十字交叉塔吊基础计算书
- 格式:docx
- 大小:34.19 KB
- 文档页数:5
矩形板式基础计算书一、塔机属性塔机型号QTZ40(浙江建机)塔机独立状态的最大起吊高度H0(m) 30塔机独立状态的计算高度H(m) 36塔身桁架结构型钢塔身桁架结构宽度B(m) 1.6二、塔机荷载塔机竖向荷载简图1、塔机自身荷载标准值塔身自重G0(kN) 251起重臂自重G1(kN) 37.4起重臂重心至塔身中心距离R G1(m) 222、风荷载标准值ωk(kN/m2)3、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值倾覆力矩设计值M'(kN·m) 1.2×(37.4×22-19.8×6.3-89.4×11.8)+1.4×0.5×26.81×36=247.38 三、基础验算矩形板式基础布置图基础布置基础长l(m) 6 基础宽b(m) 6 基础高度h(m) 1.5基础参数基础混凝土强度等级C35 基础混凝土自重γc(kN/m3) 25 基础上部覆土厚度h’(m)0 基础上部覆土的重度γ’(kN/m3) 19 基础混凝土保护层厚度δ(mm)40地基参数地基承载力特征值f ak(kPa) 100 基础宽度的地基承载力修正系数ηb0.3 基础埋深的地基承载力修正系数ηd 1.6 基础底面以下的土的重度γ(kN/m3) 19 基础底面以上土的加权平均重度19 基础埋置深度d(m) 1.5基础及其上土的自重荷载标准值:G k=blhγc=6×6×1.4×25=1260kN基础及其上土的自重荷载设计值:G=1.2G k=1.2×1260=1512kN荷载效应标准组合时,平行基础边长方向受力:M k''=G1R G1+G2R Qmax-G3R G3-G4R G4+0.9×(M2+0.5F vk H/1.2)=37.4×22+3.8×11.5-19.8×6.3-89.4×11.8+0.9×(690+0.5×11.89×36/1.2)=468.35kN·mF vk''=F vk/1.2=26.81/1.2=22.34kN荷载效应基本组合时,平行基础边长方向受力:M''=1.2×(G1R G1+G2R Qmax-G3R G3-G4R G4)+1.4×0.9×(M2+0.5F vk H/1.2) =1.2×37.4×22+3.8×11.5-19.8×6.3-89.4×11.8)+1.4×0.9×(690+0.5×11.89×36/1.2) =718.33kN·mF v''=F v/1.2=37.53/1.2=31.28kN基础长宽比:l/b=6/6=1≤1.1,基础计算形式为方形基础。
十字交叉梁天然基础计算书计算依据:《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)《地基基础设计规范》(GB50007-2011)《建筑结构荷载规范》(GB50009-2012)《建筑安全检查标准》(JGJ59-2011)《混凝土结构设计规范》(GB50010-2010)一、参数信息1.塔吊参数2.梁参数3.地基参数4.土层参数二、塔吊抗倾覆稳定性验算1.自重荷载以及起重荷载1)塔机自重标准值:Fkl =G+G1+G2+G3+G4=251+37.4+3.8+19.8+89.4=401.40kN2)起重荷载标准值:F qk=60.00kN3)竖向荷载标准值:F k= F k1+ F qk=401.40+60.00=461.40kN4)基础及其上土自重标准值:G k=G11+G21=609.06+0.00=609.06kN 2.风荷载计算1)工作状态下塔机塔身截面对角线方向所受风荷载标准值①塔基所受风均布线荷载标准值(ω=0.20 kN/m2)q sk =0.8×α×βz×μS×μZ×ω×α×B×H/H=0.8×1.2×1.59×1.95×1.32×0.20×0.35×1.6 =0.44kN/m②塔机所受风荷载水平合力标准值F vk = qsk·H=0.44×43=18.92kN③基础顶面风荷载产生的力矩标准值M sk =0.5 Fvk·H=0.5×18.92×43=406.82kN·m2)非工作状态下塔机塔身截面对角线方向所受风荷载标准值①塔机所受风线荷载标准值(深圳市ω′=0.75kN/m2)q sk ′=0.8×α×βz×μs×μz×ω′×α×B×H/H=0.8×1.2×1.69×1.95×1.32×0.75×0.35×1.6 =1.75kN/m②塔机所受风荷载水平合力标准值F vk ′=qsk′·H=1.75×43=75.42kN③基础顶面风荷载产生的力矩标准值M sk ′=0.5 Fvk′·H=0.5×75.42×43=1621.52kN·m3.基础顶面倾覆力矩计算1)工作状态下塔机倾覆力矩标准值M k =M1+M2+M3+M4+0.9(M5+Msk)=(37.4×22)+(3.8×11.5)+(-19.8×6.3)+(-89.4×11.8)+0.9×(m ax(60×11.5,10×50)+406.82)=673.98kN·m2)非工作状态下塔机倾覆力矩标准值Mk ′=M1+M3+M4+Msk′=(37.4×22)+(-19.8×6.3)+(-89.4×11.8)+1621.52=1264.66kN·m比较上述两种工况的计算,可知塔机在非工作状态时对基础传递的倾覆力矩最大,故应按非工作状态的荷载组合进行地基基础设计。
种塔吊基础计算目录二、十字交叉梁基础计算三、附着计算四、天然基础计算五、三桩基础计算书六、四桩基础计算书七、塔吊附着计算一、塔吊单桩基础计算书一. 参数信息塔吊型号,自重(包括压重),最大起重荷载塔吊倾覆力距,塔吊起重高度,塔身宽度混凝土强度,钢筋级别:Ⅱ级,混凝土的弹性模量桩直径或方桩边长 ,地基土水平抗力系数桩顶面水平力 ,保护层厚度二. 塔吊基础承台顶面的竖向力与弯矩计算. 塔吊自重(包括压重). 塔吊最大起重荷载作用于桩基承台顶面的竖向力×()塔吊的倾覆力矩×三. 桩身最大弯矩计算计算简图:. 按照法计算桩身最大弯矩:计算依据《建筑桩基础技术规范》()的第条,并参考《桩基础的设计方法与施工技术》。
() 计算桩的水平变形系数():其中──地基土水平抗力系数。
──桩的计算宽度,。
──抗弯弹性模量,。
──截面惯性矩,。
经计算得到桩的水平变形系数:() 计算 :(×)() 由查表得:() 计算 :经计算得到桩的最大弯矩值:×。
由查表得:最大弯矩深度。
四.桩配筋计算依据《混凝土结构设计规范》()第条。
沿周边均匀配置纵向钢筋的圆形截面钢筋混凝土偏心受压构件,其截面受压承载力计算: () 偏心受压构件,其偏心矩增大系数按下式计算:式中──桩的计算长度,取。
──截面高度,取。
──截面有效高度,取。
──偏心受压构件的截面曲率修正系数:解得:──构件的截面面积,取。
──构件长细比对截面曲率的影响系数,当<时,取,否则按下式:解得:经计算偏心增大系数。
() 偏心受压构件应符合下例规定:式中──全部纵向钢筋的截面面积,取。
──圆形截面的半径,取 ;──纵向钢筋重心所在圆周的半径,取。
──轴向压力对截面重心的偏心矩,取。
──附加偏心矩,取。
──对应于受压区混凝土截面面积的圆心角与的比值,取。
──中断纵向受拉钢筋截面面积与全部纵向钢筋截面面积的比值,当>时,取:由上两式计算结果:只需构造配筋!五.桩竖向极限承载力验算桩承载力计算依据《建筑桩基础技术规范》()的第条根据第二步的计算技术指导文件可以得到桩的轴向压力设计值,取其中最大值桩竖向极限承载力验算应满足下面的公式:其中──最大极限承载力标准值。
7 种塔吊基础计算目录一、单桩基础计算二、十字交叉梁基础计算三、附着计算四、天然基础计算五、三桩基础计算书六、四桩基础计算书七、塔吊附着计算一、塔吊单桩基础计算书一. 参数信息塔吊型号:QT60,自重(包括压重)F1=245.00kN,最大起重荷载F2=60.00kN塔吊倾覆力距M=600.00kN.m,塔吊起重高度H=50.00m,塔身宽度B=1.60m混凝土强度:C35,钢筋级别:Ⅱ级,混凝土的弹性模量 Ec=14500.00N/mm2桩直径或方桩边长 d=2.50m,地基土水平抗力系数 m=8.00MN/m4桩顶面水平力 H0=100.00kN,保护层厚度:50mm二. 塔吊基础承台顶面的竖向力与弯矩计算1. 塔吊自重(包括压重)F1=245.00kN2. 塔吊最大起重荷载F2=60.00kN作用于桩基承台顶面的竖向力 F=1.2×(F1+F2)=366.00kN塔吊的倾覆力矩 M=1.4×600.00=840.00kN.m三. 桩身最大弯矩计算计算简图:1. 按照m法计算桩身最大弯矩:计算依据《建筑桩基础技术规范》(JGJ94-94)的第5.4.5条,并参考《桩基础的设计方法与施工技术》。
(1) 计算桩的水平变形系数(1/m):其中 m──地基土水平抗力系数;b0──桩的计算宽度,b0=3.15m。
E──抗弯弹性模量,E=0.67Ec=9715.00N/mm2;I──截面惯性矩,I=1.92m4;经计算得到桩的水平变形系数:=0.271/m(2) 计算 D v:D v=100.00/(0.27×840.00)=0.45(3) 由 D v查表得:K m=1.21(4) 计算 M max:经计算得到桩的最大弯矩值:M max=840.00×1.21=1018.87kN.m。
由 D v查表得:最大弯矩深度 z=0.74/0.27=2.78m。
四.桩配筋计算依据《混凝土结构设计规范》(GB50010-2002)第7.3.8条。
十字形基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。
一. 参数信息本计算书依据塔吊规范JGJ187-2009进行验算。
二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值F k1=540kN2) 基础以及覆土自重标准值G k=(2×8×1.3-1.3×1.3-4×0.5×0×0)×0.9×25=429.98kN3) 起重荷载标准值F qk=60kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2)W k=0.8×1.59×1.95×1.245×0.2=0.62kN/m2q sk=1.2×0.62×0.35×2.5=0.65kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.65×35.00=22.70kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×22.70×35.00=397.21kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.30kN/m2)W k=0.8×1.62×1.95×1.245×0.30=0.94kN/m2q sk=1.2×0.94×0.35×2.5=0.99kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.99×35.00=34.69kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×34.69×35.00=607.05kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=-200+0.9×(890+397.21)=958.49kN.m非工作状态下,标准组合的倾覆力矩标准值M k=-200+607.05=407.05kN.m三. 地基承载力计算依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)第4.1.3条承载力计算1. 荷载计算梁的计算简图如下:(图中 B=8000mm,L1=3540mm,L2=2233mm)交叉梁基础底面积: A=2×8×1.3-1.3×1.3-4×0.5×0×0=19.11m2条基加腋基础底面积:A0=8×1.3+(1.3+1.3+0×2)×0×2=10.4m2塔机工作状态下:当轴心荷载作用时:=(600+429.98)/19.11=53.90kN/m2当偏心荷载作用时:=(600+429.98)×10.4/19.11=560.53kN=(958.49+22.70×0.9)/560.53=1.75m≤b/4=2.00m满足要求! 由于偏心距e>b/6=1.33m,所以按大偏心计算:=2×560.53/[3×1.3×(4-1.75)]=127.55kN/m2由于梁底荷载为三角形荷载,所以按下式计算P1:=127.55×[3×(4-1.75)-2.2325]/[3×(4-1.75)]=85.43kN/m2塔机非工作状态下:当轴心荷载作用时:=(540+429.98)/19.11=50.76kN/m2当偏心荷载作用时:=(540.00+429.98)×10.4/19.11=527.88kN=(407.05+34.69×0.9)/527.88=0.83m≤b/4=2.00m满足要求! 由于偏心距e≤b/6=1.33m,所以按小偏心计算:=527.88/(8×1.3)+(407.05+34.69×0.9)/13.87=82.36kN/m2=527.88/(8×1.3)-(407.05+34.69×0.9)/13.87=19.15kN/m2由于梁底荷载为梯形荷载,所以按下式计算P1:=19.15+(8-2.2325)×(82.36-19.15)/8=64.72kN/m2四. 基础配筋计算比较上述两种工况的计算,可知本案塔机在工作状态时,基础截面弯矩最大,故应按工作状态的荷载组合进行基础设计1. 基础弯矩计算:基础自重在基础底面产生的压力标准值P kG=G k/A=429.98/19.11=22.5kN/m2基底均布荷载设计值=1.35×[(127.55+85.43)/2-22.50]×1.3=147.41 kN/m1-1截面弯矩设计值M1=q1×L22/2=147.41×2.232/2=367.34kN.m2. 纵向钢筋面积计算依据《混凝土结构设计规范》GB 50010-2010式中α1──系数,当混凝土强度不超过C50时,α1取为1.0,当混凝土强度等级为C80时,α1取为0.94,期间按线性内插法确定f c──混凝土抗压强度设计值h0──承台的计算高度经过计算得αs=367.34×106/(1.00×16.70×1.30×103×8502)=0.023419 ξ=1-(1-2×0.023419)0.5=0.023700γs=1-0.023700/2=0.988150As=367.34×106/(0.988150×850×360.00)=1214.86mm2实际选用钢筋为:钢筋直径20mm,钢筋根数为4十字梁基础实际配筋面积为A s0 = 3.14×202/4 × 4=1257mm2实际配筋面积大于计算需要配筋面积,满足要求!3. 基础箍筋面积计算最大剪力设计值:V max=q1×L2=147.41×2.23=329.09kN依据《混凝土结构设计规范》(GB50010-2010)的第6.3.3条。
塔吊十字梁桩式基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2019)。
一. 参数信息本计算书依据塔吊规范JGJ187进行验算。
塔吊型号:QTZ160 塔机自重标准值:Fk1=950.60kN 起重荷载标准值:Fqk=10.00kN 塔吊最大起重力矩:M=949.20kN.m 非工作状态下塔身弯矩:M=-796.74kN.m 塔吊计算高度:H=45.8m塔身宽度:B=2.5m 桩混凝土等级:C25梁混凝土等级:C25 保护层厚度:50mm十字梁梁长:5.0m 十字梁梁高度:Hc=1.2m十字梁梁宽度:l=1.0mm 梁钢筋级别:HPB235承台顶面埋深:D=0.0m 桩直径:d=1.0m桩间距:a=4.0m 桩钢筋级别:HPB300桩入土深度:3.00m 桩型与工艺:预制桩计算简图如下:二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值=950.6kNFk12) 基础以及覆土自重标准值Gk=(52-(5-1)2)×1.20×25=270kN3) 起重荷载标准值Fqk=10kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2)Wk=0.8×0.7×1.95×1.54×0.2=0.34kN/m2qsk=1.2×0.34×0.35×2.5=0.35kN/mb. 塔机所受风荷载水平合力标准值Fvk =qsk×H=0.35×45.80=16.17kNc. 基础顶面风荷载产生的力矩标准值Msk =0.5Fvk×H=0.5×16.17×45.80=370.39kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.35kN/m2)Wk=0.8×0.7×1.95×1.54×0.35=0.59kN/m2qsk=1.2×0.59×0.35×2.5=0.62kN/mb. 塔机所受风荷载水平合力标准值Fvk =qsk×H=0.62×45.80=28.31kNc. 基础顶面风荷载产生的力矩标准值Msk =0.5Fvk×H=0.5×28.31×45.80=648.19kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值Mk=-796.74+0.9×(949.2+370.39)=390.89kN.m非工作状态下,标准组合的倾覆力矩标准值 Mk=796.74+648.19=1444.93kN.m三. 荷载计算非工作状态下:Qk =(Fk+Gk)/n=(950.6+270)/4=305.15kNQkmax =(Fk+Gk)/n+(Mk+Fvk×h)/L=(950.6+270)/4+(1444.93+28.31×1.20)/4.00=674.87kNQkmin =(Fk+Gk-Flk)/n-(Mk+Fvk×h)/L=(950.6+270-0)/4-(1444.93+28.31×1.20)/4.00=-64.57kN工作状态下:Qk =(Fk+Gk+Fqk)/n=(960.6+270)/4=307.65kNQkmax =(Fk+Gk+Fqk)/n+(Mk+Fvk×h)/L=(960.6+270)/4+(390.89+16.17×1.20)/4.00=410.23kNQkmin =(Fk+Gk+Fqk-Flk)/n-(Mk+Fvk×h)/L=(960.6+270-0)/4-(390.89+16.17×1.20)/4.00=205.07kN四. 十字梁抗弯计算十字梁截面b×h=1000mm×1200mm,混凝土强度等级为C25,钢筋采用HPB235,混凝土保护层厚度50mm1. 荷载计算十字梁的计算简图如下:(图中 L=4000mm,L1=3535mm,L2=233mm)塔机塔身截面对角线上立杆的荷载设计值:Fmax =1.35Fk/n+1.35Mk/L1=1.35×950.6/4+1.35×1444.93/3.54=872.64kNFmin =1.35Fk/n-1.35Mk/L1=1.35×950.6/4-1.35×1444.93/3.54=-230.98kN2. 弯矩计算A、B支座反力为:由力平衡方程RA +RB=Fmax+Fmin=641.655kNRA ×L=Fmin×3.77+Fmax×0.23解得:RA =-166.84kN;RB=808.49kN最大弯矩在Fmax对应截面位置,弯矩设计值为:Mmax =Rb×0.23=187.97kN.m3. 配筋计算根据《混凝土结构设计规范》GB50010-2010第6.2.10条式中α1──系数,当混凝土强度不超过C50时,α1取为1.0,当混凝土强度等级为C80时,α1取为0.94,期间按线性内插法确定;fc──混凝土抗压强度设计值;h──承台的计算高度;fy ──钢筋受拉强度设计值,fy=210N/mm2。
???????十字梁板式基础计算书工程信息:工程名称:未命名工程;方案编制人:张工;编制日期:2019-11-28。
施工单位:建科研施工;建设地点:和平西桥;地上层数:13;地下层数:3层;建筑高度:40米;建筑面积:10000m2;建设单位:建科研建设公司;设计单位:建科研设计院;监理单位:建科研监理公司;勘查单位:建科研勘察院;总工期:360天;结构类型:框架;计算依据:依据《塔式起重机混凝土基础工程技术规程》(JGJ/T187-2009)、《塔式起重机设计规范》(GB/T13752-2017)、《混凝土结构设计规范》(GB50010-2010)、《建筑地基基础设计规范》(GB50007-2011)、《建筑结构荷载规范》(GB50009-2012)编制。
一、参数信息1)塔吊基本参数塔吊型号:QTZ63,塔吊最大起吊高度H0=40m,塔身宽度B=1.6m;2)塔机自重参数塔身自重G0=251kN,起重臂自重G1=37.4kN,小车和吊钩自重G2=3.8kN,平衡臂自重G3=19.8kN,平衡块自重G4=89.4kN,最大起重荷载Q max=60kN,最小起重荷载Q max=10kN;3)塔机尺寸参数起重臂重心到塔身中心的距离R G1=22m,小车和吊钩重心到塔身中心的距离R G2=11.5m,平衡臂重心到塔身中心的距离R G3=6.3m,平衡块重心到塔身中心的距离R G4=11.8m,最大起重荷载到塔身中心的距离R Qmax=11.5m,最小起重荷载到塔身中心的距离R Qmin=50m;4)塔吊承台参数承台长度b=8m,承台宽度l=1.1m,承台高度h=2m,十字梁腋宽度a=1m,承台混凝土强度等级:C35,承台混凝土自重=25kN/m3,承台上部覆土厚度d=1.5m,承台上部覆土重度=17kN/m3;5)塔吊基础参数地基承载力特征值f a=150kN/m2,基础宽度地基承载力修正系数ηb=0.3,基础埋深地基承载力修正系数ηd=1.6,基础埋深地基承载力修正系数γ=25kN/m3,基础底面以上的土的加权平均重度γm=25kN/m3,承台埋置深度D=1.5m,修正后的地基承载力特征值f a=227.5kN/m2;6)风荷载参数塔身桁架杆件类型为:型钢或方钢管,地面粗糙度类型为:B类城市郊区,塔机计算高度h=43m,塔身前后片桁架平均充实率α0=0.35,塔身风向系数α=1.2,基本风压W0=0.45kN/m2(工程所在地:北京,取50年一遇),风荷载高度变化系数μz=1.32,风荷载体型系数μs=1.95,风荷载风振系数βz=1.65;7)十字梁基础配筋参数基础配筋:使用HPB235钢筋计算简图:二、荷载计算1、自重荷载及起重荷载1)塔机自重标准值F k1=251+37.4+3.8+19.8+89.4=401.4kN;2)基础自重标准值基础底面积:A=2×8×1.1-1.1×1.1+2×1×1=18.39m2G k=18.39×(2×25+1.5×17)=1388.44kN;3)起重荷载标准值F qk=60kN;2、风荷载计算计算公式如下:1)工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值工作状态下ω0=0.2kN/m2μz=1.32μs=1.95βz=1.59α0=0.35α=1.2计算结果:ωk=0.65kN/m2q sk=0.44kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=18.92kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=406.78kN·m2)非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值非工作状态下ω0=0.45kN/m2(北京,取50年一遇)μz=1.32μs=1.95βz=1.65α0=0.35α=1.2计算结果:ωk=1.53kN/m2q'sk=1.03kN/mb. 塔机所受风荷载水平合力标准值F'vk=q'sk×H=44.29kNc. 基础顶面风荷载产生的力矩标准值M'sk=0.5F'vk×H=952.24kN·m3、塔机的倾覆力矩塔机自身产生的倾覆力矩,向前(起重臂方向)为正,向后为负。
十字交叉梁的计算书一、参数信息塔吊型号:QTZ50, 自重(包括压重)F1=450.8kN,最大起重荷载=60.0kN,塔吊倾覆力距M=630.0kN.m,塔吊起重高度H=101.0m,塔身宽度B=1.6m,混凝土强度等级:C35,钢筋级别:HPB235,桩直径或方桩边长 d=1.00m,桩间距=3000mm,交叉梁的宽度=300mm,交叉梁的高度=500mm,保护层厚度:50mm。
二、塔吊对交叉梁中心作用力的计算1.自重荷载及起重荷载 (1)塔机自重标准值:F lk=450.80kN(2)基础自重标准值:G k= 2×25.0×1.414×Lc×Bc×Hc = 2×25.0×1.414×3.00×0.30×0.50 = 31.82kN;(3)起重荷载标准值:F qk=60.00kN作用于塔吊的竖向力 F k=F1k+F qk=510.80kN塔吊的倾覆力矩 M k=630.00kN.m三、交叉梁最大弯矩和桩顶竖向力的计算计算简图:十字交叉梁计算模型(最大弯矩M方向与十字交叉梁平行)。
两段梁四个支点力分别为R A=N/4-3M/2LR B=N/4+3M/2L R C=N/4R D=N/4两段梁的最大弯矩分别为M1=N(L-b)2/16L+M/2M2=N(L-b)2/16L得到最大支座力为 R kmax=R B,最大弯矩为 M kmax=M1。
桩顶竖向力 R kmax:R kmax=N/4+3M/2L=(510.80+38.18)/4+3×630.00/(2×4.24)=358.43kNR kmin=N/4-3M/2L=(510.80+38.18)/4-3×630.00/(2×4.24)=-87.12kN交叉梁得最大弯矩 M kmax:M kmax=N(L-b)2/16L+M/2=(510.80+38.18)×(4.24-2.26)2/(16×4.24)+630.00/2=346.33kN.m四、十字交叉梁计算1.交叉梁截面主筋的计算依据《混凝土结构设计规范》(GB50010-2010)第6.2条受弯构件承载力计算。
十字梁式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB 50007-2011一、塔机属性1、塔机传递至基础荷载标准值基础布置图基础底面积:A=2bl-l2+2a2=2×8.5×1.8-1.82+2×1.82=33.84m2基础中一条形基础底面积:A0=bl+2(a+l)a=8.5×1.8+2×(1.8+1.8)×1.8=28.26m2 基础及其上土的自重荷载标准值:G k=AhγC=33.84×1.5×25=1269kN基础及其上土的自重荷载设计值:G=1.35G k=1.35×1269=1713.15kN1、偏心距验算条形基础的竖向荷载标准值:F k''=(F k+G k)A0/A=(562+1269)×28.26/33.84=1529.08kNF''=(F+G)A0/A=(758.7+1713.15)×28.26/33.84=2064.258kNe=(M k+F Vk·h)/ F k''=(2322+86×1.5)/1529.08=1.603m≤b/4=8.5/4=2.125m满足要求!2、基础偏心荷载作用应力(1)、荷载效应标准组合时,基础底面边缘压力值e=1.603m>b/6=8.5/6=1.417m合力作用点至基础底面最大压力边缘的距离:a=b/2-e=8.5/2-1.603=2.647m P kmin=0P kmax=2F k''/(3la)=2×1529.08/(3×1.8×2.647)=213.944kPa(2)、荷载效应基本组合时,基础底面边缘压力值P max=2F''/(3la)=2×2064.258/(3×1.8×2.647)=288.824kPa3、基础轴心荷载作用应力P k=(F k+G k)/A=(562+1269)/33.84=54.108kN/m24、基础底面压应力验算(1)、修正后地基承载力特征值f a=f ak+ηdγm(d-0.5)=160+1.6×19.3×(1.5-0.5)=190.88kPa(2)、轴心作用时地基承载力验算P k=54.108kPa≤f a=190.88kPa满足要求!(3)、偏心作用时地基承载力验算P kmax=213.944kPa≤1.2f a=1.2×190.88=229.056kPa满足要求!5、基础抗剪验算基础有效高度:h0=H-δ-D/2=1500-50-25/2=1438mm塔身边缘至基础底边缘最大反力处距离:a1=(b-20.5B)/2=(8.5-20.5×1.8)/2=2.977m 塔身边缘处基础底面地基反力标准值:P k1=(1-a1/3a)P kmax=(1-2.977/(3×2.647))×213.944=133.735kPa基础自重在基础底面产生的压力标准值:P kG=G k / A=1269 / 33.84=37.5kPa基础底平均压力设计值:P=γ((P kmax+P k1)/2-P kG)=1.35×(( 213.944+133.735)/2-37.5)=184.058kPa基础所受剪力:V=pa1l=184.058×2.977×1.8=986.365kN6、软弱下卧层验算基础底面处土的自重压力值:p c=dγm=1.5×19.3=28.95kPa下卧层顶面处附加压力值:p z=lb(P k-p c)/(2(b+2ztanθ)2)=1.8×8.5×(64.791-28.95)/(2×(8.5+2×2×tan20°)2)=2.766kPa软弱下卧层顶面处土的自重压力值:p cz=zγ=2×20=40kPa软弱下卧层顶面处修正后地基承载力特征值f az=f azk+ηdγm(d+z-0.5)=130.00+1.60×19.30×(2.00+1.50-0.5)=222.64kPa作用在软弱下卧层顶面处总压力:p z+p cz=2.766+40=42.766kPa≤f az=222.64kPa 满足要求!7、地基变形验算倾斜率:tanθ=|S1-S2|/b'=|25-20|/8500=0.0006≤0.001满足要求!四、基础配筋验算基础底均布荷载设计值:q1=pl=184.058×1.8=331.305kN/m塔吊边缘弯矩:M=q1a12/2=331.305×2.9772/2=1468.306kN·m2、基础配筋计算(1)、基础梁底部配筋αS1= M/(α1f c lh02)=1468.306×106/(1×16.7×1800×14382)=0.024ζ1=1-(1-2αS1)0.5=1-(1-2×0.024)0.5=0.024γS1=1-ζ1/2=1-0.024/2=0.988A s1=M/(γS1h0f y1)=1468.306×106/(0.988×1438×300)=3445mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/300)=max(0.2,0.236)=0.236% 基础底需要配筋:A1=max(3445,ρlh0)=max(3445,0.0024×1800×1438)=6096mm2 基础梁底实际配筋:A s1'=7854mm2≥A1=6096mm2满足要求!(2)、基础梁上部配筋基础梁上部实际配筋:A s2'=4562mm2≥0.5A s1'=3927mm2满足要求!(3)、基础梁腰筋配筋梁腰筋按照构造配筋HRB335 6Φ14(4)、基础梁箍筋配筋箍筋抗剪截面高度影响系数:βh=(800/h0)0.25=(800/1438)0.25=0.8640.7βh f t lh0=0.7×0.864×1.57×103×1.8×1.438=2456.755kN≥V=986.365kN按构造规定选配钢筋!配箍率验算ρsv=nA sv1/(ls)=4×113.097/(1800×200)=0.126%≥ρsv,=0.24f t/f yv=0.24×1.57/300=0.126%min满足要求!(5)、基础加腋处配筋基础加腋处,顶部与底部配置水平构造筋Φ12@200mm、竖向构造箍筋Φ8@200mm,外侧纵向筋Φ10@200mm。
QTZ6516塔十字梁式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB 50007-2011一、塔机属性1、塔机传递至基础荷载标准值基础倾斜方向一端沉降量S1(mm) 30 基础倾斜方向另一端沉降量S2(mm) 20基础倾斜方向的基底宽度b'(mm) 20000基础布置图基础底面积:A=2bl-l2+2a2=2×9×3.6-3.62+2×12=53.84m2基础中一条形基础底面积:A0=bl+2(a+l)a=9×3.6+2×(1+3.6)×1=41.6m2基础及其上土的自重荷载标准值:G k=AhγC=53.84×1.35×25=1817.1kN基础及其上土的自重荷载设计值:G=1.35G k=1.35×1817.1=2453.085kN1、偏心距验算条形基础的竖向荷载标准值:F k''=(F k+G k)A0/A=(580+1817.1)×41.6/53.84=1852.143kNF''=(F+G)A0/A=(783+2453.085)×41.6/53.84=2500.393kNe=(M k+F Vk·h)/ F k''=(674.077+18.927×1.35)/1852.143=0.378m≤b/4=9/4=2.25m满足要求!2、基础偏心荷载作用应力(1)、荷载效应标准组合时,基础底面边缘压力值e=0.378m≤b/6=9/6=1.5mI=lb3/12+2×al3/12+4×[a4/36+a2/2(a/3+l/2)2]=3.6×93/12+2×1×3.63/12+4×[14/36+12/2×(1/3+3.6/2)2]=235.689 基础底面抵抗矩:W=I/(b/2)=235.689/(9/2)=52.375m3P kmin=F k''/A0-(M k+F Vk·h)/W=1852.143/41.6-(674.077+18.927×1.35)/52.375=31.165kPaP kmax=F k''/A0+(M k+F Vk·h)/W=1852.143/41.6+(674.077+18.927×1.35)/52.375=57.881kPa(2)、荷载效应基本组合时,基础底面边缘压力值P min=F''/A0-(M+F V·h)/W=2500.393/41.6-(910.004+25.551×1.35)/52.375=42.072kPa P max=F''/A0+(M+F V·h)/W=2500.393/41.6+(910.004+25.551×1.35)/52.375=78.139kPa 3、基础轴心荷载作用应力P k=(F k+G k)/A=(580+1817.1)/53.84=44.523kN/m24、基础底面压应力验算(1)、修正后地基承载力特征值f a=f ak+ηdγm(d-0.5)=160+1.6×19.3×(1.5-0.5)=190.88kPa(2)、轴心作用时地基承载力验算P k=44.523kPa≤f a=190.88kPa满足要求!(3)、偏心作用时地基承载力验算P kmax=57.881kPa≤1.2f a=1.2×190.88=229.056kPa满足要求!5、基础抗剪验算基础有效高度:h0=H-δ-D/2=1350-40-28/2=1296mm塔身边缘至基础底边缘最大反力处距离:a1=(b-20.5B)/2=(9-20.5×2.1)/2=3.015m 塔身边缘处基础底面地基反力标准值:P k1=P kmax-a1(P kmax-P kmin)/b=57.881-3.015×(57.881-31.165)/9=48.931kPa基础自重在基础底面产生的压力标准值:P kG=G k / A=1817.1 / 53.84=33.75kPa基础底平均压力设计值:P=γ((P kmax+P k1)/2-P kG)=1.35×(( 57.881+48.931)/2-33.75)=26.535kPa基础所受剪力:V=pa1l=26.535×3.015×3.6=288.019kNh0/l=1296/3600=0.36≤40.25βc f c lh0=0.25×1×16.7×3600×1296/1000=19478.88kN≥V=288.019kN满足要求!6、软弱下卧层验算基础底面处土的自重压力值:p c=dγm=1.5×19.3=28.95kPa下卧层顶面处附加压力值:p z=lb(P k-p c)/(2(b+2ztanθ)2)=3.6×9×(57.623-28.95)/(2×(9+2×2×tan20°)2)=4.249kPa软弱下卧层顶面处土的自重压力值:p cz=zγ=2×20=40kPa软弱下卧层顶面处修正后地基承载力特征值f az=222.64kPa作用在软弱下卧层顶面处总压力:p z+p cz=4.249+40=44.249kPa≤f az=222.64kPa 满足要求!7、地基变形验算倾斜率:tanθ=|S1-S2|/b'=|30-20|/20000=0.0005≤0.001满足要求!四、基础配筋验算基础底均布荷载设计值:q1=pl=26.535×3.6=95.526kN/m塔吊边缘弯矩:M=q1a12/2=95.526×3.0152/2=434.199kN·m2、基础配筋计算(1)、基础梁底部配筋αS1= M/(α1f c lh02)=434.199×106/(1×16.7×3600×12962)=0.004ζ1=1-(1-2αS1)0.5=1-(1-2×0.004)0.5=0.004γS1=1-ζ1/2=1-0.004/2=0.998A s1=M/(γS1h0f y1)=434.199×106/(0.998×1296×360)=933mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/360)=max(0.2,0.196)=0.2% 基础底需要配筋:A1=max(933,ρlh0)=max(933,0.002×3600×1296)=9331mm2 基础梁底实际配筋:A s1'=12309mm2≥A1=9331mm2满足要求!(2)、基础梁上部配筋基础梁上部实际配筋:A s2'=6839mm2≥0.5A s1'=6154mm2满足要求!(3)、基础梁腰筋配筋梁腰筋按照构造配筋HRB400 10Φ22(4)、基础梁箍筋配筋箍筋抗剪截面高度影响系数:βh=(800/h0)0.25=(800/1296)0.25=0.8860.7βh f t lh0=0.7×0.886×1.57×103×3.6×1.296=4544.922kN≥V=288.019kN按构造规定选配钢筋!配箍率验算ρsv=nA sv1/(ls)=6×113.04/(3600×160)=0.118%≥ρsv,=0.24f t/f yv=0.24×1.57/360=0.105%min满足要求!(5)、基础加腋处配筋基础加腋处,顶部与底部配置水平构造筋Φ12@200mm、竖向构造箍筋Φ8@200mm,外侧纵向筋Φ10@200mm。
十字交叉梁板式基础的计算书
一、参数信息
塔吊型号:QTZ50, 自重(包括压重)F1=450.8kN,
最大起重荷载F2=60.0kN,塔吊倾覆力距M=630.0kN.m,
塔吊起重高度H=101.0m,塔身宽度
B=1.6m,
混凝土强度等级:C35,底板的厚度h1=0.3m,
梁的高度 h2=0.8m,回填土的厚度h3=0.4m。
梁宽 t=0.6m,基础边长
b=4.00m。
基础上部中心部分正方形边长 a1=1.2m,
二、塔吊基础承载力计算
依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。
计算简图:
基础设计值计算公式:
当考虑偏心距较大时的基础设计值计算公式:
式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=1.2×510.80=612.96kN;
G──基础自重与基础上面的土的自重,G=1.2×(基础混凝土重力+回填土重力) =364.44kN;
B c──基础底面的宽度,取B c=4.00m;
a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:
a=4.00/2-630.00/(612.96+364.44)=1.36m。
经过计算得到:
基础压力设计值 P
=(612.96+364.44)/4.002=61.09kPa
偏心距较大时压力设计值 P kmax=2×
(612.96+364.44)/(3×4.00×1.36)=120.18kPa
三、抗倾覆稳定性验算
梁板式基础抗倾覆稳定性按下式计算
式中 e──偏心距,即地面反力的合力至基础中心的距离(m);
M──作用在基础上的弯矩(kN.m);
F──作用在基础上的垂直载荷(kN);
G──混凝土基础重力(kN);
b,h──分别为基础的边长和高度(m)。
计算得:
e =630.00/(612.96364.44)=0.64≤b/3=1.33m
满足要求!
四、地基基础承载力验算
地基基础承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2002第5.2.3条。
计算公式如下:
其中 f a──修正后的地基承载力特征值(kN/m2);
f ak──地基承载力特征值,取145.00kN/m2;
b──基础宽度地基承载力修正系数,取0.15;
d──基础埋深地基承载力修正系数,取1.40;
──基础底面以下土的重度,取20.00kN/m3;
γm──基础底面以上土的重度,取20.00kN/m3;
b──基础底面宽度,取4.00m;
d──基础埋深度,取1.10m。
解得地基承载力设计值 f a=164.80kPa
实际计算取的地基承载力设计值为:f a=193.00kPa
地基承载力特征值f a大于最大压力设计值
P max=61.09kPa,满足要求!
地基承载力特征值1.2×f a大于偏心距较大时的压力设计值P kmax=120.18kPa,满足要求!
五、受冲切承载力验算
依据《建筑地基基础设计规范》GB 50007-2002第8.2.7条。
验算公式如下:
式中hp──受冲切承载力截面高度影响系数,取
hp=0.98;
f t──混凝土轴心抗拉强度设计值,取
f t=1.55kPa;
a m──冲切破坏锥体最不利一侧计算长度: a m=[1.20+(1.20 +2×1.10)]/2=2.30m;
h0──承台的有效高度,取 h0=1.05m;
P j──最大压力设计值,取 P j=61.09kPa;
F l──实际冲切承载力:
F l=120.18×(4.00+3.30)×
0.35/2=153.53kN。
允许冲切力:
0.7×0.98×1.55×2300.00×
1050.00=2554768.13N=2554.77kN
实际冲切力不大于允许冲切力设计值,所以能满足要求!
六、承台配筋计算
依据《建筑地基基础设计规范》GB 50007-2002第8.2.7条。
1.截面I-I抗弯计算,计算公式如下:
式中 a1──截面I-I至基底边缘的距离,取 a1=1.20m; P──截面I-I处的基底反力:
P=120.18×(3×1.36-1.20)/(3×
1.36)=84.72kPa;
a──截面I-I在基底的投影长度,取 a=1.60m。
经过计算得 M=84.722×[(2×4.00+1.60)×(120.18+84.72-2×364.44/4.002)+(120.18-84.72)×4.00]/12
=200.59kN.m。
2.截面I-I板筋和梁下层配筋面积计算,公式如下:
依据《混凝土结构设计规范》(GB50010-2010)
式中1──系数,当混凝土强度不超过C50时,1取为1.0,当混凝土强度等级为C80时,
1取为0.94,期间按线性内插法确定;
f c──混凝土抗压强度设计值;
h0──承台的计算高度。
板底配筋,经过计算得s=200.59×106/(1.00×16.50×4.00×103×250.002)=0.049
=1-(1-2×0.049)0.5=0.050
s=1-0.050/2=0.975
A s=200.59×106/(0.975×250.00×
210.00)=3918.44mm2。
由于最小配筋率为0.15%,所以最小配筋面积为:1800.00mm2。
故取 A s=3918.44mm2。
梁底配筋,经过计算得s=200.59×106/(1.00×16.50×0.60×103×1100.002)=0.017
=1-(1-2×0.017)0.5=0.017
s=1-0.017/2=0.992
A s=200.59×106/(0.992×1100.00×
210.00)=875.74mm2。
由于最小配筋率为0.15%,所以最小配筋面积为:990.00mm2。
故取 A s=990.00mm2。
3. 截面II-II抗弯计算,计算公式如下:
经过计算得 M=1.202×[(2×4.00+1.60)×364.44/(6×4.002)
=52.48kN.m。
4. 梁上层配筋面积计算:
经过计算得s=52.48×106/(1.00×16.50×0.60×103×1100.002)=0.004
=1-(1-2×0.004)0.5=0.004
s=1-0.004/2=0.998
A s=200.59×106/(0.998×1100.00×
210.00)=870.26mm2。
由于最小配筋率为0.15%,所以最小配筋面积
为:990.00mm2。
故取 A s=990.00mm2。