微机原理及应用第十章串行接口技术.
- 格式:doc
- 大小:1.46 MB
- 文档页数:21
第一章思考题与习题:1.什么叫微处理器、微机?微机系统包含哪些部分?2 .为什么计算机使用二进制计数制?3.CPU 在内部结构上由哪几部分组成?4 .十六进制的基数或底数是。
5.将下列十进制数分别转换成十六进制、二进制、八进制数:563 6571 234 1286 .将下列十进制小数转换成十六进制数(精确到小数点后4 位数):0.359 0.30584 0.9563 0.1257.将1983.31510转换成十六进制数和二进制数。
8.将下列二进制数转换成十进制数、十六进制数和八进制数:(1)101011101.11011 (2 )11100011001.011 (3 )1011010101.00010100111 9.将下列十六进制数转换成十进制数和二进制数:AB7.E2 5C8.11FF DB32.64E10.判断下列带符号数的正负,并求出其绝对值(负数为补码):10101100;01110001;11111111;10000001。
11.写出下列十进制数的原码、反码和补码(设字长为8 位):+64 -64 +127 -128 3/5 -23/12712.已知下列补码,求真值X :(1)[X]补=1000 0000(2 )[X]补=1111 1111(3 )[-X]补=1011011113.将下列各数转换成BCD 码:30D,127D,23D,010011101B,7FH14.用8421 BCD 码进行下列运算:43+99 45+19 15+3615.已知X =+25,Y =+33,X = -25,Y = -33,试求下列各式的值,并用其对应的真值进行验证:1 12 2(1)[X +Y ]补1 1(2 )[X -Y ]补1 2(3 )[X -Y ]补1 1(4 )[X -Y ]补2 2(5 )[X +Y ]补1 2(6 )[X +Y ]补2 216.当两个正数相加时,补码溢出意味着什么?两个负数相加能产生溢出吗?试举例说明。
串行口工作原理
串行口是一种用于数据传输的硬件接口,它可以将数据逐个比特地传输。
串行口工作的基本原理是将需要传输的数据按照一定的规则进行分割,并以连续的比特序列的形式进行传输。
在串行口的工作过程中,数据被分成一个个比特,然后按照事先约定好的规则,依次传输给接收端。
这个规则包括了每个比特的位宽、传输的顺序以及同步的方式等等。
通常情况下,串行口使用的是异步传输方式,也就是说,传输时不需要事先进行时钟同步,而是在数据的起始位置插入起始位和校验位来提供同步信息。
在串行口的数据传输过程中,发送端按照一定的时序将数据比特逐个发送给接收端。
接收端按照相同的时序依次接收每个比特,并通过解码、校验等操作恢复原始数据。
为了保证数据的准确性,通常还会在传输过程中加入差错检测和纠错机制,例如CRC校验等。
串行口的工作原理与并行口不同,串行口通过逐个比特的方式传输数据,相比之下,串行口在传输速率上可能会受到一定的限制。
但是串行口的传输距离相对较长,传输线路简单,而且可以灵活选择传输速率,因此在许多应用场景下得到了广泛的应用。
例如,在计算机、通信设备、工业自动化等领域中,串行口被广泛用于连接外部设备与主机进行数据交互。
微机原理接口技术
微机原理接口技术是指在微机系统中,通过特定的接口将硬件设备与计算机之间进行连接和通信的技术。
接口技术的发展使得不同硬件设备可以与计算机进行有效的交互。
一种常见的接口技术是串口(Serial Port),它是一种用于连接计算机和外部设备的串行通信接口。
串口通过发送和接收数据位来与外部设备进行通信,如打印机、调制解调器等。
另一种常见的接口技术是并口(Parallel Port),它是一种用于连接计算机和外部设备的并行通信接口。
并口可以在同一时间内传输多个数据位,适用于一些需要高速数据传输的设备。
此外,还有USB接口(Universal Serial Bus)技术,它是一种用于连接计算机和外部设备的通用串行总线接口。
USB接口具有高速传输、插拔方便等特点,广泛应用于键盘、鼠标、打印机、摄像头等设备上。
另外,还有以太网接口技术,它是一种用于连接计算机与局域网之间的接口技术,可以实现计算机之间的数据传输和共享。
除了这些常见的接口技术外,还有许多其他类型的接口技术,如SATA接口、PCI接口、HDMI接口等,它们在不同的场景和设备上都有着各自的应用。
总的来说,接口技术在微机原理中起着至关重要的作用,它们
使得计算机可以与外部硬件设备进行有效的连接和通信,为实现各种功能和应用提供了基础条件。
单片机的串行通信接口原理及其应用解析引言:单片机作为嵌入式系统的核心,广泛应用于各个领域。
随着科技的不断发展,单片机通信的需求越来越高。
而串行通信接口便成为了单片机与外部设备进行数据交换的重要手段之一。
本文将讨论单片机串行通信接口的原理、主要类型和应用。
一、串行通信接口的原理串行通信是将数据位串行传送的一种方式,与并行传输相对应。
单片机的串行通信接口是通过发送和接收数据位的电信号来实现数据交互。
1. 数据位传输原理:串行通信将数据按照位逐位地传送,数据位由高位到低位依次传输或接收。
通常,发送和接收双方约定好一种数据格式,如起始位、停止位、校验位等。
起始位用于表示数据传输的开始,停止位用于表示数据传输的结束。
校验位用于检查数据传输的准确性。
2. 电平和波特率:串行通信中使用的电平通常有高电平(1)和低电平(0)两种状态。
波特率是衡量数据传输速率的指标,表示每秒钟传输的位数。
常见的波特率有9600、115200等。
3. 同步和异步传输:串行通信可以分为同步和异步两种传输模式。
同步传输是指发送端和接收端以相同的时钟频率进行数据传输,需要使用专门的时钟信号线。
异步传输是指发送端和接收端使用各自的时钟频率,通过起始位、停止位来实现数据的同步。
异步传输比较灵活,成本较低,因此更常用。
二、串行通信接口的主要类型单片机的串行通信接口主要包括UART、SPI和I2C接口。
下面将对每种接口进行简要介绍。
1. UART(Universal Asynchronous Receiver/Transmitter)接口:UART是一种异步通信接口,常用于单片机与计算机之间的串行通信。
UART 接口有两个引脚,一个用于数据传输的发送线(TX),一个用于数据传输的接收线(RX)。
UART通过波特率的设置来控制数据传输速率,并使用起始位、停止位和校验位来保证数据的准确性。
2. SPI(Serial Peripheral Interface)接口:SPI接口是一种全双工同步串行通信接口,用于连接单片机与外部设备,如传感器、显示器等。
第10章DMA接口技术习题10.1 什么是DMA方式?DMA方式的特点是什么?主要用于什么场合?【参考答案】DMA方式是指外设与存储器或者存储器与存储器之间直接传输数据的方式,在这种方式中,外设与存储器或者存储器与存储器之间直接传输数据由专用接口芯片DMA控制器(简称DMAC)来管理。
数据传送不需要经过CPU,直接由硬件控制。
DMA方式的主要特点是数据数据速度快数据传输速度很高,传输速率仅受内存访问时间的限制,但需更多硬件。
DMA方式适用于高速外设与主机之间进行成批的数据传送。
10.2 简述DMA控制器8237A的主要功能。
【参考答案】DMA控制器8237A的主要功能如下。
(1)每个芯片内部有4个独立的DMA通道,可以分时为4个外设实现DMA的传送。
每个通道可采用3种不同的传送类型,即读操作、写操作、校验操作。
(2)每个通道的DMA请求都可以分别允许和禁止。
(3)每个通道的DMA请求有不同的优先级,由编程来决定其优先级,其优先级可以是固定的,也可以是轮转的。
(4)每个通道一次传送数据的最大长度可达64KB,可以在存储器与外设之间进行数据传送,也可以在存储器的两个区域之间进行传送。
(5)8237A的DMA传送有4种工作方式:单字节传送方式、数据块传送方式、请求传送方式和级联传送方式。
(6)有一条结束处理的输入信号EOP#,外界可以用此信号来结束DMA传送。
(7)8237A可以进行级联,用于扩展通道数。
10.3 DMA传送方式为什么能实现高速传送?【参考答案】DMA传送方式能够实现高速数据传送主要有两个原因:(1)它为两个存储介质提供了直接传输通道,不象CPU 控制的传送那样要通过内部寄存器中转。
(2)用硬件取代了软件,它直接发出对两个介质的选中信号及其读写控制信号,而不是通过执行指令来控制传送。
10.4 DMA控制器8237A什么时候可作为主设备工作?什么时候可作为从设备工作?在这两种情况下,系统总线的IOR#、IOW#、MEMR#、MEMW#及地址线各处于什么状态?系统总线中哪个信号可以区分8237A处于哪种工作情况?【参考答案】7.3 DMA控制器8237A什么时候作为主模块工作?什么时候作为从模块工作?在这两种情况下,各控制信号处于什么状态,试作说明。
《微机原理与接口技术》课程总结本学期我们学习了《微型计算机原理与接口技术》,总的来说,我掌握的知识点可以说是少之又少,我感觉这门课的内容对我来说是比较难理解的。
这门课围绕微型计算机原理和应用主题,以Intel8086CPU为主线,系统介绍了微型计算机的基本知识、基本组成、体系结构、工作模式,介绍了8086CPU的指令系统、汇编语言及程序设计方法和技巧,存储器的组成和I/O接口扩展方法,微机的中断结构、工作过程,并系统介绍了微机中的常用接口原理和应用技术,包括七大接口芯片:并行接口8255A、串行接口8251A、计数器/定时器8253、中断控制器8259A、A/D(ADC0809)、D/A (DAC0832)、DMA(8237)、人机接口(键盘与显示器接口)的结构原理与应用。
在此基础上,对现代微机系统中涉及的总线技术、高速缓存技术、数据传输方法、高性能计算机的体系结构和主要技术作了简要介绍。
第一章:微型计算机概论(1)超、大、中、小型计算机阶段(1946年-1980年)采用计算机来代替人的脑力劳动,提高了工作效率,能够解决较复杂的数学计算和数据处理(2)微型计算机阶段(1981年-1990年)微型计算机大量普及,几乎应用于所有领域,对世界科技和经济的发展起到了重要的推动作用。
(3)计算机网络阶段(1991年至今)。
计算机的数值表示方法:二进制,八进制,十进制,十六进制。
要会各个进制之间的数制转换。
计算机网络为人类实现资源共享提供了有力的帮助,从而促进了信息化社会的到来,实现了遍及全球的信息资源共享。
第二章:80X86微处理器结构本章讲述了80X86微处理器的内部结构及他们的引脚信号和工作方式,重点讲述了8086微处理器的相关知识,从而为8086微处理器同存储器以及I/O设备的接口设计做了准备。
本章内容是本课程的重点部分。
第三章:80X86指令系统和汇编语言本章讲述了80X86微处理器指令的多种寻址方式,讲述了80X86指令系统中各指令的书写方式、指令含义及编程应用;讲述了汇编语言伪指令的书写格式和含义、汇编语言中语句的书写格式。
串行通信的工作原理及应用1. 什么是串行通信串行通信是一种数据传输方式,在这种方式下,数据位是按照顺序一个一个地传输的。
相对应的是并行通信,它是一种同时传输多个数据位的通信方式。
在串行通信中,数据位通过一个传输线依次传送,每个数据位之间由一个起始位和一个停止位分隔。
这种传输方式的优点是占用较少的传输线资源,但由于需要一个接一个地传输数据位,速度较慢。
2. 串行通信的工作原理串行通信的工作原理包括以下几个要点:2.1 起始位和停止位在每个数据位之间,串行通信需要加入起始位和停止位作为分隔符。
起始位和停止位分别被设置为逻辑低和逻辑高,用于标识每个数据位的开始和结束。
这样接收端可以通过检测起始位和停止位来判断每个数据位的位置,从而正确地解析接收的数据。
2.2 传输速率串行通信的传输速率是指每秒传输的比特数,通常用波特率(bps)来表示。
波特率越高,传输速度越快。
但是在实际应用中,传输速率受到传输线路的限制,不能无限制地提高。
需要在实际应用中根据需求和可用的传输线路选择合适的波特率。
2.3 容错性串行通信在传输过程中需要保证数据的可靠性和完整性。
为了提高容错性,通常会在传输的数据中添加校验位或者奇偶校验位来验证数据的正确性。
接收端通过对接收到的数据进行校验,判断数据是否出错。
如果校验失败,说明数据传输中存在错误,可以通过重新传输或其他方式进行错误处理。
3. 串行通信的应用串行通信在现代通信领域有着广泛的应用,以下列举了一些常见的应用场景:3.1 串行通信接口串行通信接口是计算机与外部设备进行通信的重要方式之一。
例如,通过串口接口(RS232C 或 USB),计算机可以与打印机、调制解调器、传感器等设备进行串行通信。
串行通信接口可以通过串行线缆传输数据,并对数据进行解析和处理。
3.2 串行通信协议串行通信协议是在串行通信中定义数据传输格式和规则的一组约定。
常见的串行通信协议包括UART、SPI、I2C等,并且每个协议都有自己的通信规范和数据传输方式。
串行口的工程应用及原理图1. 什么是串行口串行口是计算机与外部设备进行数据通信的接口之一。
它使用一根线路在计算机和外设之间进行数据传输。
串行口一般是指串行通信口,即通过一条线路逐位传输数据的通信接口。
2. 串行口的工程应用2.1 老串行口应用在早期计算机时代,老式串行口(也称为RS232串行口)是最常见和最广泛应用的介质之一。
它被用于连接打印机、调制解调器、键盘、鼠标等各种外部设备。
通过串行口,计算机可以与这些外部设备进行数据交互。
例如,用户可以通过串行口连接打印机,并通过计算机将文本发送到打印机进行打印。
2.2 工业自动化串行口在工业自动化领域也有广泛的应用。
例如,在工厂的生产线上,计算机可以通过串行口与PLC(可编程逻辑控制器)进行通信,实现对生产过程的监控和控制。
串行口可以传输传感器数据和执行控制指令,实现工艺过程的自动化。
2.3 无线通信领域在无线通信领域,串行口也有重要的应用。
例如,在物联网设备中,通过串行口将传感器数据传输到计算机或云端进行分析和处理。
另外,通过串行口可以与无线模块进行通信,实现物联网设备的远程控制和监控。
3. 串行口的原理图下面是串行口的简化原理图:+-----------------+| 数据线 |+-----------------+||+----+----+| || 串行口 || |+----+----+||+---------------+| 电脑主板 |+---------------+原理图中的串行口由数据线和电脑主板组成。
数据线用于传输数据,电脑主板负责控制和管理串行口的工作。
计算机通过串行口向外部设备发送数据时,数据被序列化并逐位发送,接收时则逆序进行解码恢复原始数据。
4. 串行口的工作原理串行口的工作原理是逐位传输数据。
计算机将数据拆分为一系列的位,通过数据线逐位发送。
数据位按照事先约定好的编码格式进行传输,通常是使用ASCII码。
在串行口中,除数据位外,还有一个起始位和一个或多个停止位,用于标识数据的开始和结束。
串行接口的工作原理
串行接口(Serial Interface)的工作原理是,通过一条传输线将数据位按照顺序进行传输,而不是同时传输所有数据位。
它一般由两根线组成,分别是发送线(TX)和接收线(RX)。
数据通过发送线以连续的位序列的形式从发送方传输到接收方,接收方通过接收线将接收到的数据重新组装成完整的消息。
在串行通信时,数据通常是按照位的顺序逐个传输的。
发送方将数据位按顺序逐个发送到发送线上,接收方通过接收线逐个接收数据位。
数据位的传输速率由波特率(Baud rate)来控制,波特率指的是每秒传输的位数。
为了确保数据能够被准确地发送和接收,串行口通常还需要使用其他信号线,如数据就绪信号(Ready)和数据结束信号(Stop)。
数据就绪信号用于通知接收方有新的数据即将到来,并准备好接收,而数据结束信号用于表示数据传输的结束。
串行口的工作原理可以被简单概括为发送方将数据按照位的顺序发送给接收方,接收方通过接收线逐个接收数据位,并将其重新组装成完整的消息。
通过控制波特率和使用其他信号线,串行口可以实现可靠的数据传输。
第3章8086/8088指令系统与寻址方式习题3.3 8086系统中,设DS=1000H,ES=2000H,SS=1200H,BX=0300H,SI=0200H,BP=0100H,VAR的偏移量为0600H,请指出下列指令的目标操作数的寻址方式,若目标操作数为存储器操作数,计算它们的物理地址。
(1)MOV BX,12 ;目标操作数为寄存器寻址(2)MOV [BX],12 ;目标操作数为寄存器间址PA=10300H(3)MOV ES:[SI],AX ;目标操作数为寄存器间址PA=20200H(4)MOV VAR,8 ;目标操作数为存储器直接寻址PA=10600H(5)MOV [BX][SI],AX ;目标操作数为基址加变址寻址PA=10500H(6)MOV 6[BP][SI],AL ;目标操作数为相对的基址加变址寻址PA=12306H (7)MOV [1000H],DX ;目标操作数为存储器直接寻址PA=11000H(8)MOV 6[BX],CX ;目标操作数为寄存器相对寻址PA=10306H(9)MOV VAR+5,AX ;目标操作数为存储器直接寻址PA=10605H3.4 下面这些指令中哪些是正确的那些是错误的如果是错误的,请说明原因。
(1)XCHG CS,AX ;错,CS不能参与交换(2)MOV [BX],[1000] ;错,存储器之不能交换(3)XCHG BX,IP ;错,IP不能参与交换(4)PUSH CS(5)POP CS ;错,不能将数据弹到CS中(6)IN BX,DX ;输入/输出只能通过AL/AX(7)MOV BYTE[BX],1000 ;1000大于255,不能装入字节单元(8)MOV CS,[1000] ;CS不能作为目标寄存器(9)MOV BX,OFFSET VAR[SI] ;OFFSET只能取变量的偏移地址(10)MOV AX,[SI][DI] ;SI、DI不能成为基址加变址(11)MOV COUNT[BX][SI],ES:AX ;AX是寄存器,不能加段前缀3.7 设当前SS=2010H,SP=FE00H,BX=3457H,计算当前栈顶的地址为多少当执行PUSH BX 指令后,栈顶地址和栈顶2个字节的内容分别是什么当前栈顶的地址=2FF00H当执行PUSH BX 指令后,栈顶地址=2FEFEH(2FEFEH)=57H(2FEFFH)=34H3.8 设DX=78C5H,CL=5,CF=1,确定下列各条指令执行后,DX和CF中的值。
串行通信的原理与应用1. 什么是串行通信?串行通信是一种数据传输的方式,它将数据位逐个按照顺序传输,与之相对的是并行通信,后者是将多个数据位同时传输。
串行通信的主要特点是数据传输的速度相对较慢,但在距离较远、线路复杂或成本较高的情况下,串行通信更为可靠和经济。
串行通信常被应用于计算机网络、串口通信、串行总线等领域。
2. 串行通信的原理串行通信的原理基于如下几个要点:2.1 串行传输串行传输是指数据位逐个传输的过程。
在串行通信中,数据位按照顺序一个接一个地传输,相邻的数据位之间通过特定的通信协议进行区分和同步。
2.2 帧同步为了确保数据的准确性,串行通信中通常需要引入帧同步机制。
帧同步机制用于确定数据帧的起始和结束位置,使接收方能够准确识别出每个数据帧并进行解析。
2.3 通信协议串行通信需要定义一套通信协议,用于规定数据的格式、传输速率、起始位、停止位、校验位等信息。
通信协议是串行通信能够正常工作的关键,它使得发送方和接收方能够按照相同的规则进行数据的传输和解析。
2.4 数据编码在串行通信中,数据通常需要进行编码处理,以确保数据的传输和解析的可靠性。
常用的数据编码方式包括ASCII码、二进制编码、差分编码等。
3. 串行通信的应用串行通信在现代信息技术中得到了广泛的应用,下面是一些常见的应用场景:3.1 计算机网络在计算机网络中,数据的传输需要通过网络传输介质进行,而网络传输介质的带宽通常较为有限。
为了提高数据传输的效率,计算机网络通常使用串行通信方式进行数据的传输。
常见的例子包括以太网、串口通信等。
3.2 串口通信串口通信是指计算机通过串行接口与外设进行数据的传输和交互。
串口通信在嵌入式系统和外部设备之间起到了桥梁的作用。
常见的串口通信方式包括RS-232、RS-485等。
3.3 串行总线串行总线是一种将多个设备通过串行方式连接起来的通信协议和接口标准。
串行总线通常由一根线路连接多个设备,减少了线路的复杂性和成本。
单片机中的串行通信接口原理与应用串行通信是一种数据传输方式,它将数据位按照顺序一位一位地发送,与之相对的是并行通信,它可以同时传输多个数据位。
在单片机中,串行通信接口是一种常见的通信方式,用于实现单片机与其他外部设备之间的数据交换。
本文将介绍串行通信接口的原理以及其在单片机中的应用。
一、串行通信接口原理串行通信接口实现数据的传输主要依靠两个信号线,分别是数据线和时钟线。
它们共同工作,实现数据的稳定传输。
1. 数据线(Data Line)数据线是用于传输数据位的信号线。
在串行通信中,每一位数据按照顺序通过数据线进行传输。
数据线上的电压(高电平或低电平)表示不同数据位的值。
通常情况下,高电平表示1,低电平表示0。
数据线的电平变化受到时钟线的控制。
2. 时钟线(Clock Line)时钟线是用于控制数据位传输速率的信号线。
它提供了一个定时信号,控制数据线上数据位的传输速度。
发送方和接收方通过时钟线上的时钟脉冲进行同步,以确保数据的准确传输。
在串行通信中,发送方和接收方之间需要达成一致,确定数据位的传输速率和数据格式等参数,以保证数据的正确解析。
3. 串行传输方式串行通信有两种常见的传输方式,分别是同步串行传输和异步串行传输。
同步串行传输通过时钟信号将数据位同步传输。
同步传输需要发送方和接收方事先约定好时钟频率,并在传输过程中保持同步。
数据通过时钟信号的边沿进行传输,接收方通过时钟信号的变化进行数据解析。
异步串行传输不需要时钟信号进行同步。
数据位与数据位之间的间隔通过某种方式进行确定,比如起始位和停止位。
异步传输在每一位数据的前后添加起始位和停止位,接收方通过检测起始位和停止位来确定每一位数据的位置。
二、串行通信接口应用串行通信接口在单片机中有广泛的应用,下面将介绍一些常见的串行通信接口应用。
1. 串口通信串口通信是一种常见的串行通信方式,它通过串口接口连接单片机与外部设备。
串口通信常用于与计算机、传感器、显示器等设备之间进行数据交换。