7.1.2平面直角坐标系的导学案
- 格式:doc
- 大小:52.50 KB
- 文档页数:3
人教版七年级数学下册7.1.2《平面直角坐标系》教学设计一. 教材分析《平面直角坐标系》是人教版七年级数学下册第七章第一节的内容,主要介绍了平面直角坐标系的定义、各象限内点的坐标特征及坐标轴上的点的坐标特征。
这部分内容是学生学习函数、几何等知识的基础,对于培养学生的空间想象能力和抽象思维能力具有重要意义。
二. 学情分析七年级的学生已具备一定的数学基础,但对于平面直角坐标系的理解和应用还需要通过实例来加强。
学生在学习过程中应能够借助图形直观地理解坐标系,掌握各象限内点的坐标特征,并能够运用坐标系解决实际问题。
三. 教学目标1.知识与技能:理解平面直角坐标系的定义,掌握各象限内点的坐标特征及坐标轴上的点的坐标特征。
2.过程与方法:通过实例分析,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标特征及坐标轴上的点的坐标特征。
2.难点:坐标系在实际问题中的应用。
五. 教学方法1.情境教学法:通过实例引入坐标系的概念,让学生在实际情境中理解坐标系的含义。
2.合作学习法:引导学生分组讨论,共同探究坐标系的性质,培养学生的合作意识。
3.问题驱动法:提出问题,引导学生思考,激发学生的探究精神。
六. 教学准备1.教学素材:准备相关实例,如图形、图片等,用于导入和巩固环节。
2.教学工具:准备黑板、粉笔、投影仪等教学工具。
七. 教学过程1.导入(5分钟)利用多媒体展示生活中的实例,如商场地图、停车场示意图等,引导学生思考如何用数学工具表示这些实例中的点。
通过讨论,引入平面直角坐标系的概念。
2.呈现(10分钟)用投影仪展示平面直角坐标系的图形,引导学生观察并总结各象限内点的坐标特征及坐标轴上的点的坐标特征。
教师在黑板上板书各象限内点的坐标特征及坐标轴上的点的坐标特征。
3.操练(10分钟)学生分组讨论,每组选取一个实例,运用坐标系表示实例中的点,并总结坐标系的性质。
一、情境导入文字密码游戏:如图“家”字的位置记作(1,9),请你破解密码:(3,3),(5,5),(2,7),(2,2),(1,8) (8,7),(8,8).9家个和怎他是的去常8聪到饿日一有啊!哦7的我是发搞可了明在6确小大北京你才批不5年没定妈,爸事达方4营业女天员各合乎经3由于嘿毫力量靠孩济2仍真击歼安机麻生世1然往亲赌东门密棒暗0123456789二、讲授新知探究点1:平面直角坐标系问题1:建立了平面直角坐标系以后,平面内的点可以用来表示,由点P 向轴作垂线,垂足M在x轴上的坐标是;由点P向轴作垂线,垂足N在y轴上的坐标是 .于是,点P的横坐标是-2,纵坐标是3,且把横坐标写在纵坐标的前面,记作(-2,3).(-2,3)叫做点P在平面直角坐标系中的坐标,简称点P的坐标.典例精析例1.写出下图中的多边形ABCDEF各个顶点的坐标.针对训练在直角坐标系中描下列各点:A(4,3),B(-2,3),C(-4,-1),D(2,-2).方法总结:由坐标找点的方法:(1)先在坐标轴上找到表示横坐标与纵坐标的点;(2)然后过这两点分别作x轴与y轴的垂线;(3)垂线的交点就是该坐标对应的点.探究点2:直角坐标系中点的坐标的特征问题1:建立平面直角坐标系后,两条坐标轴把坐标平面分成个部分,从右上的象限开始,按逆时针方向依次为、、、,坐标轴上的点任何象限(填“属于”或“不属于”)问题2:各象限内点的坐标有什么特点?坐标轴上点的坐标有什么特点?问题3:坐标平面内的点与有序数对(坐标)是什么关系?典例精析例2.在平面直角坐标系中,描出下列各点,并指出它们分别在哪个象限. A(5,4),B(-3,4),C (-4 ,-1),D(2,-4).方法总结:两坐标轴上的点不属于任何一个象限,象限是按逆时针方向排列的.例3..设点M(a,b)为平面直角坐标系内的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意有理数,且b<0时,点M位于第几象限?解析:(1)横坐标为正,纵坐标为负的点在第四象限;(2)由ab>0知a,b同号,则点M在第一或第三象限;(3)由a为任意有理数,b<0,则点M在x轴下方.解:(1)点M在第四象限;(2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0);(3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上.方法总结:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.例4.点A(m+3,m+1)在x轴上,则A点的坐标为( )A.(0,-2) B.(2,0) C.(4,0) D.(0,-4)方法总结:坐标轴上的点的坐标特点:x轴上的点的纵坐标为0,y轴上的点的横坐标为0.根据点所在坐标轴确定字母取值,进而求出点的坐标.针对训练1.已在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是______.方法总结:求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围.2.已知点P到x轴的距离为2,到y轴的距离为1.如果过点P作两坐标轴的垂线,垂足分别在x轴的正半轴上和y轴的负半轴上,那么点P的坐标是( )A.(2,-1)B.(1,-2)C.(-2,-1)D.(1,2)方法总结:本题的易错点有三处:①混淆距离与坐标之间的区别;②不知道“点P到x轴的距离”对应的是纵坐标,“点P到y轴的距离”对应的是横坐标;③忽略坐标的符号出现错解.若本例题只已知距离而无附加条件,则点P的坐标有四个.探究点3:建立坐标系求图形中点的坐标问题1:正方形ABCD的边长为4,请建立一个平面直角坐标系,并写出正方形的四个顶点A,B,C,D在这个平面直角坐标系中的坐标.问题2:建立的平面直角坐标系不同,则各点的坐标也不同.你认为怎样建立直角坐标系才比较适当?总结归纳:建立平面直角坐标系,一般要使图形上的点的坐标容易确定,例如以正方形的两条边所在的直线为坐标轴,建立平面直角坐标系,又如以正方形的中心为原点建立平面直角坐标系.需要说明的是,虽然建立不同的平面直角坐标系,同一个点会有不同的坐标,但正方形的形状和性质不会改变.典例精析例5.长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(-2,-3).请你写出另外三个顶点的坐标.针对训练右图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋❷的坐标是________.三、课堂练习1.如图,点A的坐标为( )A.( -2,3)B.( 2,-3)C.( -2,-3)D.( 2,3)第1题图第2题图2.如图,点A的坐标为,点B的坐标为 .3.在 y轴上的点的横坐标是,在 x轴上的点的纵坐标是 .4.点 M(- 8,12)到 x轴的距离是,到 y轴的距离是 .。
课题7.1.2平面直角坐标系(2)执教者课型一类概念课课时一课时时间教学目标知识与技能能根据坐标描出点的位置(坐标都为整数).过程与方法经历在方格纸上建立平面直角坐标系描述物体位置的过程,•发展抽象思维、实践能力和创新精神.情感态度与价值观经历探索点的位置关系与坐标之间关系的过程.发展学生有条理地、•清晰地阐述自己的观点的能力.重点根据点的坐标在直角坐标系中描出点的位置.难点探索特殊的点与坐标之间的关系.方法操作实验、探究法教学准备PPT教学过程教学环节教学内容师生活动情景诱导活动1.在已知的直角坐标系中描出下列各组点,•并将各组内的点用线段依次连接起来.(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);(2)(-9,3),(-9,0),(-3,0),(-3,3);(3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9);(4)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);(5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5).教师在学生回答的基础上,进一步引导学生发现由坐标找点的方法,然后学生分组讨论、交流问题并发表见解.教师在讨论的过程中,深入到学生的讨论中.自主探究活动2:点的位置与它坐标的符号之间的关系问题1:两条坐标轴把平面分成了几部分呢?问题2:A(0,1)属于第几象限呢?问题3:B(3,2)属于第几象限呢? C(2,3)呢?问题4:第一象限内点的坐标的符号有什么规律吗?第二象限呢?第三象限呢?第四象限呢?学生参与小组活动,分组讨论、交流问题并发表见解;教师在学生讨论的基础上,引导学生发现问题并解决问题。
1、分别说出下列各点在哪个象限内或在哪条坐标轴上?A(6,-2), B(0,3) , C(3,7),D(-6,-3),E(-2,0) , F(-9,5)2.已知点A(1+m,2m+1)在x轴上,则m=_____,此时点A的坐标为______。
第七章平面直角坐标系《7.1.2 平面直角坐标系》(第二课时)导学案N0:3班级姓名____________小组小组评价教师评价_____一、学习目标1.能建立适当的直角坐标系,描述物体的位置;会根据坐标描出点的位置.3.经历画坐标系、描点、连线,等过程,发展学生的数形结合的意识, 合作交流的意识.二、重点与难点:重点:建立适当直角坐标系,描述物体的位置;根据坐标描出点的位置.难点:建立适当直角坐标系.三、自主学习:2.平面直角坐标系中,点P(a,b)到x轴和y轴的距离分别是_____、________。
3.解答下列各题:(1)平面直角坐标系中:点P的坐标为(-3,2),则点P在象限,点P到x轴的距离为个单位长度,到y轴的距离为个单位长度;(2)平面直角坐标系中,若点P(m+3,m+1)在x轴上,则点P的坐标为;(3)若xy=0,则P(x, y)在;(4)若点P(2-a,3a+6)到x轴与y轴的距离相等,则点P坐标为;(5)点P(a,b)在第二象限,则点Q(1-a,-b)在第象限;四.合作探究探索一:平行于坐标轴的直线上的点的坐标的特征在坐标系中描出下列各点,回答下列问题:① A(4,2)、B(1,2)、C(-3,2);② D(4,1)、E(4,0)、F(4,-2);①点A、B、C的坐标有何特征?这三点在同一直线上吗?(这条直线与坐标轴有何位置关系?)②点D、E、F的坐标有何特征?这三点在同一直线上吗?(这条直线与坐标轴有何位置关系?)练习:在平面直角坐标系中,已知点A(3,-2)、点B(-1,m)、点C(n,3),且AB∥x轴,AC⊥x轴,则m= ;n= ;归纳:平行于坐标轴的直线上的点的坐标的特征探索二:平行于坐标轴的直线上两点间的距离1. 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -;2. 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;练习:已知AB ∥x 轴,点A 的坐标为(3,2),并且AB =4,则B 点的坐标为__________. 探索三:知识应用1. 如图,正方形ABCD 的边长为6.(1) 如果以点A 为原点,AB 所在的直线为x 轴,建立平面坐标系, 那么y 轴是哪条线? 写出正方形的顶点A 、B 、C 、D 的坐标. (2) 请另建立一个平面直角坐标系,此时正方形的顶点A 、B 、C 、D 的坐标又分别是多少? 五、课堂小结:1.各象限、x 轴及y 轴上点的坐标的特征。
七年级数学下册 7.1.2平面直角坐标系导学案第一课时学习目标1、会画平面直角坐标系,了解平面直角坐标系的有关概念;2、了解点与坐标的对应关系,理解横纵坐标的意义。
【学习过程】一、知识储备1、数轴的三要素是:、和;2、指出数轴上A、B、C、D、E各点分别表示什么数:A点表示______,B点表示______,C点表示______,D点表示______,E点表示______.【坐标的概念】数轴上的都可以用一个来表示,这个叫做这个的_______ ;二、问题导学假如有一天你参加了“保钓”行动,你需要考虑(1)你是怎样确定钓鱼岛位置的?(2)“钓鱼岛”在“深圳市102中学”东、南各多少个方格?“台北”在“深圳市102中学”东、南各多少个格?(3)如果以“深圳市102中学”为原点做两条互相垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,那么你能表示“台北”的位置吗?“钓鱼岛”的位置呢?_______________________________三、探究新知阅读P126回答下列问题:1、平面直角坐标系:在平面内画两条相互、的数轴,组成;2、相关概念:水平的数轴称为或,取为正方向;竖直的数轴称为或,取为正方向;两条数轴的交点为,一般用大写字母表示。
有了平面直角坐标系,平面内的点就可以用一个来表示,叫做点的坐标。
巩固训练:在下边方格上建立一个坐标系,并谈谈在建立平面直角坐标系时应注意什么.统称为3.【观察思考】在下面的平面直角坐标系中,如何确定点A的位置?由点A向x轴做,垂足在上的坐标是,我们说点A的横坐标是;由点A向y轴做,垂足在上的坐标是,我们说点A的是;则,这样我们就可以利用有序数对来表示点A的位置,且这组有序数对叫做点A的坐标;记作;【练一练】仿照确定点A坐标的方法,写出下列各点的坐标:A ;B ;C ;D ;E ;F ;G ;H ;M ;N ;O ;【归纳】原点O的坐标是;x轴上的点的坐标的特点是;y轴上的点的坐标的特点是;四、课后作业P68“练习”第1题。
7.1.2 平面直角坐标系(第2课时)教学设计教学目标1.进一步分析一些特殊点的坐标特征,利用位置特征确定点的坐标.2.经历探索直角坐标系上特殊点的坐标特征,及求面积的过程,体会数形结合与转化思想.3.体验数、符号是描述现实世界的重要手段.教学重点探索直角坐标系上特殊点的坐标特征,及求图形的面积.教学难点用割补法求直角坐标系中图形的面积.教学过程一、复习引入在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系(简称直角坐标系).正方向:数轴向右与向上的方向.坐标轴:x轴或横轴:水平的数轴.y轴或纵轴:竖直的数轴.原点:两条数轴的公共原点O.象限:两条坐标轴把平面分成如图所示的四个部分.注意:坐标轴上的点不属于任何象限.坐标轴上点有何特征?①在x轴上的点,纵坐标等于0.②在y轴上的点,横坐标等于0.二、探究新知1.在平面直角坐标系中描出下列各点:(1)A(-1,3), B(1,3), C(4,3);(2)D(-4,1), E(-4,-2), F(-4,-5);你发现了什么?1.点A,B,C所在的直线与x轴平行;2.点D,E,F所在的直线与y轴平行;3.分别比较(1)(2)中点的横纵坐标,发现:平行于x轴的直线上的各点的纵坐标相同;平行于y轴的直线上的各点的横坐标相同.2.如图,两条直线分别是第一、三象限和第二、四象限的平分线.分别写出图上各点的坐标,并比较两条直线上的点的横、纵坐标.A(2,2)B(4,4)C(-3,-3)D(-5,-5)G(-1,1)H(-4,4)I(2,-2)J(3,-3)你发现了什么?1.点A,B,C,D的横、纵坐标相同;2.点G,H,I,J的横、纵坐标互为相反数;两条坐标轴夹角平分线上点的坐标的特征:第一、三象限平分线上的点的横坐标与纵坐标相同;第二、四象限平分线上的点的横坐标与纵坐标互为相反数.3.如图,三角形ABC的三个顶点的坐标分别为A(3,5),B(6,0),C(-4,0).求三角形ABC的面积.解:因为B(6,0),C(-4,0),所以BC=|6-(-4)|=10.因为A(3,5),所以BC边上的高h=|5|=5.所以S三角形ABC=½×10×5=25.三、巩固练习1.已知点P(2a+4,a-1),根据下列条件,求点P的坐标.(1)点P在x轴上;解:因为点P在x轴上,所以a-1=0,解得a=1,所以2a+4=6.所以点P的坐标为(6,0).(2)点P在y轴上;解:因为点P在y轴上,所以2a+4=0,解得a=-2,所以a-1=-3.所以点P的坐标为(0,-3).(3)点P在第二、四象限角平分线上;解:因为点P在第二、四象限角平分线上,所以2a+4+(a-1)=0,解得a=-1,所以2a+4=2,a-1=-2,所以点P的坐标为(2,-2).(4)点P在过点A(2,-3),且与y轴平行的直线上.解:因为点P在过点A(2,-3),且与y轴平行的直线上,所以2a+4=2,解得a=-1,所以a-1=-2,所以点P的坐标为(2,-2).2.已知点A(a-1,-2),B(-3,b+1).(1)若直线AB∥y轴,则a__=-2 ___,b_____≠-3__;(2)若直线AB∥x轴,则a__≠-2 __,b_=-3____;3.已知点P(3a-2,2a-3)在第一、三象限角平分线上,则a2023-a=____0____.解:根据题意可得3a-2=2a-3,解得a=-1 .则a2023-a=0.4.如图,四边形ABCD的四个顶点的位置在平面直角坐标系内,A(4,4),B(-3,2),C(-1,-1),D (2,-1),求四边形ABCD的面积.解:过点A作AF⊥CD,交CD的延长线与F,过点B作BE⊥CD,交CD的反向延长线与点E,过点A作AG⊥BE,交BE的反向延长线与点G.由点的坐标意义可知,AG=7,AF=5,DF=2,EC=2,BE=3,BG=2.所以S四边形ABCD=S长方形AFEG-S三角形BEC-S三角形ADF=5×7-½×2×7-½×2×3-½×2×5=35-7-3-5=20.四、课堂小结谈谈你本节课的收获.五、作业布置见精准作业布置单六、板书设计7.1.2 平面直角坐标系第2课时右边板书1.特殊位置的点的坐标特点练习题板书过程2.平面直角坐标系中的面积问题割补法。
课题:7.1.2 《平面直角坐标系》第二课时学生自主学习导学案广汉市光华双语学校黄常勇学习目标:1、知道平面直角坐标系分几个象限,清楚各象限的点的坐标的符号特点;知道坐标轴上点不属于任何一个象限;2、能在给定直角坐标系中,由点的位置确定点的坐标,由点的坐标确定点的位置;3、对给定的正方形会选择合适的直角坐标系,写出它的顶点坐标,体会可以用坐标刻画一个简单图形;4、探究一些特殊点的坐标特点。
一、自我回顾1、在同一平面直角坐标系中,点A(3,2)与点B(2,3)表示的是不是同一点?请在右图中标出看看。
你得出结论:我们在认识点的坐标时,要注意坐标书写顺序是:2、坐标轴上点的特征请你把点M(3,0),N(-2,0)标在上图中,填写:x轴上点的特征:___________________y轴上点的特征:___________________二、自学知识清单(一)、象限:1、建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫:2、注意:坐标轴上的点属于哪个象限?3、所以,可理解为:坐标平面中的点被平面直角坐标系分成_______部分,分别为:(二)在给定直角坐标系中,由点的位置确定点的坐标,由点的坐标确定点的位置1、由点的位置确定点的坐标如图:请你通过作图的方法写出坐标系中各点的坐标,并指出它们所在象限。
分别为:A(),在第_____象限B(),在第_____象限C(),在第_____象限D(),在第_____象限E(),在_____F (),在_____O(),在_____自我总结:找坐标的方法是:过该点分别向x轴和y轴作____________,横纵坐标的书写顺序是:_____________.2、由点的坐标确定点的位置请你先指出下列各点所在象限,再把它们描在坐标系中:A(3,3), 在第_____象限B(2,-1) 在第_____象限C(0,1) 在_____D(-1, 2) 在第_____象限E(-2,0)。
NO3 7.1.2 平面直角坐标系(第二课时)姓名:组号一、学习目标:1.对给定的简单图形,会建立适当的平面直角坐标系,确定图形上点的坐标.2.进一步探究平面直角坐标系中点的坐标的特征.二、知识回顾:1.什么是平面直角坐标系?什么是横轴,纵轴,坐标原点?坐标平面被两条坐标轴分成了哪些象限?2. 每个象限内的点和坐标轴上的点各有什么特征?3. 坐标平面内点与有序实数对之间有什么关系?三、合作探究探究一: 1.如图,正方形ABCD的边长6.(1)如果以点A为原点,AB所在的直线为x轴建立平面直角坐标系,那么y轴在什么位置?写出正方形的顶点A,B,C,D的坐标.(2)另建立一个平面直角坐标系,此时正方形的顶点A,B,C,D的坐标又分别是什么?(3)以点A为原点,AB所在的直线为x轴建立平面直角坐标系中,点C到x轴、y轴的距离是多少?(4)观察:点B和点C坐标之间有什么联系?点C和点D坐标之间呢?2.【归纳】(1)设P点坐标为(a,b),则点P到x轴的距离是_________;点P到y轴的距离是_________.(2)平行于横轴的直线上的点的坐标相同;平行于纵轴的直线上的点的坐标相同.探究二:分别写出图中点A、B、C的坐标.观察图形,回答下列问题:(1)点A与点B关于哪一条直线对称?它们的坐标之间有什么联系?(2)点A与点C关于哪一条直线对称?它们的坐标之间有什么联系?(3)点B与点C呢?【归纳】关于x轴对称的点的______相同,______互为相反数;关于y轴对称的点的______相同,______互为相反数;关于原点对称的点的______、______都互为相反数;四、尝试运用1.点 M (- 8,12)到 x 轴的距离是_________,到 y 轴的距离是________.2. 已知点P (3,a ),并且P 点到x 轴的距离是2个单位长度,则P 点的坐标_______3.已知点A (m ,1),点B (3,m-1),且直线AB ∥x 轴,则m 的值为4.如果同一直角坐标系下两个点的横坐标相同,那么过这两点的直线( )(A )平行于x 轴 (B )平行于y 轴 (C )经过原点 (D )以上都不对5.点P (-1,2)关于x 轴的对称点的坐标是 ,关于y 轴的对称点的坐标是 ,关于原点的对称点的坐标是6.若点(a ,2)在两坐标轴的夹角平分线上,a= .7.若点(a,b-1)在第二象限,则a 的取值范围是_____,b 的取值范围________.8. 第二象限内的点()P x y ,满足||9x =,24y =,则点P 的坐标是五、小结反思回顾本节课所学的主要内容,回答以下问题: 1.通过这节课的学习你学会了什么?2.学习这节课时你认为应该注意的问题有哪些?六、达标检测1.已知P (-3,2), P 点关于x 轴的对称点的坐标为_ ;P 点关于原点O 的对称点的坐标是___ _.2.点A (7,-3)关于y 轴的对称点是B ,则线段AB 的长是______.3.点A (3,-4)到x 轴的距离为___4.若点M (a -2,a +3)在y 轴上,则a = .点P (13++m m ,)在x 轴上,则点P 的坐标为 .5.若点P (2,y )在第二象限角平分线上,则y =8.已知A (-1,0),B (x ,0)且AB =2,则x = .9.已知点A 的坐标是(3,0),AB=5,(1)当点B 在x 轴上时,求点B 的坐标为 (2)当AB ∥y 轴时,点B 的坐标为探究三:1.建立一个平面直角坐标系,描出下列各组点: (1)(1,1);(2,2);(-3,-3);(-4,-4) (2)(1,-1);(-2,2);(3,-3);(-4,4);2.思考:(1)这些点有什么特征?(2)经过这两组点得到的直线有什么特征? 3.【归纳】第一、三象限角平分线上的点的横纵坐标 ; 第二、四象限角平分线上的点的横纵坐标 .y x。
导学案设计题目7.1.2平面直角坐标系第三课时课时 1学校星火一中教者刘占国年级七年学科数学设计来源自我设计教学时间2013年4月18日学习目标1.确定平面上点的位置,通常需要两个数据。
2.从实际背景中理解有序数对的意义。
3.会正确地画出平面直角系,能由点的位置写出坐标,以及由坐标确定点的位置。
4.平面直角坐标系内点坐标(ba,)特征:点的坐标(ba,)是一对有序数对且与点一一对应;各象限内点坐标特征;坐标轴上点坐标的特征。
重点坐标系内点及图形平移规律难点如何理解和掌握点及图形平移规律学习方法1、精神充电;2、明确学习目标、3、对学、群学解决问题4、班级大展示5、学生反思。
学习过程一、知识点概述1.特殊位置的点的特征(1)各象限的点的横纵坐标的符号(2)坐标轴上的点(3)角平分线上的点2.具有特殊位置的点的坐标特征(1)关于x轴、y轴、坐标原点对称的两点(2)与x轴或y轴平行的直线上的点3.距离(1)点A(x,y)到两坐标轴的距离(2)同一坐标轴上两点间的距离4.求点的坐标5.点平移的坐标变化规律二、典例分析1.〖典例分析〗1.确定一个点的位置,下面说法正确的是()(A)西北方(B)东经119.4度(C)距此地500米(D)北偏东30°,距此地1000米2.在直角坐标系中描出下列各组点,并将各组内的点用线段依次连结起来。
①(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);②(-9,3),(-9,0),(-3,0)(-3,3);观察你所得的图形,你觉得它像什么?解:像一栋“房子”。
请你动手画一画,并且也设计一道类似的问题。
三、跟踪练习一.填空题1. 在电影票上表示座位有个数据, 分别是 .2. 如图,用(0,0)表示O点的位置, 用(2,3)表示M点的位置, 则用表示N点的位置.3.在平面直角坐标系内,点M(-3,4)到x轴的距离是,到y轴的距离是。
4. 已知A(a–1,3)在y轴上,则a = .5.平面直角坐标系内,已知点P(a ,b)且ab<0,则点P在第象限。
7.1.2 平面直角坐标系一、教学目标【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念,认识并能画出平面直角坐标系.2.理解各象限内及坐标轴上点的坐标特征.3.用象限或坐标轴说明直角坐标系内点的位置,能根据横、纵坐标的符号确定点的位置.【过程与方法】1.经历建立直角坐标系的过程,进而理解平面直角坐标系的意义.2.通过分析具体特例得到特殊位置点的坐标特征以及有特殊位置关系的点的坐标的特征.3.通过小组学习等活动经历建立坐标系的过程,进一步提高学生应用已有知识与技能的基础上形成新的知识,获得新的技能,以提高解决数学问题的能力.【情感态度与价值观】1.让学生体会到x轴、y轴的关系,进而明白事物之间是相互联系的这一辩证思想,培养耐心细致的良好学习作风.2通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.二、课型新授课三、课时1课时四、教学重难点【教学重点】平面直角坐标系的意义,由坐标找点,由点找坐标.【教学难点】平面直角坐标系内的点与有序数对一一对应的关系.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)神舟九号、七号、六号和五号等卫星发射成功,圆了几代中国人的梦想,让全中国人为之骄傲和自豪!但是你们知道我们的科学家是怎样迅速地找到返回舱着陆的位置的吗?这就要依赖于GPS——卫星全球定位系统”.大家一定觉得很神奇吧!学习了今天的内容,你就会明白其中的奥妙.(二)探索新知1.出示课件4-9,探究平面直角坐标系的有关概念教师问:如何确定直线上点的位置?学生答:在直线上规定了原点、正方向、单位长度就构成了数轴.数轴上的点可以用一个数来表示,这个数叫做这个点在数轴上的坐标.例如点A在数轴上的坐标为-3,点B在数轴上的坐标为2.教师问:知道数轴上一点的坐标,能确定这个点的位置吗?学生答:知道数轴上一个点的坐标,这个点在数轴上的位置也就确定了.例如在数轴上,坐标为2的点是B.教师问:如何确定平面上点的位置?如下图:小强、小红、小明家的位置?师生一起解答:利用两个数轴,使这两条数轴互相垂直,可以确定位置,如下图所示:教师问:周末小明和小丽约好一起去图书馆学习.小明告诉小丽,图书馆在中山北路西边50米,人民西路北边30米的位置.小丽能根据小明的提示从左图中找出图书馆的位置吗?学生答:小丽能根据小明的提示从左图中找出图书馆的位置.教师问:小明是怎样描述图书馆的位置的?学生答:利用方向和距离具体确定图书馆的位置.教师问:小明可以省去“西边”和“北边”这几个字吗?学生答:不能,省去“西边”和“北边”这几个字就不能准确找到图书馆了.教师问:如果小明说图书馆在“中山北路西边、人民西路北边”,你能找到吗?学生答:不能找到.教师问:如果小明只说在“中山北路西边50米”,或只说在“人民西路北边30米”,你能找到吗?学生答:不能.学生问:若将中山路与人民路看成两条互相垂直的数轴,十字路口为它们的公共原点,能得到什么呢?教师答:若将中山路与人民路看成两条互相垂直的数轴,十字路口为它们的公共原点,这样就形成了一个平面直角坐标系.总结点拨:(出示课件10)教师问:在平面直角坐标系中,能用有序数对来表示图中点A的位置吗?学生答:由点A分别向 x轴,y轴作垂线,垂足M在 x轴上的坐标是3,垂足N在 y 轴上的坐标是4,有序数对(3,4)就叫做点A的坐标,其中3是横坐标,4是纵坐标.学生问:写有序数对要注意什么呢?在平面内画两条互相垂直的数轴,构成平面直角坐标系.竖直的叫y轴或纵轴;y轴取向上为正方向教师答:注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔开.教师问:如图所示,在平面直角坐标系中,点B,C,D的坐标分别是什么?教师依次展示学生答案:学生1答:B(-2,3).学生2答:C(4,-3).学生3答:D(-1,-4).教师总结如下:B(-2,3),C(4,-3),D(-1,-4).教师问:如图,在平面直角坐标系中,你能分别写出点A,B,C,D的坐标吗?教师依次展示学生答案:学生1答:A(4,0).学生2答:B(-2,0).学生3答:C(0,5).学生4答:D(0,-3).教师总结如下:A(4,0),B(-2,0),C(0,5),D(0,-3).教师问:观察上面点的坐标,你发现x轴和y轴上的点的坐标有什么特点?一般如何记录呢?教师依次展示学生答案:学生1答:x轴上的点的纵坐标为0,一般记为(x,0).学生2答:y轴上的点的横坐标为0,一般记为(0,y).教师总结如下:① x轴上的点的纵坐标为0,一般记为(x,0);② y轴上的点的横坐标为0,一般记为(0,y);教师问:观察上面点的平面直角坐标系,你发现原点的坐标有什么特点?一般如何记录呢?学生答:原点O的坐标是(0,0).一般记为(0,0).考点1:确定平面直角坐标系内点的坐标写出下图中的多边形ABCDEF各个顶点的坐标.(出示课件15)师生共同讨论后学生解答:教师依次展示学生答案:学生1答:A(-2,0).学生2答:B(0,-3).学生3答:C(3,-3).学生4答:D(4,0).学生5答:E(3,3).学生6答:F(0,3).教师总结如下:解:A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3)出示课件16,学生自主练习后口答,教师订正.3.出示课件17-20,探究平面直角坐标系内点的坐标性质教师问:平面直角坐标系把平面分为了四部分,我们该如何正确识记每一部分呢?学生思考后,师生一同作答:在平面直角坐标系中,两条坐标轴(即横轴和纵轴)把平面分成如图所示的Ⅰ,Ⅱ,Ⅲ,Ⅳ四个区域.分别称为第一,二,三,四象限.如下图所示.(出示课件17)学生问:那么x轴和y轴上的点属于哪个象限呢?教师答:坐标轴上的点不属于任何一个象限.教师问:观察坐标系,填写各象限内的点的坐标的特征:教师依次展示学生答案:学生1答:如下图所示:学生2答:如下图所示:学生3答:如下图所示:学生4答:如下图所示:教师总结如下:如下图所示:教师问:不看平面直角坐标系,你能迅速说出A(4,5),B(-2,3),C(-4,-1)D(2.5,-2),E(0,-4)所在的象限吗?教师依次展示学生答案:学生1答:A(4,5)所在的象限是第一象限.学生2答:B(-2,3)所在的象限是第二象限.学生3答:C(-4,-1)所在的象限是第三象限.学生4答:D(2.5,-2)所在的象限是第四象限.学生5答:E(0,-4)在y轴上.教师总结如下:A(4,5)所在的象限是第一象限;B(-2,3)所在的象限是第二象限;C(-4,-1)所在的象限是第三象限; D(2.5,-2)所在的象限是第四象限;E(0,-4)在y轴上.教师问:你的方法又是什么?学生答:根据点的坐标的符号确定点所在的象限.教师问:观察坐标系,填写坐标轴上的点的坐标的特征:学生答:如下表所示:教师问:不看平面直角坐标系,你能迅速说出A(4,0),B(0,3), C(-4,0),E(0,-4),O(0,0)所在的位置吗?教师依次展示学生答案:学生1答:A(4,0)在x轴的正半轴.学生2答:B(0,3)在y轴的正半轴.学生3答:C(-4,0)在x轴的负半轴.学生4答:E(0,-4)在y轴的负半轴.学生5答:O(0,0)在原点.教师总结如下:A(4,0)在x轴的正半轴; B(0,3)在y轴的正半轴;C(-4,0)在x轴的负半轴;E(0,-4)在y轴的负半轴;O(0,0)在原点.教师问:你的确定点的方法又是什么?学生答:根据点的坐标值和符号,在x轴上y的值为0,在y轴上x的值为0,在原点x、y的值都为0.教师问:想一想:坐标平面内的点与有序数对(坐标)是什么关系?教师依次展示学生答案:学生1答:对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应.学生2答:对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.教师总结如下:类似数轴上的点与实数是一一对应的.我们可以得出:①对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应;②反过来,对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.也就是说,坐标平面内的点与有序实数对是一一对应的.考点2:在平面直角坐标系内确定已知点在平面直角坐标系中,描出下列各点,并指出它们分别在哪个象限. A(5,4),B(-3,4),C (-4 ,-1),D(2,-4).(出示课件21)学生独立思考后,师生共同解答.解:如图,先在x 轴上找到表示5的点,再在y 轴上找出表示4 的点,过这两个点分别作x 轴,y 轴的垂线,垂线的交点就是点A. 类似地,其他各点的位置如图所示.点A 在第一象限,点B 在第二象限,点C在第三象限,点D在第四象限.总结点拨:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.出示课件22,学生自主练习后口答,教师订正.考点3:利用平面直角坐标系内点的坐标确定字母的值已知在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.(出示课件23)师生共同分析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐标为正,可得关于m的一元一次不等式组{m>0,m−2>0.解得m>2.答案:m>2.师生共同归纳:求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围.出示课件24,学生自主练习,教师给出答案。