4晶体中的缺陷和扩散
- 格式:ppt
- 大小:2.38 MB
- 文档页数:57
第四章晶体中的缺陷与扩散晶体缺陷的基本类型热缺陷的统计理论晶体中的扩散离子晶体的点缺陷及导电性4-1晶体缺陷的基本类型晶体缺陷(晶格的不完整性):晶体中任何对完整周期性结构的偏离就是晶体的缺陷。
按缺陷的几何形状和涉及范围将缺陷分为:点缺陷、线缺陷和面缺陷。
一、点缺陷点缺陷是在格点附近一个或几个晶格常量范围内的一种晶格缺陷,如空位、填隙原子、杂质等。
由于空位和填隙原子与温度有直接的关系,或者说与原子的热振动有关,因此称他们为热缺陷。
1.弗仑克尔缺陷和肖特基缺陷弗仑克尔缺陷:当晶格中的原子脱离格点后,移到间隙位置形成填隙原子时,在原来的格点位置处产生一个空位,填隙原子和空位成对出现,这种缺陷称为弗仑克尔缺陷。
肖特基缺陷:当晶体中的原子脱离格点位置后不在晶体内部形成填隙原子,而是占据晶体表面的一个正常位置,并在原来的格点位置产生一个空位,这种缺陷称为肖特基缺陷。
2.杂质原子在材料制备中,有控制地在晶体中引入杂质原子,若杂质原子取代基质原子而占据格点位置,则成为替位式杂质。
当外来的杂质原子比晶体本身的原子小时,这些比较小的外来原子很可能存在于间隙位置,称它们为填隙式杂质。
填隙式杂质的引入往往使晶体的晶格常量增大。
3.色心能吸收可见光的晶体缺陷称为色心。
完善的晶体是无色透明的,众多的色心缺陷能使晶体呈现一定颜色,典型的色心是F心。
把碱卤晶体在碱金属的蒸气中加热,然后使之聚冷到室温,则原来透明的晶体就出现了颜色,这个过程称为增色过程,这些晶体在可见光区各有一个吸收带称为F带,而把产生这个带的吸收中心叫做F心。
4.极化子电子吸引邻近的正离子,使之内移。
排斥邻近的负离子,使之外移,从而产生极化。
电子所在处出现了趋于束缚这电子的势能阱,这种束缚作用称为电子的“自陷”作用。
产生的电子束缚态称为自陷态,同杂质所引进的局部能态有区别,自陷态永远追随着电子从晶格中一处移到另一处,这样一个携带着周围的晶格畸变而运动的电子,可看作一个准粒子(电子+晶格的畸变),称为极化子。
第四章晶体缺陷与缺陷运动§4.1 晶体缺陷的基本类型§4.2 位错缺陷的性质、晶体滑移的本质§4.3 热缺陷数目的统计平衡理论§4.4 热缺陷的运动、产生和复合§4.5 晶体中的扩散过程§4.6 离子晶体中的点缺陷与导电性前言理想晶体的主要特征是原子(或分子)的严格规则排列、周期性实际晶体中的原子排列会由于各种原因或多或少地偏离严格的周期性,存在着偏离了理想晶体结构的区域,于是就形成了晶体的缺陷。
晶体中虽然存在各种各样的缺陷,但实际在晶体中偏离平衡位置的原子数目很少(相对于晶体原子总数),在最严重的情况下,一般不会超过原子总数的万分之一,因而实际晶体结构从整体上看还是比较完整的。
缺陷——偏离了晶体周期性排列的局部区域。
前言(续)晶体中缺陷的种类很多,它们分别影响着晶体的力学、热学、电学、光学等各方面的性质。
然而,尽管在晶体中缺陷的数目很少,它们的产生和发展、运动和相互作用、以及合并和消失,对晶体的性能有重要的影响。
因此,晶体缺陷是固体物理中一个重要的研究领域,它对于研究和理解一些不能用完整晶体理论解释和理解的现象具有重要的意义。
例如:塑性与强度、扩散、相变、再结晶、离子电导以及半导体的缺陷导电等现象。
§4.1 晶体缺陷的基本类型一、点缺陷点缺陷——发生在一个或几个晶格常数范围内的缺陷。
如:空位、填隙原子、杂质原子等。
这些空位、填隙原子是由热起伏原因而产生的,所以又称为热缺陷。
晶体中存在的缺陷种类很多,但由于晶体中的晶体结构具有规律性,因此晶体中实际出现缺陷的类型也不是无限制的。
根据晶体缺陷在空间延伸的线度,晶体缺陷可分为点缺陷、线缺陷、面缺陷和体缺陷。
几种重要的点缺陷:1)弗仑克尔缺陷和肖脱基缺陷原子(或离子)在格点平衡位置附近振动,由于存在这样的热振动的能量涨落,使得当某一原子能量大到某一程度时,原子就会克服平衡位置势阱的束缚,脱离格点,而到达邻近的原子空隙中,当它失去多余动能后,就会被束缚在那里,这样产生一个暂时的空位和一个暂时的填隙原子,当又经过一段时间后,填隙原子会与空位相遇,并同空位复合;也有可能跳到较远的间隙中去或跳到晶体边界上去。
晶体中的缺陷晶体中的缺陷及其对材料性能的影响前⾔晶体的主要特征是其中原⼦(或分⼦)的规则排列,但实际晶体中的原⼦排列会由于各种原因或多或少地偏离严格的周期性,于是就形成了晶体的缺陷,晶体中缺陷的种类很多,它影响着晶体的⼒学、热学、电学、光学等各⽅⾯的性质。
晶体的缺陷表征对晶体理想的周期结构的任何形式的偏离。
晶体缺陷的存在,破坏了完美晶体的有序性,引起晶体内能U和熵S增加。
按缺陷在空间的⼏何构型可将缺陷分为点缺陷、线缺陷、⾯缺陷和体缺陷,它们分别取决于缺陷的延伸范围是零维、⼀维、⼆维还是三维来近似描述。
每⼀类缺陷都会对晶体的性能产⽣很⼤影响,例如点缺陷会影响晶体的电学、光学和机械性能,线缺陷会严重影响晶体的强度、电性能等。
⼀、晶体缺陷的基本类型点缺陷1、点缺陷定义由于晶体中出现填隙原⼦和杂质原⼦等等,它们引起晶格周期性的破坏发⽣在⼀个或⼏个晶格常数的限度范围内,这类缺陷统称为点缺陷。
这些空位和填隙原⼦是由热起伏原因所产⽣的,因此⼜称为热缺陷。
2、空位、填隙原⼦和杂质空位:晶体内部的空格点就是空位。
由于晶体中原⼦热运动,某些原⼦振动剧烈⽽脱离格点跑到表⾯上,在内部留下了空格点,即空位。
填隙原⼦:由于晶体中原⼦的热运动,某些原⼦振动剧烈⽽脱离格点进⼊晶格中的间隙位置,形成了填隙原⼦。
即位于理想晶体中间隙中的原⼦。
杂质原⼦:杂质原⼦是理想晶体中出现的异类原⼦。
3、⼏种点缺陷的类型弗仑克尔缺陷:原⼦(或离⼦)在格点平衡位置附近振动,由于⾮线性的影响,使得当粒⼦能量⼤到某⼀程度时,原⼦就会脱离格点,⽽到达邻近的原⼦空隙中,当它失去多余动能后,就会被束缚在那⾥,这样产⽣⼀个暂时的空位和⼀个暂时的填隙原⼦,当⼜经过⼀段时间后,填隙原⼦会与空位相遇,并同空位复合;也有可能跳到较远的间隙中去。
若晶体中的空位与填隙原⼦的数⽬相等,这样的热缺陷称为弗仑克尔缺陷。
肖特基缺陷:空位和填隙原⼦可以成对地产⽣(弗仑克尔缺陷),也可以在晶体内单独产⽣。
晶体缺陷按缺陷的几何形态和涉及的范围-分为:点缺陷,线缺陷,面缺陷点缺陷:是指在一个或几个原子的微观区域内偏离理想周期结构的缺陷1.空位--肖脱基缺陷﹜热缺陷(因热涨落)2.填隙原子—与空穴这一对称弗仑克尔缺陷3.杂质原子(替位杂质和间隙杂质)4.色心:能吸收光的点缺陷线缺陷—位错--晶体的一部分相对于另一部分发生滑移(是决定金属力学性质的基本因素)1.刃位错:晶体中以滑移区和未滑移区的边界线(位错线)若垂直于滑移方向,则会存在一多余半排原子面,它像一把刀刃插入晶体中,使此处上下两部分晶体产生原子排错,这种晶体缺陷称为刃型位错特点:1.刃位错是在滑移面上局部滑移区的边界;2.位错的方向与滑移方向垂直2.螺位错:晶体中以滑移区和未滑移区的边界(位错线)若平行于滑移方向,则在该处附近原子平面以扭曲为螺旋面,即位错线附近的原子是按螺旋形式排列的,这种晶体缺陷称为螺型位错。
【和晶体生长有关】特点:1.也可以看成是局部滑移区的边界;2.位错和滑移的方向是相互平行的面缺陷晶粒间界:晶粒之间的交接地区(面)堆垛层错:整个晶面发生位错的缺陷扩散:晶体中的原子借助无规则热振动在晶体中的传输过程研究扩散的基本实验方法:利用放射性示踪原子微观:扩散实际上是原子的布朗运动,扩散系数直接反应布朗运动的强弱微观机制:1.空位机制:扩散原子通过与其周围的空位交换位置进行扩散主要适用:原子的自扩散以及替位式杂质或缺位式杂质的异扩散2.间隙原子机制:扩散原子以从一个间隙位置跳到另一个间隙位置的方式进行扩散主要适用:填隙式杂质的异扩散离子导电性:在理想的离子晶体中,没有自由电子,离子又难以在晶体内移动,所以是典型的绝缘体。
但实际离子晶体中,由于缺陷和杂质的存在,离子可以借助于缺陷在外场作用下,发生定向漂移,使晶体具有一定的导向性,离子成为载流子,这种现象称为离子导电性。
简述晶体结构对扩散的影响
晶体结构对扩散的影响主要表现在以下几个方面:
1.空隙率:晶体结构的空隙率越大,扩散越容易。
因为空隙可以为原子提供弛豫位,促进原子向空隙移动。
2.界面效应:晶体中的颗粒直径越小,界面效应越好,扩散越容易。
因为界面具有良好的原子结构,助于原子到达目标位置。
3.晶体缺陷:晶体结构中若含有缺陷(如空位缺陷、晶格错位等),这些缺陷可以提供可能的空隙或弛豫位,从而促进原子的扩散。
4.晶体结构的充实度:晶体结构的充实度越高,原子间距越小,扩散就越困难,因为原子相互之间的相互作用越强。