梁-弯矩图-梁-内力图--(剪力图与弯矩图)
- 格式:doc
- 大小:3.05 MB
- 文档页数:45
简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5标准标准标准标准标准标准标准注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
实用文档2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
.\2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
简单载荷梁力图(剪力图与弯矩图)各种载荷下剪力图与弯矩图的特征表2表3 各种约束类型对应的边界条件常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2.单跨梁的力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:m axy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
梁的剪力和弯矩 剪力图和弯矩图1、 剪力和弯矩剪力:沿截面切线方向的内力F S 称为剪力,剪力符号规定为:截面上的剪力如果有使考虑的脱离体有顺时针转动的趋势则为正,反之为负(图9-2)。
弯矩:作用面垂直于横截面的内力偶矩M 称为弯矩,弯矩符号规定为截面上的弯矩如果使考虑的脱离体向下凸(或者说使梁下边受拉,上边受压)为正,反之为负(图9-3)。
2、 列方程作梁的剪力图和弯矩图。
剪力方程和弯矩方程可以表示剪力和弯矩随横截面位置变化的规律。
)(S S x F F =和 )(x M M = (9-1)剪力图和弯矩图是将剪力和弯矩随横截面位置变化情况用图形表示出来。
在载荷无突变的一段杆的各截面上内力按相同的规律变化,各段的分界点为各段梁的控制截面,必须分段列出梁的剪力方程和弯矩方程。
列方程作梁的剪力图和弯矩图的步骤为:(1)、求支座反力; (2)、确定坐标原点,分段列剪力方程和弯矩方程; (3)、计算控制点处的剪力值和弯矩值,标注在图上; (4)、根据各段的剪力方程和弯矩方程作剪力图和弯矩图,并说明剪力和弯矩的最大值。
3、利用弯矩、剪力、荷载集度之间的关系作梁的剪力图和弯矩图。
弯矩、剪力、荷载集度之间的微分关系为)(d )(d S x q x x F =, )(d )(d S x F x x M =,)(d )(d 22x q x x M = (9−2) 剪力图和弯矩图的规律为表9−1梁上的外力情况 剪力图上的特征弯矩图上的特征弯矩极值所在截面的可能位置水平线段直线段FF FF(a)(b)图9−2MMMM(a)(b)图9−3无外力段 ()()0d d S ==x q xx F ()()常数d d S ==x F xx M q (x )=常数向下的均布荷载 向下方倾斜的直线段()()0d d S <=x q xx F 下凸的二次抛物线()()0d d 22<=x q xx M 在F S =0的截面上q (x )=常数向上的均布荷载 向上方倾斜的直线段()()0d d S >=x q xx F 上凸的二次抛物线()()0d d 22>=x q x x M 在F S =0的截面上F 作用处发生突变,突变值等于FF 作用处发生转折在左右剪力具有不同正负号的截面上集中力偶在M e 作用处无变化M e 作用处发生突变,突变值等于M e在紧靠集中力偶作用处的某一侧截面上利用弯矩、剪力、荷载集度之间的关系作梁的剪力图和弯矩图的步骤为: (1)、求支座反力; (2)、计算控制点处的剪力值和弯矩值,标注在图上; (3)、根据弯矩、剪力、荷载集度之间的关系作剪力图和弯矩图,并标出剪力和弯矩的最大值。
简单载荷梁内力图(剪力图与弯矩图)
表2 各种载荷下剪力图与弯矩图的特征
表3 各种约束类型对应的边界条件
注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表
2-5
授课:XXX
授课:XXX
授课:XXX
授课:XXX
授课:XXX
授课:XXX
授课:
XXX
注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=
A
dA y
I 2
2.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:m ax
y I W =
3.i 称截面回转半径(mm ),其基本计算公式如下:A
I
i =
4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2.单跨梁的内力及变形表(表2-6~表2-10)
(1)简支梁的反力、剪力、弯矩、挠度表2-6
(2)悬臂梁的反力、剪力、弯矩和挠度表2-7
(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8
(4)两端固定梁的反力、剪力、弯矩和挠度表2-9
(5)外伸梁的反力、剪力、弯矩和挠度表2-10
3.等截面连续梁的内力及变形表
(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)
1)二跨等跨梁的内力和挠度系数表2-11
注:1.在均布荷载作用下:M =表中系数×ql 2
;V =表中系数×ql ;EI
w 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EI
w 100Fl 表中系数3
⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)
=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)
=(-36.75)+(-20.23)=-56.98kN
[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
[解] M1=0.080×11.76×62=33.87kN ·m 。
2)三跨等跨梁的内力和挠度系数 表2-12
注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI
w 100ql 表中系数4
⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EI
w 100Fl 表中系数3
⨯=。
3)四跨等跨连续梁内力和挠度系数 表2-13
注:同三跨等跨连续梁。
4)五跨等跨连续梁内力和挠度系数表2-14
注:同三跨等跨连续梁。
(2)不等跨连续梁的内力系数(表2-15、表2-16)
1)二不等跨梁的内力系数表
2-15
授课:XXX
2)三不等跨梁内力系数表
2-16
授课:XXX
注:1.M=表中系数×ql21;V=表中系数×ql1;2.(M max)、(V max)为荷载在最不利布置时的最大内力。
授课:XXX
4.双向板在均布荷载作用下的内力及变形系数表(表2-17~表2-22) 符号说明如下:
刚度 )1(1223
υ-=Eh K
式中 E ——弹性模量;
h ——板厚; ν——泊松比;
ω、ωmax ——分别为板中心点的挠度和最大挠度;
M x ——为平行于l x 方向板中心点的弯矩; M y ——为平行于l y 方向板中心点的弯矩; M x 0——固定边中点沿l x 方向的弯矩; M y 0——固定边中点沿l y 方向的弯矩。
正负号的规定:
弯矩——使板的受荷面受压者为正; 挠度——变位方向与荷载方向相同者为正。
四边简支 表2-17
三边简支,一边固定 表2-18
两边简支,两边固定表2-19
一边简支,三边固定表2-20
四边固定表2-21
两边简支,两边固定表2-22
5.拱的内力计算表(表2-23)
各种荷载作用下双铰抛物线拱计算公式表2-23
注:表中的K为轴向力变形影响的修正系数。
(1)无拉杆双铰拱
1)在竖向荷载作用下的轴向力变形修正系数
式中I c——拱顶截面惯性矩;
A c——拱顶截面面积;
A——拱上任意点截面面积。
当为矩形等宽度实腹式变截面拱时,公式I=I c/cosθ所代表的截面惯性矩变化规律相当于下列的截面面积变化公式:
此时,上式中的n可表达成如下形式:
下表中列出了矩形等宽度实腹式变截面拱的n值。
f/l 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 n 1.67 1.59 1.51 1.43 1.36 1.29 1.23 1.17 1.12 2)在水平荷载作用下的轴向力变形修正系数,近似取
K=1
(2)带拉杆双铰拱
1)在竖向荷载作用下的轴向力变形修正系数
式中E——拱圈材料的弹性模量;
E1——拉杆材料的弹性模量;
A1——拉杆的截面积。
2)在水平荷载作用下的轴向力变形修正系数(略去拱圈轴向力变形影响)
式中f——为矢高;
l——为拱的跨度。
6.刚架内力计算表
内力的正负号规定如下:
V——向上者为正;
H——向内者为正;
M——刚架中虚线的一面受拉为正。
(1)“┌┐”形刚架内力计算(表2-24、表2-25)
“┌┐”形刚架内力计算表(一)表2-34
“┌┐”形刚架内力计算表(二)表2-35
(2)“”形刚架的内力计算(表2-26)“”形刚架的内力计算表表2-26
(注:可编辑下载,若有不当之处,请指正,谢谢!)。