晶体中的缺陷与扩散 (1)
- 格式:ppt
- 大小:2.80 MB
- 文档页数:64
材料物理化学教案中的材料的晶体缺陷与扩散行为材料的晶体缺陷与扩散行为引言:材料的晶体缺陷与扩散行为是材料科学与工程领域中的重要内容。
晶体缺陷是指晶体内部的非完整性,而扩散行为是指在晶体中原子或分子的运动与迁移。
本教案将对材料的晶体缺陷与扩散行为进行深入探讨,旨在帮助学生全面了解这一重要概念,并在实践中运用所学知识。
一、晶体缺陷的分类晶体缺陷是由于晶体结构处于非完美状态而产生的。
根据其性质和形态的不同,晶体缺陷可分为点缺陷、线缺陷和面缺陷。
1. 点缺陷点缺陷是晶体中最基本的缺陷,可以分为两类:替位缺陷和空位缺陷。
替位缺陷是指原子或离子在晶体结构中被其他原子或离子替代的情况,而空位缺陷是指晶体结构中存在的空位。
2. 线缺陷线缺陷是指晶体中的非完整性线状结构,包括位错和脆性破裂。
3. 面缺陷面缺陷是指晶体中存在的非完整性平面结构,常见的面缺陷有晶界和孪晶。
二、晶体缺陷对材料性质的影响晶体缺陷对材料的物理性质和化学性质有重要的影响。
1. 机械性能晶体缺陷会导致材料的塑性变形和脆性破坏性能发生变化。
例如,位错对材料的塑性变形起到重要作用,而晶界会影响材料的断裂性能。
2. 传导性能晶体缺陷对材料的热导率和电导率也产生影响。
例如,通过控制晶体中的缺陷数量和类型,可以改变材料的导电性能,从而应用于电子器件等领域。
3. 光学性能某些晶体缺陷可以引起材料的光学性质发生变化。
例如,缺陷引起的能带结构变化会影响材料的吸收光谱和发射光谱。
三、晶体的扩散行为晶体的扩散行为是指原子或分子在晶体内部的运动与迁移。
扩散行为对材料的相变、腐蚀、合金化等过程具有至关重要的作用。
1. 扩散机制晶体的扩散行为可以分为晶体间扩散和晶内扩散。
晶体间扩散是指原子或离子通过晶格间隙迁移,而晶内扩散是指原子或离子在晶格内部发生迁移。
2. 影响因素晶体扩散速率受到多种因素的影响,包括温度、晶格缺陷、应力等。
温度是影响扩散速率的主要因素,一般情况下,温度越高,扩散速率越快。
岩石物理化学教案中的岩石的晶体缺陷与扩散行为岩石的晶体缺陷与扩散行为岩石是地球上最基本的物质构成之一,由各种矿物质以不同的方式组成而成。
在岩石物理化学教案中,研究岩石的晶体缺陷与扩散行为对于理解岩石的物理化学特性至关重要。
本文将探讨岩石晶体缺陷的类型和形成机制以及岩石中的扩散行为,以期进一步加深对岩石物理化学性质的认识。
一、岩石的晶体缺陷1. 点缺陷点缺陷是指晶体中位置不正常的离子或原子。
常见的点缺陷有空位缺陷和替位缺陷。
空位缺陷指的是晶体中某些位置上没有原子存在,而替位缺陷则是指晶体中某些位置上的原子被其他类型的原子替代。
2. 线缺陷线缺陷是指晶体中由于位错而形成的缺陷。
位错是晶体中原子排列出现错误的地方,可以分为错配位错和间隙位错。
错配位错是指晶体中原子的排列发生错位,而间隙位错则是指某些位置上的原子被其他类型的原子填充。
3. 面缺陷面缺陷是指晶体表面的缺陷,如晶界、堆垛层错等。
晶界是指两个晶粒之间的交界面,由于晶体之间的连接方式不同,晶界会出现晶界能量的不连续性,从而引起一些特殊的物理化学性质。
二、岩石中的扩散行为扩散是指物质在固态中自由运动,从高浓度区域向低浓度区域传播的过程。
在岩石中,多种因素会影响扩散行为,如温度、压力、活动能等。
常见的扩散类型有短程扩散和长程扩散。
1. 短程扩散短程扩散指的是在晶格点附近或晶界附近进行的扩散,通常发生在晶体内部。
这种扩散速率相对较快,是岩石中许多重要地质过程的主要控制因素之一。
2. 长程扩散长程扩散指的是晶体中原子或离子在晶体内进行较长距离的迁移。
由于原子间的相互作用力较大,所以长程扩散的速率相对较慢。
然而,长程扩散在地球科学中扮演着不可忽视的角色,对于岩石的变质作用以及岩石演化过程具有重要意义。
在岩石物理化学教案中,深入研究岩石的晶体缺陷与扩散行为对于理解岩石的物理化学性质和地质过程具有重要的意义。
岩石中的晶体缺陷类型和形成机制告诉我们晶体内部构造的复杂性,而扩散行为则揭示了物质在固态中的运动特性。
第二章 缺陷与扩散§2。
1 扩散的基本知识扩散系数与温度的关系可以用)exp()exp(00kThD kT g D D ∆-•=∆-•= 式2-1-1 来描述。
其中的h ∆为晶格中的原子从一个稳定位置移动到另一个相邻的稳定位置之间要克服的能垒。
扩散系数的单位是sec /2cm ,它反映了某物质在一定情况下扩散的难易程度。
反映扩散规律的基本公式为菲克第一和第二定律:菲克第一定律:C D J →→→∇•-=,式中的→J 是扩散通量,单位为sec)/(2•cm g 或sec)/(2•cm mol ;C 是扩散物质的浓度;负号表示扩散方向与浓度梯度方向相反。
第一定律适用于稳态扩散的情况,对三维扩散,)(zCD y C D x C D J z y x∂∂+∂∂+∂∂-=→;对一维扩散,xCD J x∂∂-=→。
菲克第二定律:A R C V C D tC +•∇•-••∇=∂∂→→)(2,描述了浓度随时间的变化规律。
式中右边的第一项表示直接和物质的扩散性质有关的影响;第二项表示体系运动的影响;第三项表示体系中化学反应的影响。
晶体中的扩散路径为: 1)表面扩散 2)晶界扩散 3)位错扩散 4)晶格扩散若用l d g s Q Q Q Q ,,,分别代表单独通过这四种路径扩散所需能量,用l d g s D D D D ,,,分别代表这四种扩散途径的扩散系数,则有:l d g s Q Q Q Q <<<,l d g s D D D D >>>。
可见扩散由1)到4)是由易到难的,故一般情况下晶体内的扩散以晶格扩散为控速环节。
§2。
2 扩散驱动力扩散的驱动力是体系中存在的化学位梯度。
从微观角度考虑:体系中的A 物质沿x 方向扩散时,作用在每一个原子上的力为:xG N F Aa ∂∂•-=1 式2-2-1 其中的A G 是体系中某位置A 原子的摩尔化学位,a N 是阿佛加德罗常数。
第三章晶体中的缺陷第一节概述一、缺陷的概念大多数固体是晶体,晶体正是以其特殊的构型被人们最早认识。
因此目前(至少在80年代以前>人们理解的“固体物理”主要是指晶体。
当然这也是因为客观上晶体的理论相对成熟。
在晶体理论发展中,空间点阵的概念非常重要。
空间点阵中,用几何上规则的点来描述晶体中的原子排列,并连成格子,这些点被称为格点,格子被称为点阵,这就是空间点阵的基本思想,它是对晶体原子排列的抽象。
空间点阵在晶体学理论的发展中起到了重要作用。
可以说,它是晶体学理论的基础。
现代的晶体理论基于晶体具有宏观平移对称性,并因此发展了空间点阵学说。
严格地说对称性是一种数学上的操作,它与“空间群”的概念相联系,对它的描述不属本课程内容。
但是,从另一个角度来理解晶体的平移对称性对我们今后的课程是有益的。
所谓平移对称性就是指对一空间点阵,任选一个最小基本单元,在空间三维方向进行平移,这个单元能够无一遗漏的完全复制所有空间格点。
考虑二维实例,如图3-1所示。
图3-1 平移对称性的示意图在上面的例子中,以一个基元在二维方向上平移完全能复制所有的点,无一遗漏。
这种情况,我们说具有平移对称性。
这样的晶体称为“理想晶体”或“完整晶体”。
图3-2 平移对称性的破坏如果我们对上述的格点进行稍微局部破坏,那么情况如何?请注意以下的复制过程,如图3-2所示。
从图中我们看出:因为局部地方格点的破坏导致平移操作无法完整地复制全部的二维点阵。
这样的晶体,我们就称之为含缺陷的晶体,对称性破坏的局部区域称为晶体缺陷。
晶体缺陷的产生与晶体的生长条件,晶体中原子的热运动以及对晶体的加工工艺等有关。
事实上,任何晶体即使在绝对零度都含有缺陷,自然界中理想晶体是不存在的。
既然存在着对称性的缺陷,平移操作不能复制全部格点,那么空间点阵的概念似乎不能用到含有缺陷的晶体中,亦即晶体理论的基石不再牢固。
幸运的是,缺陷的存在只是晶体中局部的破坏。
作为一种统计,一种近似,一种几何模型,我们仍然继承这种学说。