强辐射方向上的场强振幅。
利用电流元的远区场公式即可直接计算对称天线的辐射场。
已知电流元z I 'd产生的远区电场强度为r k r z ZI E '-''=j e 2sin d j d λθθ,r k L L r z ZI E '--''=⎰j e2sin d j λθθ, 考虑到r L '<<,可以近似认为rr 11≈'。
clc clear all f=3e9;N1=4;N2=8;N3=12; a=pi/2; % 馈电相位差 i=1; % 天线电流值lambda=(3e8)/f; %lambda=c/f d=lambda/2;beta=2 、 *pi/lambda;W=-2*pi:0 、 001:2*pi; y1=sin((N1 、 *W 、 /2)) 、/(N1 、 y1=abs(y1);r1=max(y1);y2=sin((N2 、 *W 、 /2)) 、/(N2 、 y2=abs(y2);r2=max(y2);y3=sin((N3 、 *W 、 /2)) 、/(N3 、y3=abs(y3);r3=max(y3);%归一化阵因子绘图程序figure(1) subplot(311);plot(W,y1) ; grid on; % 阵因子xlabel('f=3GHz,N=4,d=1/2 波长,a= n /2') subplot(312);plot(W,y2) ; grid on; % 阵因子xlabel('f=3GHz,N=8,d=1/2 波长,a= n /2')subplot(313);plot(W,y3) ; grid on; % 化阵因子 xlabel('f=3GHz,N=12,d=1/2 波长,a= n /2')% --------------- %只有参数N 改变的天线方向图 t=0:0 、0 1 :2*pi; W=a+(beta 、*d 、*cos(t));z1=(N1/2) 、*(W); z2=(1/2) 、*(W);W1=sin(z1) 、/(N1 、*sin(z2)); % 非归一化的阵因子 K1K1=abs(W1);% ---------------天线阵代码波长*(sin(W 、/2))); % *(sin(W 、/2))); % *(sin(W 、/2))); % 归一化阵因子 归一化阵因子 归一化阵因子 绘出N=4等幅等矩阵列的归一化 绘出N=8等幅等矩阵列的归一化 绘出N=12等幅等矩阵列的归一W=a+(beta 、 *d 、*cos(t)); z3=(N2/2) 、 *(W); z4=(1/2) 、*(W);W2=sin(z3) 、/(N2 、*sin(z4)); % 非归一化的阵因子 K2K2=abs(W2);% ------------------W=a+(beta 、 *d 、*cos(t)); z5=(N3/2) 、 *(W); z6=(1/2) 、*(W);W3=sin(z5) 、/(N3 、*sin(z6)); % 非归一化的阵因子 K3K3=abs(W3);% -------------- 绘图函数figure(2)subplot(131);polar(t,K1);xlabel('f=3GHz,N=4,d=1/2 subplot(132);polar(t,K2);xlabel('f=3GHz,N=8,d=1/2 subplot(133);polar(t,K3);xlabel('f=3GHz,N=12,d=1/2 % %只有阵列单元方向角 a 改变的天线方向图N4=10;d1=lambda/4;a1=0;a2=pi/2;a3=pi/2+pi/10;A=a1+(beta 、*d1 、*cos(t)) ; x1=(N4/2) 、*(A); x2=(1/2) 、*(A);A1=sin(x1) 、/(N4 、*sin(x2)); % 非归一化的阵因子 K4 K4=abs(A1);% -------------------B=a2+(beta 、*d1、*cos(t));y_1=(N4/2) 、*(B);y_2=(1/2) 、*(B);B1=sin(y_1) 、/(N4 、 *sin(y_2)) ; % 非归一化的阵因子 K5 K5=abs(B1); % -------------------C=a3+(beta 、*d1、*cos(t));v1=(N4/2) 、*(C);v2=(1/2) 、*(C);C1=sin(v1) 、/(N4 、*sin(v2)); % 非归一化的阵因子 K6 K6=abs(C1);% ------------------- 绘图函数figure(3)subplot(131);polar(t,K4);xlabel('f=3GHz,N=10,d=1/4 subplot(132);polar(t,K5);xlabel('f=3GHz,N=10,d=1/4 subplot(133);polar(t,K6);xlabel('f=3GHz,N=10,d=1/4 长,a= n /2+ n /10');% ------------------------------------------------波长,a= n /2'); 波长,a= n /2'); 波长,a= n 波长,a=0'); 波长,a= n /2');波%只有阵列单元间隔 d 改变的天线方向图N5=20;d2=lambda/4;d3=lambda/2;d4=0 、7*lambda;a4=pi/2;D=a4+(beta 、*d2 、*cos(t));p1=(N5/2) 、*(D);p2=(1/2) 、*(D);D1=sin(p1) 、/(N5 、*sin(p2)); % 非归一化的阵因子 K7K7=abs(D1);% ----------------------E=a4+(beta 、*d3、*cos(t));q1=(N5/2) 、*(E);q2=(1/2) 、*(E);E1=sin(q1) 、/(N5 、*sin(q2)); % 非归一化的阵因子 K8 K8=abs(E1);% ----------------------F=a4+(beta 、*d4、*cos(t));r_1=(N5/2) 、*(F);r_2=(1/2) 、*(F);F1=sin(r_1) 、/(N5 、 *sin(r_2)); % 非归一化的阵因子 K9 K9=abs(F1); % ---------------- 绘图函数figure(4)subplot(131);polar(t,K7);xlabel('f=3GHz,N=20,d=1/4 波长,a= n /2'); subplot(132);polar(t,K8);xlabel('f=3GHz,N=20,d=1/2波长,a= n /2'); subplot(133);polar(t,K9);xlabel('f=3GHz,N=20,d=0% ------------------------------------------------ % ---------------------------- 3D- 天线方向图n_tehta = 130; % ------------- 采样视角点的仰角n_phi = 130; % --------------- 采样点的方向角[tehta,phi]=meshgrid(eps:pi 、/(n_tehta-1):pi, 、、、 %meshgrid为矩形区域的设定范围就是epfvtehtav n 0<phi<2 n0:2*pi 、/(n_phi-1):2*pi) ;t3=tehta; % -------- 只有参数N 改变的天线方向3D 图M=a+(beta 、*d 、*cos(t3)); % --- N1=4;N2=8;N3=12;z_1=(N1/2) 、*(M);z_2=(1/2) 、*(M);M1=sin(z_1) 、/(N1、*sin(z_2)); % 非归一化的阵因子 K1K_1=abs(M1);radio_1 =K_1;X1=radio_1 、*sin(tehta) 、*cos(phi);Y1=radio_1 、*sin(tehta) 、*sin(phi);Z1=radio_1 、*cos(tehta);% ------------------------M=a+(beta 、 *d 、*cos(t3));z_3=(N2/2) 、*(M);z_4=(1/2) 、*(M);7 波长,a= n /2');函数M2=sin(z_3) 、/(N2 、*sin(z_4)); % 非归一化的阵因子K2K_2=abs(M2);radio_2 =K_2;X2=radio_2 、*sin(tehta) 、*cos(phi);Y2=radio_2 、*sin(tehta) 、*sin(phi);Z2=radio_2 、*cos(tehta);% --------------------------M=a+(beta、*d 、*cos(t3));z_5=(N3/2) 、*(M);z_6=(1/2) 、*(M);M3=sin(z_5) 、/(N3 、*sin(z_6)); % 非归一化的阵因子K3K_3=abs(M3);radio_3 =K_3;X3=radio_3 、*sin(tehta) 、*cos(phi);Y3=radio_3 、*sin(tehta) 、*sin(phi);Z3=radio_3 、*cos(tehta);% -------------------------- 3D 绘图函数figure(5)surf(X1,Y1,Z1); % 三维绘图函数surf, 采用伪彩色表示曲面的高度camlight right lightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=4,d=1/2 波长,a= n /2');figure(6) surf(X2,Y2,Z2);camlight rightlightcolorbaraxis imagerotate3D on title('f=3GHz,N=8,d=1/2 波长,a= n /2');figure(7) surf(X3,Y3,Z3)camlight rightlightcolorbaraxis imagerotate3D on title('f=3GHz,N=12,d=1/2 波长,a= n /2');% ---------------------------------% -------------- 只有阵列单元方向角 a 改变的天线方向图N4=10;d1=lambda/4;a1=0;a2=pi/2;a3=pi/2+pi/10;A_3d=a1+(beta、*d1、*cos(t3));x_1=(N4/2) 、*(A_3d);x_2=(1/2) 、*(A_3d);A_1=sin(x_1) 、/(N4 、*sin(x_2)); % 非归一化的阵因子K4 K_4=abs(A_1);radio_4 =K_4;X4=radio_4 、*sin(tehta) 、*cos(phi);Y4=radio_4 、*sin(tehta) 、*sin(phi);Z4=radio_4 、*cos(tehta); %B_3d=a2+(beta 、*d1 、*cos(t3)); y_1_3d=(N4/2) 、*(B_3d);y_2_3d=(1/2) 、*(B_3d);B_1=sin(y_1_3d) 、/(N4 、*sin(y_2_3d)); % 非归一化的阵因子K5 K_5=abs(B_1); radio_5 =K_5;X5=radio_5 、*sin(tehta) 、*cos(phi);Y5=radio_5 、*sin(tehta) 、*sin(phi);Z5=radio_5 、*cos(tehta); %C_3d=a3+(beta、*d1、*cos(t3));v_1=(N4/2) 、*(C_3d);v_2=(1/2) 、*(C_3d);C_1=sin(v_1) 、/(N4 、*sin(v_2)); % 非归一化的阵因子K6 K_6=abs(C_1);radio_6 =K_6;X6=radio_6 、*sin(tehta) 、*cos(phi);Y6=radio_6 、*sin(tehta) 、*sin(phi);Z6=radio_6 、*cos(tehta);% -------------------------figure(8)surf(X4,Y4,Z4); % 三维绘图函数surf, 采用伪彩色表示曲面的高度camlight right lightcolorbaraxis imagerotate3D on title('f=3GHz,N=10,d=1/4 波长,a=0');figure(9) surf(X5,Y5,Z5);camlight rightlight colorbar axis image rotate3D on title('f=3GHz,N=10,d=1/4 figure(10)surf(X6,Y6,Z6) camlight rightlight colorbar axis image rotate3D ontitle('f=3GHz,N=10,d=1/4 波长,a= n /2+ n /10'); %% ------------ 只有阵列单元波长,a= n /2');间隔d改变的天线方向3D图N5=20;d2=lambda/4;d3=lambda/2;d4=0 、7*lambda;a4=pi/2;D_3d=a4+(beta、*d2、*cos(t3));p_1=(N5/2) 、*(D_3d);p_2=(1/2) 、*(D_3d);D_1=sin(p_1) 、/(N5、*sin(p_2)); % 非归一化的阵因子K7K_7=abs(D_1);radio_7 =K_7;X7=radio_7 、*sin(tehta) 、*cos(phi);Y7=radio_7 、*sin(tehta) 、*sin(phi);Z7=radio_7 、*cos(tehta);% ----------------------------E_3d=a4+(beta、*d3、*cos(t3));q_1=(N5/2) 、*(E_3d);q_2=(1/2) 、*(E_3d);E_1=sin(q_1) 、/(N5 、*sin(q_2)); % 非归一化的阵因子K8K_8=abs(E_1);radio_8 =K_8;X8=radio_8 、*sin(tehta) 、*cos(phi);Y8=radio_8 、*sin(tehta) 、*sin(phi);Z8=radio_8 、*cos(tehta);% ------------------------------F_3d=a4+(beta 、*d4、*cos(t3));r_1_3d=(N5/2) 、*(F_3d);r_2_3d=(1/2) 、*(F_3d);F_1=sin(r_1_3d) 、/(N5 、*sin(r_2_3d)); % 非归一化的阵因子K9K_9=abs(F_1);radio_9 =K_9;X9=radio_9 、*sin(tehta) 、*cos(phi);Y9=radio_9 、*sin(tehta) 、*sin(phi);Z9=radio_9 、*cos(tehta);% -------------------------figure(11)surf(X7,Y7,Z7); % 三维绘图函数surf, 采用伪彩色表示曲面的高度camlight right lightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=20,d=1/4 波长,a= n /2'); figure(12)surf(X8,Y8,Z8);camlight rightlightcolorbaraxis imagerotate3D on title('f=3GHz,N=20,d=1/2 波长,a= n /2');figure(13)surf(X9,Y9,Z9)camlight rightlightcolorbaraxis imagerotate3D on title('f=3GHz,N=20,d=0 、7 波长,a= n /2');二、% ------------ 均匀直线阵列天线的应用之一: 边射阵clcclear allf=3e10; %30GH z,厘米波i=1; % 天线电流值lambda=(3e8)/f; %lambda=c/f 波长beta=2、*pi/lambda;N=15;t=0:0 、01:2*pi;d1=lambda/4; %没有栅瓣效应的边射阵,即间隔d<波长W1=beta、*d1 、*cos(t); % 定义kdcos( 方向角) z1=(N/2) 、*W1; z2=(1/2) 、*W1;F1=sin(z1) 、/(N、*sin(z2));K1=abs(F1);d2=lambda*1、5; %有栅瓣现象的边射阵,即间隔d>波长W2=beta、*d2、*cos(t); % 定义kdcos( 方向角)z3=(N/2) 、*W2;z4=(1/2) 、*W2;F2=sin(z3) 、/(N 、*sin(z4));K2=abs(F2);figure(1)subplot(121);polar(t,K1);title('subplot(122);polar(t,K2);title(' 波长');% ------------ 均匀直线阵列天线的应用之二 : 普通端射阵clc clear all f=3e10; %30GHz, 厘米波 i=1; % 天线电流值lambda=(3e8)/f; %lambda=c/f 波长 beta=2 、 *pi/lambda;N=15;t=0:0 、01:2*pi;d1=lambda/4; % 没有栅瓣效应的普通端射阵 , 即间隔 d<1/2 波长W1=beta 、 *d1 、 *cos(t); % 定义 kdcos( 方向角 ) z1=((N/2) 、*W1)+N/2*beta*d1;z2=((1/2) 、 *W1)+1/2*beta*d1;F1=sin(z1) 、/(N 、*sin(z2));K1=abs(F1); d2=lambda*0、7; %有栅瓣现象的普通端射阵 ,即间隔 d>1/2 波长 W2=beta 、 *d2 、 *cos(t); % 定义 kdcos( 方向角 ) z3=((N/2) 、*W2)+N/2*beta*d2;z4=((1/2) 、 *W2)+1/2*beta*d2;F2=sin(z3) 、/(N 、*sin(z4));K2=abs(F2); figure(2) subplot(121);polar(t,K1);title(' 普通端射阵 f=30GHz,N=15,d=1/4 波长 ');subplot(122);polar(t,K2);title(' 普通端射阵 ( 有栅瓣) f=30GHz,N=15,d=0、7倍波长 ');四% ------------ 均匀直线阵列天线的应用之三 : 强方向性端射阵clc clear all f=3e10; %30GHz, 厘米波 i=1; % 天线电流值lambda=(3e8)/f; %lambda=c/f 波长 beta=2 、 *pi/lambda;N=15;t=0:0 、01:2*pi;d1=lambda/4; % 没有栅瓣效应的强方向性端射阵 , 即间隔 d<(1/2 波 长)*(1-1/N)W1=beta 、 *d1 、 *cos(t); % 定义 kdcos( 方向角 ) z1=((N/2) 、*W1)+N/2*(beta*d1+pi/N);z2=((1/2) 、*W1)+1/2*(beta*d1+pi/N);F1=sin(pi/2/N) 、*sin(z1) 、/(sin(z2));K1=abs(F1);d2=lambda*0、5; %有栅瓣现象的强方向性端射阵,即间隔d>1/2波长*(1-1/N) W2=beta 、 *d2、 *cos(t); % 定义 kdcos( 方向角) z3=((N/2) 、 边射阵 f=30GHz,N=15,d=1/4 波长 '); 边射阵(有栅瓣) f=30GHz,N=15,d=1 、5倍*W2)+N/2*(beta*d2+pi/N);z4=((1/2) 、*W2)+1/2*(beta*d2+pi/N);F2=sin(pi/2/N) 、*sin(z3) 、/(sin(z4));K2=abs(F2);figure(3)subplot(121);polar(t,K1);title(' 强方向性端射阵f=30GHz,N=15,d=1/4 波长');subplot(122);polar(t,K2);title(' 强方向性端射阵(有栅瓣)f=30GHz,N=15,d=0、5倍波长');。
前言随着现代通信技术的迅猛发展,无线通讯越来越广泛,越来越多的应用于国防建设,经济建设以及人民的生活等领域。
在无线通信系统中,需要将来自发射机的导波能量转变为无线电波,用来辐射或接受无线电波的装置称为天线。
在通信过程中,特别是点对点的通信,要求天线具有相当强的方向性,即希望天线能将绝大部分的能量集中向某一预定方向辐射。
阵列天线就是近代天线研究的一种方向,其研究催生了包括相控阵天线,均匀直线列天线,智能天线等在无线通信,雷达,导航领域中广泛应用的新型天线。
而天线阵列辐射场的研究是其中很重要的一部分。
天线是无线通信,广播电视,导航等工程系统中辐射或接收无线电波的部件。
无线电信是以辐射传播的电磁波作为信息的载体而实现通信。
在无线电信的实现中,天线具有至关重要的作用:在发送端天线把载有信息的导行电磁波转换为辐射电磁波;在接收端则完成相反的过程,即把载有信息的辐射电磁波转换为导行电磁波。
无论是理论上还是工程实际中,天线问题的核心则是求取辐射电磁波在空间存在的规律,特别是求取其场量辐射的空间分布规律,这称之为天线的方向性。
从易于理解和研究问题的方便考虑研究辐射波的问题都是从辐射源的分布求其辐射场的分布,即分析研究发射天线的辐射问题。
在天线的诸多特性参量中,天线的方向性无疑是第一位的,因为不同用途的无线电信系统要求不同的辐射场分布。
单一天线靠改变尺寸及天线上的高频电流分布,对方向图的调控是极其有限的。
这时我们就可以用多个天线(单元天线)组成一个天线系统,实现对天线辐射方向性的调控,获得所需的方向图。
由单元天线组成的天线阵的目的是实现天线方向性的调控,以期获得所要求的方向性。
1线天线的原理天线是将传输线中的高频电磁能转成为自由空间的电磁波,或反之将自由空间中的电磁波转化为传输线中的高频电磁能。
天线的品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。
无论是发射天线还是接收天线,它们总是在一定的频率范围内工作,通常,工作在中心频率时天线所能输送的功率最大,偏离中心频率时它所输送的功率都将减小,据此可定义天线的频率带宽。
阵列天线方向图的MATLAB实现
陈天禄;郭燕红
【期刊名称】《西藏大学学报(自然科学版)》
【年(卷),期】2010(025)001
【摘要】天线的方向性是指电磁场辐射在空间的分布规律,文章以阵列天线的方向性因子F(θ,φ)为主要研究对象来分析均匀和非均匀直线阵天线的方向性.讨论了阵列天线方向图中主射方向和主瓣宽度随各参数变化的特点,借助MATLAB绘制出天线方向性因子的二维和三维方向图,展示天线辐射场在空间的分布规律,表现辐射方向图的特点.
【总页数】5页(P103-107)
【作者】陈天禄;郭燕红
【作者单位】西藏大学理学院,西藏拉萨,850000;西藏大学理学院,西藏拉
萨,850000
【正文语种】中文
【中图分类】TN82
【相关文献】
1.基于C++ Builder和Matlab实现天线方向图可视化软件的设计 [J], 王勋志;王玲丽
2.阵列天线方向图的MATLAB实现 [J], 陈天禄;郭燕红
3.基于Matlab的阵列天线方向图仿真 [J], 张承畅;余洒;罗元;徐余;陈银锋
4.基于WCA的阵列天线方向图综合算法研究及实现 [J], 仇亮;王云秀;郑霞;樊琴;
段寅龙;贾瑞林
5.基于WCA的阵列天线方向图综合算法研究及实现 [J], 仇亮;王云秀;郑霞;樊琴;段寅龙;贾瑞林
因版权原因,仅展示原文概要,查看原文内容请购买。
阵列天线方向图及其MATLAB仿真一.实验目的1.了解阵列天线的波束形成原理写出方向图函数2.运用MATLAB仿真阵列天线的方向图曲线3.变换各参量观察曲线变化并分析参量间的关系二.实验原理1.阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。
阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。
^2.方向图原理:对于单元数很多的天线阵,用解析方法计算阵的总方向图相当繁杂。
假如一个多元天线阵能分解为几个相同的子阵,则可利用方向图相乘原理比较简单地求出天线阵的总方向图。
一个可分解的多元天线阵的方向图,等于子阵的方向图乘上以子阵为单元阵列天线天线阵的方向图。
这就是方向图相乘原理。
一个复杂的天线阵可考虑多次分解,即先分解成大的子阵,这些子阵再分解为较小的子阵,直至得到单元数很少的简单子阵为止,然后再利用方向图相乘原理求得阵的总方向图。
这种情况适应于单元是无方向性的条件,当单元以相同的取向排列并自身具有非均匀辐射的方向图时,则天线阵的总方向图应等于单元的方向图乘以阵的方向图。
三.源程序及相应的仿真图1.方向图随n变化的源程序clear;sita=-pi/2::pi/2;lamda=;]d=lamda/4;n1=20;beta=2*pi*d*sin(sita)/lamda;z11=(n1/2)*beta;z21=(1/2)*beta;f1=sin(z11)./(n1*sin(z21));F1=abs(f1);figure(1);plot(sita,F1,'b');hold on;n2=25;:beta=2*pi*d*sin(sita)/lamda;z12=(n2/2)*beta;z22=(1/2)*beta;f2=sin(z12)./(n2*sin(z22));F2=abs(f2);plot(sita,F2,'r');hold on;n3=30;beta=2*pi*d*sin(sita)/lamda;z13=(n3/2)*beta;z23=(1/2)*beta;>f3=sin(z13)./(n3*sin(z23));F3=abs(f3);plot(sita,F3,'k')hold off;grid on;xlabel('theta/radian');ylabel('amplitude');title('方向图与阵列个数的关系'); legend('n=20','n=25','n=30');·结果分析:随着阵列个数n的增加,方向图衰减越快,效果越好;2.方向图随lamda变化的源程序clear;sita=-pi/2::pi/2;n=20;d=;lamda1=;beta=2*pi*d*sin(sita)/lamda1;z11=(n/2)*beta;z21=(1/2)*beta;f1=sin(z11)./(n*sin(z21));~F1=abs(f1);%·½ÏòͼÇúÏßfigure(1);lamda2=;beta=2*pi*d*sin(sita)/lamda2;z12=(n/2)*beta;z22=(1/2)*beta;f2=sin(z12)./(n*sin(z22));F2=abs(f2);lamda3=;beta=2*pi*d*sin(sita)/lamda3;z13=(n/2)*beta;,z23=(1/2)*beta;f3=sin(z13)./(n*sin(z23));F3=abs(f3)plot(sita,F1,'b',sita,F2,'r',sita,F3,'k');grid on;xlabel('theta/radian');ylabel('amplitude');title('方向图与波长的关系');legend('lamda=','lamda=','lamda=');四.,随着波长lamda的增大,方向图衰减越慢,收敛性越五.结果分析:不是很好;3.方向图随d变化的源程序clear;sita=-pi/2::pi/2;n=20;lamda=;d1=;beta=2*pi*d1*sin(sita)/lamda;z11=(n/2)*beta;z21=(1/2)*beta;【f1=sin(z11)./(n*sin(z21));F1=abs(f1);%·½ÏòͼÇúÏßfigure(1);plot(sita,F1,'b');hold on;d2=;beta=2*pi*d2*sin(sita)/lamda;z12=(n/2)*beta;z22=(1/2)*beta;f2=sin(z12)./(n*sin(z22));F2=abs(f2);-plot(sita,F2,'r');hold on;d3=;beta=2*pi*d3*sin(sita)/lamda;z13=(n/2)*beta;z23=(1/2)*beta;f3=sin(z13)./(n*sin(z23));F3=abs(f3)plot(sita,F3,'k')hold off;grid on;xlabel('theta/radian');ylabel('amplitude');title('·½ÏòͼÓëÌìÏßÕóÁмä¸ôdµÄ¹ØÏµ'); legend('d1=','d=','d=');结果分析;随着阵元之间间隔的增加,方向图衰减越快,主次瓣的差距越大,次瓣衰减越快,效果越好。
基于MATLAB的智能天线及仿真摘要随着移动通信技术的发展,与日俱增的移动用户数量和日趋丰富的移动增值服务,使无线通信的业务量迅速增加,无限电波有限的带宽远远满足不了通信业务需求的增长。
另一方面,由于移动通信系统中的同频干扰和多址干扰的影响严重,更影响了无线电波带宽的利用率。
并且无线环境的多变性和复杂性,使信号在无线传输过程中产生多径衰落和损耗。
这些因素严重地限制了移动通信系统的容量和性能。
因此为了适应通信技术的发展,迫切需要新技术的出现来解决这些问题。
这样智能天线技术就应运而生。
智能天线是近年来移动通信领域中的研究热点之一,应用智能天线技术可以很好地解决频率资源匮乏问题,可以有效地提高移动通信系统容量和服务质量。
开展智能天线技术以及其中的一些关键技术研究对于智能天线在移动通信中的应用有着重要的理论和实际意义。
论文的研究工作是在MATLAB软件平台上实现的。
首先介绍了智能天线技术的背景;其次介绍了智能天线的原理和相关概念,并对智能天线实现中的若干问题,包括:实现方式、性能度量准则、智能自适应算法等进行了分析和总结。
着重探讨了基于MATLAB的智能天线的波达方向以及波束形成,阐述了music和capon两种求来波方向估计的方法,并对这两种算法进行了计算机仿真和算法性能分析;关键字:智能天线;移动通信;自适应算法;来波方向; MUSIC算法AbstractWith development of mobile communication technology,mobile users and communication,increment service are increasing,this make wireless services increase so that bandwidth of wireless wave is unfit for development of communication,On the other hand,much serious Co-Channel Interruption and the Multiple Address interruption effect utilize rate of wireless wave’s bandwidth,so the transported signals are declined and wear down,All this has strong bad effect on the capacity and performance of question and be fit for the development of communication,so smart antenna arise Smart Antenna,which is considered to be a solution to the problem of lacking frequency, becomes a hotspot in the Mobile Communication area.With this technology, Capacity of Mobile Communication system can be increased effectively and the quality of service can be improved at the same time. To study Smart Antenna and its key technologies is important both in theory and in practice。
基于MATLAB的智能天线波束方向图仿真
汪睿;王振宫;曾庆栋
【期刊名称】《湖北工程学院学报》
【年(卷),期】2009(029)006
【摘要】结合一种直线阵智能天线模型,对其工作原理进行了研究,并在MATLAB 软件下对其波束方向图进行了仿真,结果表明,通过调整加权因子,可以使天线主波束在平面内指向任何用户方向.
【总页数】3页(P56-58)
【作者】汪睿;王振宫;曾庆栋
【作者单位】孝感学院,物理与电子信息工程学院,湖北,孝感,432000;成宁职业技术学院,电子信息工程系,湖北,成宁,437100;孝感学院,物理与电子信息工程学院,湖北,孝感,432000;湖北职业技术学院,应用技术分院,湖北,孝感,432000;孝感学院,物理与电子信息工程学院,湖北,孝感,432000
【正文语种】中文
【中图分类】TN911.72
【相关文献】
1.基于LMS算法的天线波束方向图仿真研究 [J], 杨帆
2.一种均匀直线阵智能天线波束方向图仿真 [J], 曾庆栋;肖永军;童菊芳
3.基于LMS算法的智能天线波束方向图仿真 [J], 杨尚贤;王明皓
4.基于MATLAB的LTE智能天线广播波束仿真与权值优化 [J], 汪鹏;张德树;吉洪武;
5.基于MATLAB的LTE智能天线广播波束仿真与权值优化 [J], 汪鹏;张德树;吉洪武
因版权原因,仅展示原文概要,查看原文内容请购买。