7-5-4生活中的常量与变量(2)
- 格式:ppt
- 大小:835.00 KB
- 文档页数:11
第五章代数式与函数的初步认识《生活中的常量与变量》教学设计第2课时教学目标1.在具体的情景中了解常量、变量的概念.2.了解通过列表或画图像也可以表示变量之间的关系.教学重点及难点重点:了解通过列表或画图像也可以表示变量之间的关系.难点:观察图像或表格,从中获取信息.教学准备多媒体课件.教学过程【复习导入】变量、常量的概念是什么?在某一问题中,保持不变的量,叫做常量,可以取不同数值的量,叫做变量.设计意图:通过复习常量、变量的概念,引入本节课的内容.【探究新知】在具体的情景中了解常量、变量的概念.观察教材第121页图5-4,回答下列问题:(1)图中横轴表示,单位是.图中纵轴表示,单位是 .(2)这一天,0时的气温是℃,3时的气温是℃,6时的气温是℃,9时的气温是℃,12时的气温是℃,15时的气温是℃,18时的气温是℃,21时的气温是℃,24时的气温是℃.(3)这天时气温最高,最高气温是;这天从时到时,气温在26℃以上,共小时;这天从时到时,气温逐渐上升.(4)在这幅图中,变量是.解:(1)时间,时,温度,℃.(2)26,23,24,26,31,37,36,33,26.(3)15,37,9,24,15,3,15.(4)时间t和温度T.师:对于时间t(时)每取一个确定的值,温度T(℃)的值也随着唯一确定.观察教材第121页的表格,回答下列问题:(1)h的单位是,它表示的量是.(2)Q的单位是,它表示的量是.(3)当最大水深h为0米时,水库的蓄水量Q是万立方米,当最大水深h为20米时,水库的蓄水量Q是万立方米,当最大水深h为30米时,水库的蓄水量Q 是万立方米,当最大水深h为米时,水库的蓄水量Q是650万立方米.(4)在这个问题中变量是.解:(1)米,最大水深.(2)万立方米,蓄水量.(3)0,160,437.5,35.(4)最大水深h和蓄水量Q.师:对于最大水深h(米)每取一个确定的值,水库的蓄水量Q(万立方米)的值也随着唯一确定.设计意图:通过例题,便于学生更好地掌握相关知识.【应用新知】典例精析例观察下图并填空:(1)这天的6时、10时和14时的气温分别为℃、℃、℃.(2)这一天中,最高气温是℃、最低气温是℃.(3)这一天,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?答案:(1)-1,2,5.(2)5,-3.(3)3时到14时气温在逐渐升高,0时到3时和14时到24时气温在逐渐降低.设计意图:巩固所学内容,提高学生能力.课堂练习心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30)(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是.(3)根据表格中的数据,你认为提出概念分钟时,学生的接受能力最强.(4)从表格中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?答案:(1)上表中反映了提出概念所用时间x和对概念的接受能力y两个变量之间的关系.(2)59.(3)13.(4)当时间x在2至13分范围内,学生的接受能力逐步增强,当时间x大于13分的范围,学生的接受能力逐步降低.设计意图:巩固所学内容,提高学生能力.【课堂小结】1. 第一个问题中,对于时间t(时)每取一个确定的值,温度T(℃)的值也随着唯一确定.2. 第二个问题中,对于最大水深h(米)每取一个确定的值,水库的蓄水量Q(万立方米)的值也随着唯一确定.设计意图:通过小结,使学生梳理本节课所学内容.板书设计:5.4 生活中的常量与变量第2课时在具体的情景中了解常量、变量的概念。
常量与变量的实际例子
1. 咱就说体重吧,你每天吃进去的东西那可就是变量呀,随时都在变。
而你的身高,那就是相对的常量,可不是你想变就能变的哟,这不是很明显吗?
2. 你看你的心情,那就是个超级大变量,一会儿开心,一会儿难过的。
但你的性别,那就是妥妥的常量呀,总不能说变就变吧,是不是很有意思呢?
3. 好比说天气,今天晴天明天可能就下雨,这就是变量嘛。
可地球围着太阳转,这可是不变的常量呀,这道理多简单嘞!
4. 你想想你玩游戏的分数,每一局都不一样,这就是变动的变量呀。
但游戏的规则,那是相对固定的常量,没有规则游戏还怎么玩呢,对吧?
5. 你的发型可以今天这样,明天那样,这明显是个变量呀。
但你的指纹,那可是从出生就不变的常量呢,这多神奇呀!
6. 出门旅游,每天遇到的人和事都是变量呢,充满了不确定性。
但你始终是你自己,这就是个常量呀,这难道不是一种特别的存在吗?
7. 一场演唱会,观众的反应那就是个变量,时而热烈时而安静。
而舞台的大小,就是那个相对的常量啦,这个对比很鲜明吧!
8. 做烘焙的时候,放多少糖是变量,可烤箱的温度设定好了就是常量呀,不这样怎么能烤出美味的点心呢,你说呢?
9. 上班上学的路线可以有很多条,这就是变量。
但目的地基本上是固定的呀,这就是常量呀,大家不都这样嘛!
我的观点结论就是:常量和变量在我们的生活中无处不在,它们相互作用,让我们的生活变得丰富多彩又充满变化,我们要善于去发现和利用它们呀!。
生活中常量与变量1、若一年期存款率为1.98%,如果本金为x (元),到期后可得利息y (元),它们之间的关系式是y=1.98%x,在此关系式中, 是常量, 是变量。
2、若等腰三角形的周长为60厘米,底边长为y 厘米,一腰长为x 厘米,那么y 用关于x 的代数式可表示为 ,其中 是变量, 是常量。
上述问题中的变量是 。
4、弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x (kg )有下面的关(1)当所挂物体的质量为6kg 时,弹簧的长度是多少?(2)试写出弹簧的长度y (cm )与所挂物体的质量x (kg )之间的关系式。
(3)在这个问题中,哪些量是变量?哪些量是常量?(七)作业:(1)独立完成:课本第120页的1,2题。
(2)小组交流完成:为了增强公民节约用水的意识,某市制定了如下用水收费标准:(1)该市某户居民6月份用水x 吨,那么应交水费y (元)如何表示? (2)如果该户居民交了19.2元的水费,请你帮他算算实际用了多少水?有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。
2、通过实例,探究出有理数除法法则。
会把有理数除法转化为有理数乘法,培养学生的化归思想。
重点:有理数除法法则的运用及倒数的概念难点:怎样根据不同的情况来选取适当的方法求商,0不能作除数以及0没有倒数的理解。
教学过程:一、创设情景,导入新课 1、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.几个数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
有一个因数是0,积就为0. 2、有理数乘法运算律:a ×b = b ×a (a ×b )×c = a ×(b ×c ). a ×(b+c )=a × b + a ×c 3、计算(分组练习,然后交流)(见ppt ) 二、合作交流,解读探究 1、(1)6个同样大小的苹果平均分给3个小孩,每个小孩分到几个苹果?(2)怎样计算下列各式?(-6)÷3 6÷(-3) (-6)÷(-3) 学生:独立思考后,再将结果与同桌交流。
青岛版数学七年级上册5.4《生活中的常量与变量》说课稿一. 教材分析青岛版数学七年级上册5.4《生活中的常量与变量》这一节的内容,是在学生已经掌握了有理数、代数式、方程等基础知识的基础上进行教学的。
本节课主要让学生了解常量和变量的概念,并能够运用这些概念解决实际问题。
教材通过生活中的实例,引导学生认识常量和变量,并运用数学知识对实际问题进行分析。
二. 学情分析七年级的学生已经具备了一定的数学基础,对代数知识有一定的了解。
但是,学生对常量和变量的概念可能还比较陌生,需要通过具体的实例和生活情境来理解和掌握。
此外,学生可能对解决实际问题的方法还不够熟练,需要老师在教学过程中进行引导和培养。
三. 说教学目标1.知识与技能目标:学生能够理解常量和变量的概念,并能够运用这些概念解决实际问题。
2.过程与方法目标:通过生活中的实例,培养学生运用数学知识分析和解决实际问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的数学思维和观察能力。
四. 说教学重难点1.教学重点:学生能够理解常量和变量的概念,并能够运用这些概念解决实际问题。
2.教学难点:学生对常量和变量的概念的理解,以及如何运用这些概念解决实际问题。
五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、教学卡片和实例来进行教学。
六. 说教学过程1.导入:通过一个生活中的实例,引出常量和变量的概念,激发学生的兴趣。
2.新课导入:讲解常量和变量的定义,并通过实例让学生理解和掌握。
3.实例分析:分析生活中的实际问题,引导学生运用常量和变量的概念进行解决。
4.小组讨论:学生分组讨论,分享各自对常量和变量的理解和应用方法。
5.总结提升:老师对学生的讨论进行总结,强调常量和变量在实际问题中的应用。
6.课堂练习:学生进行课堂练习,巩固对常量和变量的理解和掌握。
7.课后作业:布置相关的课后作业,让学生进一步巩固所学知识。
七年级数学上册《第五章生活中的常量与变量》同步练习题及答案(青岛版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.某人要在规定时间内加工100个零件,则工作效率y与时间t之间的关系中,下列说法正确的是( )A.y,t和100都是变量B.100和y都是常量C.y和t是变量D.100和t都是常量2.在圆的周长C=2πr中,常量与变量分别是( )A.2是常量,C、π、r是变量B.2是常量,C、r是变量C.C、2是常量,r是变量D.D.2是常量,C、r是变量3.人的身高h随时间t的变化而变化,那么下列说法正确的是( )A.h,t都是不变量B.t是自变量,h是因变量C.h,t都是自变量D.h是自变量,t是因变量①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断中,正确的有( )A.1个B.2个C.3个D.4个5.下表是某报纸公布的世界人口数情况:年份1957 1974 1987 1999 2010人口数30亿40亿50亿60亿70亿上表中的变量是( )A.仅有一个,是年份B.仅有一个,是人口数C.有两个变量,一个是人口数,另一个是年份D.一个变量也没有6.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下面的关系:下列说法不正确的是( )A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm7.某物体一天中的温度是时间t的函数:T(t)=t3-3t+60,时间单位是小时,温度单位为℃,t=0表示12:00,其后t的取值为正,则上午8时的温度为( )A.8℃B.112℃C.58℃D.18℃8.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a 是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断中,正确的有( )A.1个B.2个C.3个D.4个二、填空题9.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,填写下表.份数/份 1 2 3 4 …价钱/元…在这个问题中, 是常量;是变量.10.圆柱的高是6cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也随之发生变化.在这个变化过程中,自变量是_____,因变量是_____.11.在关系式V=30-2t中,V随着t的变化而变化,其中自变量是_____,因变量是_____,当t=_____时,V=0.12.在关系式V=30-2t中,V随着t的变化而变化,其中自变量是________,因变量是________,当t=________时,V=0.13.声音在空气中传播的速度y(m/s)(简称声速)与气温x(℃)的关系如下表所示.气温x/℃0 5 10 15 20声速y/(m/s) 331 334 337 340 343上表中是自变量, 是因变量.照此规律可以发现,当气温x为℃时,声速y达到346 m/s.14.如图,一个四棱柱的底面是一个边长为10 cm的正方形.当它的高变化时,体积也随着变化.(1)若高为h(cm),体积v(cm3),则v与h之间的关系式为 .(2)变量是;常量是 .三、解答题15.已知高度每增加1000米,气温下降6℃,如果某地面气温为22℃(1)分别计算出该地1000米、2000米高空的气温.(2)若h米高空的气温为T,试写出T与h的关系,并指出关系式中的常量和变量.16.一种树苗的高度用h表示,树苗生长的年数用a表示,测得有关数据如下表:(树苗原高100 cm)年数a 高度h/cm1 100+52 100+103 100+154 100+20……(1)试用年数a的代数式表示h;(2)此树苗需多少年就可长到200 cm高?17.一种手机卡的缴费方式为:每月必须缴纳月租费20元,另外每通话1 min要缴费0.2元.(1)如果每月通话时间为x(min),每月缴费y(元),请用含x的代数式表示y.(2)在这个问题中,哪些是常量?哪些是变量?(3)当一个月通话时间为200 min时,应缴费多少元?(4)当某月缴费56元时,此人该月通话时间为多少分钟?18.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.19.在烧水时,水温达到100 ℃就会沸腾,下表是某同学做“观察水的沸腾”试验时记录的数据: 时间/min 0 2 4 6 8 10 12 14 …温度/℃30 44 58 72 86 100 100 100 …(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)水的温度是如何随着时间的变化而变化的?(3)时间每推移2 min,水的温度如何变化?(4)时间为8 min时,水的温度为多少?你能得出时间为9 min时水的温度吗?(5)根据表格,你认为时间为16 min和18 min时水的温度分别为多少?(6)为了节约能源,你认为应在什么时间停止烧水?20.父亲告诉小明:“距离地面越高,气温越低.”并给小明出示了下面的表格:距离地面高度/km 0 1 2 3 4 5气温/℃20 14 8 2 -4 -10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面6 km的高空气温是多少吗?答案1.C2.B3.B4.B5.C6.B7.A8.B9.答案为:0.4;0.8;1.2;1.6;0.4;x,y10.答案为:自变量是:r,因变量是:V.11.答案为:t,V,15.12.答案为:t,V,15.13.答案为:气温;声速;25.14.答案为:v=100h;四棱柱的高、体积,四棱柱的底面边长.15.解:∵离地面距离每升高1 km,气温下降6℃∴该地空中气温T(℃)与高度h(km)之间的函数表达式为:T=22﹣6h;(1)把h=1km代入T=22﹣6h=16把h=2km代入T=22﹣6h=22﹣12=10答:该地1000米、2000米高空的气温分别为16℃、10℃;(2)T=22﹣6h,其中22,6是常量,T,h是变量.16.解:(1)由表可知h=100+5a.(2)当h=200 cm时,有200=100+5a,解得a=20.答:此树苗需20年就可长到200 cm高.17.解:(1)每月缴费y(元)与通话时间x(min)的关系式为y=15x+20.(2)在这个问题中,月租费20元和每分钟通话费15元是常量,每月通话时间x(min)与每月缴费y(元)是变量.(3)当x=200时,y=15×200+20=60(元).因此当一个月通话时间为200 min时,应缴费60元.(4)当y=56时,15x+20=56,解得x=180.因此当某月缴费为56元时,此人该月通话时间为180 min.18.解:(1)x,t;y;(2)19.5.19.解:(1)上表反映了水的温度与时间的关系,时间是自变量,水的温度是因变量.(2)水的温度随着时间的增加而增加,到100 ℃时恒定.(3)时间每推移2 min,水的温度增加14 ℃,到10 min时恒定.(4)时间为8 min时,水的温度是86 ℃,时间为9 min时,水的温度是93 ℃.(5)根据表格,时间为16 min和18 min时水的温度均为100 ℃.(6)为了节约能源,应在第10 min后停止烧水.20.解:(1)反映了距离地面高度与气温之间的关系.距离地面高度是自变量,气温是因变量.(2)随着h的升高,t逐渐降低.(3)观察表格,可得距离地面高度每上升1 km,气温下降6 ℃.当距离地面5 km时,气温为-10 ℃,故当距离地面6 km时,气温为-16 ℃.。