平面直角坐标系导学案
- 格式:doc
- 大小:65.50 KB
- 文档页数:3
《平面直角坐标系》优秀教案《平面直角坐标系》优秀教案(精选12篇)教案是教师为顺利而有效地开展教学活动, 根据课程标准, 教学大纲和教科书要求及学生的实际情况, 以课时或课题为单位, 对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编为大家整理的《平面直角坐标系》优秀教案, 仅供参考, 欢迎大家阅读。
《平面直角坐标系》优秀教案篇1教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书, 七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。
平面直角坐标系是图形与数量之间的桥梁, 有了它我们便可以把几何问题转化为代数问题, 也可以把代数问题转化为几何问题。
本章内容从数的角度刻画了第五章有关平移的内容, 对学生以后的学习起到铺垫作用, 6.1.2节平面坐标系主要是介绍如何建立平面坐标系, 如何确定点的坐标和由点的坐标寻找点的位置, 以及平面坐标系中特殊部位点的坐标特征, 根据学生的接受能力, 我把本内容分为2课时, 这是第一课时, 主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。
2、教学目标根据新课标要求, 数学的教学不仅要传授知识, 更要注重学生在学习中所表现出来的情感态度, 帮助学生认识自我、建立信心。
知识能力:①认识平面直角坐标系, 了解点与坐标的对应系;②在给定的直角坐标系中, 能由点的位置写出点坐标。
数学思考:①通过寻找确定位置, 发展初步的空间观念;②通过学习用坐标的位置, 渗透数形结合思想解决问题:通过运用确定点坐标, 发展学生的应用意识。
情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标, 培养学生合作交流与探索精神;②通过介绍数学家的故事, 渗透理想和情感的教育。
3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误, 确定本节重难点为:重点: 认识平面坐标系难点: 根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征, 以及他们现有知识水平, 通过科学家发现点的坐标形成的经过启迪学生思维, 通过小组合作与交流及尝试练习, 促进学生共同进步, 并用肯定和激励的言语鼓舞、激励学生。
4.3《平面直角坐标系》(一)学案学习目标:1、领会实际模型中确定位置的方法,会正确画出平面直角坐标系。
2、会在给定的平面直角坐标系中,根据点的坐标描出点的位置,会由点的位置写出点的坐标。
学习重点:平面直角坐标系的有关概念学习难点:在平面直角坐标系中由点写出坐标、由坐标描出对位点的位置。
学习过程: 1、情境创设1、如何描述你家在学校的位置?2、就课本P 123提问:小亮描述音乐喷泉的位置是否正确?能用其它方法描述吗?2、画出平面直角坐标系,并揭示概念如图,___________________________________________________构成平面直角坐标系。
简称为___________,水平方向的数轴称为____轴(或____轴),竖直方向的数轴称为____轴(或____轴),它们统称为______轴,公共原点O 称为__________。
3、由有序实数对(a 、b )所描点的点位置4、练习:在下列坐标系中分别描出有序实数对所对应的点。
(―1,2) (2,―1) (―3,―2)5、由坐标系中的点,找所对应的有序实数对。
6、练习:课本P 125练习17、坐标的概念:在平面直角坐标系中,______________可以确定一个点的位置;反之,任意一点的位置都可以用_____________来表示,这样的___________叫做点的坐标。
8、象限的概念:两条坐标轴将平面分成的_________称为象限,按逆时针________象限,坐标轴上的点________。
9、例题教学xy30 20 1010-10-50 -40 -30 -20 -10 xy baP(a ,b)xybaP-3 -2 -1 12-1 -2 -312 3 y x -3 -2 -1 12-1 -2 -3123 y x-3 -2 -1 12-1 -2 -312 3 y x例1、例2见课本 10、课内练习P 125,2 11、补充例题:如图,线段OA 的端点O 在坐标原点,A 点坐标为(2,0), 当线段OA 绕端点O 逆时针方向旋转下列角度时,分别求出 另一端点A 的坐标。
平面直角坐标系导学案一、知识点导学:1.数轴:规定了和的直线叫数轴。
数轴上的一个点可以用一个数表示,这个数叫该点在数轴上的坐标。
如图所示,A点在数轴上的坐标是-2,B点在数轴上的坐标是0,C点在数轴上的坐标是1, D点在数轴上的坐标是3。
同一数轴上两点间的距离,等于这两点在数轴上的坐标的差的绝对值。
如:AC=21--=3或AC=1(2)--=3,CD=13-=2或CD=31-=2。
2.平面直角坐标系:平面内有原点且互相的两条构成平面直角坐标系平面直角坐标系也叫坐标系。
水平的数轴叫做轴或轴或 ,取向右为正方向。
铅直的数轴叫做轴或轴或,取竖直向上为正方向。
两条数轴的交点叫 ,一般用字母表示,建立坐标系的平面叫。
x轴和y轴将坐标平面分成四部分,每一部分叫一个象限,如图,按___________方向编号为第一、二、三、四象限。
坐标原点,x轴,y轴不属于任何象限,在平面直角坐标系中,由组成的,顺序是横坐标在前纵坐标在后,中间用“,”分开,如:点(-2,3)的横坐标是-2纵坐标是3,位置不能颠倒,(-2,3)与(3,-2)是指两个不同点的坐标。
x轴将坐标平面分为两部分,x轴上方,点的坐标为正数,x轴下方,点的纵坐标为数。
第______象限及y轴正半轴上,点的纵坐标为_____数,第象限及y轴负半轴上,点的纵坐标为_____数。
若点P(a,b)在x轴上方,则b____0,若P(a,b)在x轴下方,则b____0,y轴将坐标平面分为两部分,y轴侧,点的横坐标为负数,y轴右侧,点的横坐标为数,第______象限和x轴负半轴上,点的标为负数,第______象限和x轴正半轴上,点的_____坐标为正数,若点P(a,b)在y轴左侧,则a____0,若P(a,b)在y轴右侧,则a____0,规定坐标原点的坐标是。
各个象限内,点的坐标的符号规律如表一。
坐标轴上,点的坐标的符号规律如表二。
3.⑴由点的坐标的符号可以确定点的位置,如:横坐标为0的点在轴上,横坐标为0纵坐标小于0的点在y轴上。
18.2平面直角坐标系(第一课时)【教学目标】1.掌握平面直角坐标系的有关概念,了解点的坐标的意义.2.根据点的位置写出点的坐标,由坐标找出点.3.通过建立平面直角坐标系的过程,进一步渗透数形结合的思想.【教学重点与难点】教学重点:会建立平面直角坐标系并能找出点的坐标.教学难点:在平面直角坐标系中根据点的位置写出点的坐标,由坐标描出点【教学方法】通过创设问题情境,引出要研究的问题,以自学的方式让学生掌握本节课的基础知识.又通过简单应用,让学生掌握了平面直角坐标系的两个基本问题:①已知点求坐标②已知坐标描点.【教学过程】一、提出问题,导入新课(设计说明:在学生已有知识的基础上,让学生进一步认识到利用数轴可以确定直线上点的位置,但平面内点的位置利用数轴已无法解决,由此引出新课.)问题:1、什么是数轴?数轴的三要素是什么?2、如图,写出数轴上A和B两点所对应的数,反过来,描出数-4,0和1所对应的点.3、数轴上的点与实数是一一对应的关系4、我们已经知道,平面内点的位置的确定需要两个数,而借用一条数轴只能确定直线上的点的位置,那么平面内的点我们应怎样来确定它的位置呢?(教学说明:由学生熟悉的数轴出发,给出数轴上点的坐标的定义,建立点与坐标的对应关系,从而得到确定直线上点的位置的方法.而平面内点的坐标是根据数轴上的点的坐标定义的,因此本节从数轴引入,使学生顺利地实现由一维到二维的过渡.)二、探索新知,解决问题1、讲解平面直角坐标系的知识,通过教师边讲解边画图帮助学生理解以下知识点:(1)平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系. (2)水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y轴或纵轴,取向上为正方向;两个坐标轴的交点为平面直角坐标系的原点.(3)点的坐标:由该点出发向x轴作垂线,交在x轴上的点表示的数是几,这个数就是该点的横坐标;同样,由该点出发向y轴作垂线,交在y轴上的点表示的数是几,这个数就是该点的纵坐标.(重点示范并讲解)2、注意事项(1)画平面直角坐标系时,别忘了标x轴、y轴的正方向及x轴、y 轴的名称.(2)写坐标时要加括号,括号内先横后纵,中间用逗号隔开,如(2,3).(3)x轴上的点纵坐标为0,y轴上的点横坐标为0.(教学说明:平面直角坐标系的产生是法国数学家迪卡尔的伟大发现,里边涉及到的概念很难引导学生自己得出,因此可以通过边讲边学的方式让学生掌握这些知识.)3.简单应用a、在准备好的网格上建立平面直角坐标系,并描出相应的点。
平面直角坐标系(1)导学案审核人:时间:学习目标:1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;2.认识并能画出平面直角坐标系;3.能在给定的直角坐标系中,由点的位置写出它的坐标。
教学重点:1.理解平面直角坐标系的有关知识;2.在给定的平面直角坐标系中,会根据点的位置写出它的坐标;3.由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。
教学难点:1.横(或纵)坐标相同的点的连线与坐标轴的关系的探究;2.坐标轴上点的坐标有什么特点的总结。
学习过程:一自主学习自主学习活动一认识并平面直角坐标系;自学指导:1 自学内容:P152---153内容2自学时间:10分钟3 自学要求:通过自学完成以下问题(1)___________________________________________________________叫平面直角坐标系;____________________________叫X轴或横轴,_______________________叫Y轴或纵轴,____________________________称为平面直角坐标系的原点。
(2)平面直角坐标系象限的划分(填写在图18-4)(3)对于平面内任意一点p,过点p分别向X轴、Y轴作垂线,垂足在X轴、Y轴上对应的数a,b分别叫做点p的______ 、________,有序数对 __________叫做点p的坐标。
自主学习活动二自学指导:1 自学内容:P153例12自学时间:10分钟3 自学要求:通过自学完成以下问题(1)写出图中的多边形ABCDEF各顶点的坐标。
(2)完成想一想1.点B 与点C 的纵坐标相同,线段BC 的位置有什么特点?2.线段CE 位置有什么特点?3.坐标轴上点的坐标有什么特点?自学检测:1.在下图中,确定A ,B ,C ,D ,E ,F ,G 的坐标。
(第1题) (第2题)2.如右图,求出A ,B ,C ,D ,E ,F 的坐标。
3.2平面直角坐标系(2)【学习目标】1.知道在坐标轴上的点以及与坐标轴平行的直线上点的坐标的特征.2.知道不同象限点的坐标的特征。
3.经历画坐标系、描点、连线、看图以及由点找坐标等过程,进一步体会平面直角坐标系中点与坐标之间的对应关系,发展数形结合意识。
【学习准备】带有方格的纸若干张。
【学习过程】活动1:探究坐标轴上点或与坐标轴平行的直线上点的坐标的特征.1.在直角坐标系中描出下列各点,并将各组内这些点依次用线段连接起来.(1)D(-3,5),E(-7,3),F(-6,3),B(0,3),C(1,3),D(-3,5);(2)F(-6,3),G(-6,0),A(0,0),B(0,3);观察所描出的图形,它像什么?反思。
交流这里好像有些点位置较为特殊,我们不妨看看这些点的坐标有没有什么规律。
2.(1)点G与点A的坐标有什么共同特点?在坐标系中它们的位置又有什么共同特点? (2)线段EC与x轴有什么特殊的位置关系?点E、点C的坐标有什么特点?线段EC上其它点的坐标呢?3.点F、点G的坐标有什么共同特点,线段FG与Y轴有怎样的位置关系?归纳。
概括4.位于x轴上的点的坐标的特征是:;位于y轴上的点的坐标的特征是:。
5.与x轴平行的直线上点的坐标的特征是:;与y轴平行的直线上点的坐标的特征是:。
运用。
巩固6.若点P(m+5,m-2)在x轴上,则m= ;若点P(m+5,m-2)在y轴上,则m= .7.已知点A(-3,2),点B(1,4),(1)若CA平行于x轴,BC平行于y轴,则点C的坐标是;(2)若CA平行于y轴,BC平行于x轴,则点C的坐标是.8.已知线段AB=3,AB∥x轴,若A点坐标为(-1,2),则B点坐标是.活动2:探究不同象限点的坐标的特征阅读下列材料,解决问题:在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分。
右上方的部分叫做第一象限,其他三部分按逆时针方向依次叫做第二象限,第三象限和第四象限。
3.2平面直角坐标系(第一课时)导学案一、学习目标1.理解平面直角坐标系的有关概念,能正确画出平面直角坐标系;2.能在平面直角坐标系中,根据坐标找点,根据点找坐标;3.理解平面直角坐标系的点与有序实数对是一一对应的关系。
二、学习重难点1.重点:理解平面直角坐标系的有关概念,根据坐标找点,根据点找坐标;2.难点:点的坐标的表示。
三、学习过程(一)温故知新1.什么是数轴?2.在生活中,确定点的位置需要几个数据?(二)学习新课1.精度课本59页的内容:理解并了解平面直角坐标系的概念。
在平面内,两条互相垂直且有公共原点的数轴组成_______________。
通常,两条数轴分别置于水平位置和铅直位置,取向__________和向__________为正方向。
其中水平的数轴称为轴或__________轴,铅直的数轴称为__________轴或__________轴。
横轴和纵轴统称__________,公共的原点O称为直角坐标系的原点。
两条数轴把平面分为四部分,右上部分为第__________象限,其余按逆时针分别为第二、三、四象限。
特别的坐标轴上的点__________任何象限。
2.点的坐标的表示在平面直角坐标系中,要想表示一个点的位置,就要用它的“坐标”来表示。
如图,对于平面内任意一点P,过点P分别向x轴、y轴作__________,垂足在x轴、y轴上对应的数a、b分别叫做点P的_______________;有序数对()叫做点P的__________例1:写出下列各点的坐标。
例2:在上面右图直角坐标系中,描出下列各点:A(4,3)、B(-2,3)、C(-4,-1)、D(2,-2)、E(0,-3)、F(5,0)(三)教材拓展1.象限内点的符号第一象限的符号是__________;第二象限的符号是__________;第三象限的符号是__________;第四象限的符号是__________.例3:点A(a,b)在第三象限,则点B(a-1,b-5)在第_______象限.2.坐标轴上的点有什么特征X轴上的点_________________;y 轴上的点_______________;原点既在x轴上,又在y轴上。
6.1.2 平面直角坐标系学习目标 1、 认识平面直角坐标系, 理解平面内点的横坐标和纵坐标的意义。
2、在给定的直角坐标系中,会根据坐标描出点的位置,有点的位置写出它 的坐标。
并知道各象限内点的坐标特征。
●学习重难点 重点:平面直角坐标系和点的坐标 难点:正确画坐标和找对应点 课中导学 ●阅读感知 1、什么叫坐标?(在书上做相应记号) 2、什么叫平面直角坐标系?坐标轴上的点的坐标有何特点? 3、坐标轴分平面为四个部分,分别叫什么? 4、 各个象限内的点的坐标有何特点? ●合作探究 探究一:探索数轴上的点——规定了 、 、 的直线叫数轴。
如图 2 所示的数轴上的点说一说: A 在数轴上的坐标是______,_________的坐标是-3 写一写:点 A 在数轴的________半轴,点 B 在数轴的________半轴. 试一试:如果要确定平面内的一个点的位置,你将采用什么方法? 探究二:建立平面直角坐标系确定平面内的点 填一填:在平面内画两条互相 _,原点重合的数轴,组成__ ___. 水平的数轴称为__ ____, 习惯上取______为正方向; 竖直的数轴称为__ ____,取______为正方向;两坐标轴的交点为平面直角坐标系的___ _ __. 探一探:图 2 中,3 叫做点 M 的_ ____,2 叫做点 M 的___ __,合起 来叫做点___ ___,M 在平面的坐标,记做 M(______)通常是横坐标 写在纵坐标的______,中间用,号隔开。
图2 图 3做一做: 1.如图 3,A、B 表示的有序数对依次为( (A)(2,3);(-2,3) (C)(2,-3);(-2,-3) -3) 2.横纵坐标都是负数的点是 ___。
). (B)(-2,-3);(2,3) (D)(2,3);(-2,3.在如图所示的平面直角坐标系中描出 F(2,-3),G(-3,-2),H(4,1) 三点, 想一想:所有 x 轴上的点的纵坐标都为__ ____。
课题:7.1.1 有序数对【学习目标】1、从实际生活中感受有序数对的意义,并会确定平面内物体的位置。
2、通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会“具体-抽象-具体”的数学学习过程。
3、培养学生的合作交流意识和探索精神,创造性思维意识。
体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。
【学习重点】理解有序数对的概念,用有序数对来表示位置。
【学习难点】理解有序数对是“有序的”并用它解决实际问题。
【自主学习】1.仔细阅读教材第64页第一段和第二段内容并观察教材第64页的插图,说说“7排9号”和“9排7号”的位置有什么区别?2.中期考试后我们班要开家长会,家长的座位如果安排到你的座位上,你如何让你的家长找到你的座位。
【合作探究】1.怎样确定教室里作为的位置?2.排数和列数的先后顺序对位置有影响吗?3.假设我们约定“列数在前,排数在后”,请你在图中标出下列座位的同学,并说出他的名字。
(请在书上标出来)(1,5),(2,4),(4,2),(3,3),(5,6)4.请问(2,4)和(4,2)在同一位置吗?小结:①可用和两个不同的数来确定位置;②排数和列数的先后顺序对位置影响。
概念:有序数对:用含有的词表示一个位置,其中各个数表示不同的含义,我们把这种两个数a与b组成的数对,叫做有序数对,记作(a,b)。
利用有序数对,可以很准确地表示出一个位置。
即时反馈:1.如图1所示,一方队正沿箭头所指的方向前进, A的位置为三列四行(排),表示为(3,4),那么B 的位置是 ( )A.(4,5)B.(5,4)C.(4,2)D.(4,3)2.如图1所示,B左侧第二个人的位置是 ( )A.(2,5)B.(5,2)C.(2,2)D.(5,5)3.如图1所示,如果队伍向北前进,那么A(3,4)西侧第二个人的位置是 ( )A.(4,1)B.(1,4)C.(1,3)D.(3,1)4.如图1所示,(4,3)表示的位置是 ( )A.AB.BC.CD.D5.如图所示A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?【挖掘教材】平面上用主要的四种方法来确定物体的位置:行列定位法(坐标定位法)、方位角+距离定位法、经纬定位法、区域定位法。
15.7平面直角坐标系学习目标:1、了解平面直角坐标系的由来。
理解平面直角坐标系的有关概念,能正确的画出平面直角坐标系,并会由点确定坐标、由坐标描点,准确知道各象限的点的符号特征,初步感受数形结合的思想。
2、通过实例经历从实际生活中的具体问题抽象出数学模型—平面直角坐标系的过程;体验数学来源于生活,并服务于生活。
3、培养合作意识,感受学习的快乐,感受成功,建立自信。
学习过程: 一、 平面直角坐标系定义在平面内,两条相互 且有公共 的数轴组成平面直角坐标系注意:坐标轴上的点(1)试一试:1、在上面的方框内画一个平面直角坐标系2、在你所画的平面直角坐标系内任意取一个点P ,则P 点坐标记作:二、已知点的位置确定坐标练习1:写出图中多边形ABCDEF 各个顶点的坐标.三、已知点的坐标确定点的位置 练习2:练习:在平面直角坐标系中描出下列各点,A(5,2) 、B(0,5)、C(2,-3)、 D(-2,-3)四、各象限点的符号的确定横坐标纵坐标第一象限 第二象限 第三象限 第四象限 X 轴 Y 轴(2)五、课堂检测1、写出(3)各点的坐标(3) (4)2、在平面直角坐标系(4)中确定A (-1,2)B (0,1) C (-3,0)D (3,2)的位置 3.已知点P( -3 , 2 ),说出点P 位置在_______象限. 4. 已知点Q(0,-3),说出点Q 的位置在_______.5.如果点 E (a,b)在第二象限,那么点 Q (-a,b+1)在( ). A 、第四象限B 、第三象限C 、第二象限D 、第一象限6.直角坐标系中有一点 M(a,b),其中ab=0 ,则点M 的位置在( ) A 、原点 B 、x 轴上 C 、y 轴上 D 、坐标轴上7.矩形ABCD 中,其中三点的坐标分别是(0,0),(5,0),(5,3), D 点的坐标是( ). A 、(0,5) B 、(5,0) C 、(0,3) D 、(3,0)。
高中数学(必修二)导学案第一章:平面直角坐标系1.1 坐标系的引入- 了解平面直角坐标系的基本概念- 掌握点在平面直角坐标系中的坐标表示方法1.2 平面直角坐标系上的距离公式- 了解平面直角坐标系上两点之间距离的公式- 掌握如何使用距离公式计算两个点之间的距离1.3 直线的斜率- 了解直线斜率的概念及其计算方法- 掌握如何根据两点坐标计算直线的斜率第二章:二次函数2.1 二次函数的图像和性质- 了解二次函数的基本概念和特点- 掌握根据二次函数的参数确定二次函数图像的方法2.2 二次函数的最值和零点- 了解二次函数最值和零点的基本概念及其计算方法- 掌握如何根据二次函数求解实际问题2.3 二次函数与一次函数的比较- 了解二次函数和一次函数的基本概念及其图像特点- 掌握如何比较二次函数和一次函数的大小关系第三章:三角函数3.1 任意角及其测量- 了解任意角的基本概念及其测量方法- 掌握如何将任意角的三角函数转化为其它角度的三角函数3.2 常用角的三角函数值- 掌握常用角的三角函数值及其推导方法- 掌握如何根据三角函数值求解实际问题3.3 三角函数的图像和性质- 了解三角函数的图像及其性质- 掌握如何根据三角函数图像解决实际问题第四章:概率统计4.1 随机事件与概率- 掌握随机事件和概率的基本概念和运算法则- 掌握如何计算简单事件的概率4.2 条件概率和独立性- 了解条件概率和独立性的基本概念及其计算方法- 掌握如何根据条件概率和独立性计算事件的概率4.3 离散型随机变量及其分布律- 了解离散型随机变量及其分布律的概念- 掌握如何根据分布律计算离散型随机变量的期望值和方差以上是本章节的导学内容,希望同学们认真学习,做好课后习题。
祝学习愉快!。
八年级数学《4.3平面直角坐标系(2)》导学案班级姓名日期【学习目标】1.掌握平面内的点与有序实数对的一一对应关系,并能熟练地根据坐标找出平面内的点;使学生掌握平面内一点关于x轴,y轴及原点的对称点的坐标;2.通过探索活动,让学生进一步感受“数形结合”的数学思想,感受“类比”和“坐标”的思想.体验将实际问题数学化的过程和方法.【学习重点】使学生灵活写出有关对称点的坐标,并掌握其规律.【学习难点】掌握图形上点的坐标变化与图形的变化之间的关系,对图形变换有整体认识. 【学习过程】一、自学指导预习P页回答下列问题125-126,在课本上按照要求画图后填空:1.课本P125(1)点(1,-3)关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的点的坐标为;(2)点(-1,3)关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的点的坐标为;归纳:一般地,点P(a,b),关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点轴对称的点的坐标为 .,在课本上按照要求画图后填空:2.课本P126(1)点A与A′、点B与B′的坐标之间的关系是:(2)如果点C(m,n)是线段AB上任意一点,那么当AB平移到A′B′后,与点C对应的C′的坐标是(3)点的横坐标变化,纵坐标不变,点的位置发生什么变化?点的纵坐标变化,横坐标不变,点的位置发生什么变化呢?归纳:一般地,点在左右平移时,坐标不变,坐标变化;点在上下平移时,坐标不变,坐标变化.二、自主练习(1)点P的坐标(-3,5),点P到x轴距离是,点P到y轴的距离是点P到原点的距离是 .(2)点P的坐标(a,b),点P到x轴的距离是,点P到y轴的距离是,点P到原点的距离是 .(3)点P的坐标(-3,5), 点Q的坐标(-3,-2),则PQ y轴. 点P的坐标(-3,5), 点Q的坐标(2,5),则PQ x轴.(4)平行x 轴的直线上所有点的 都相等,平行y 轴的直线上所有点的 都相等.三、合作探究1.点A 在第四象限,它到x 轴的距离为2,到y 轴的距离为1,则A 坐标为 若去掉点A 在第四象限这个条件,则A 坐标为2.已知线段 MN=4,MN ∥y 轴,若点M 坐标为(-1,2),则N 点坐标为3.已知点A (4+x ,y+2)、B(-3,6-3y),当y= A 、B 的连线平行于x 轴;当x= , y= 时A 、B 两点关于x 轴对称.4.如图,平行四边形ABCD 中,A 在坐标原点,D 在第一象限角平分线上,又知AB=6,AD=22,求:B 、C 、D 点坐标.5.在平面直角坐标系中,已知线段A B 的两个端点分别是()()41A B --,,1,1,将线段A B 平移后得到线段A B '',若点A '的坐标为()22-,,求点B '的坐标.四、变式拓展如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,求点P 的坐标五、回扣目标六、课堂反馈1.点A (-2,-1)关于x 轴的对称点坐标是__ ____,关于y 轴的对称点的坐标是 ,关于原点的对称点的坐标是 .2.点B 关于x 轴的对称点的坐标是(4,-2),则点B 关于原点的对称点的坐标是 .3.已知A 、B 、C 三点的坐标分别是(0,0),(5,0),(5,3),且这3点是一个平行四边形的顶点,请同学们写出第四点D 的坐标:4.过点(-2y 轴的直线上的点( )A.横坐标都是-2;B.C. D.纵坐标都是-25.点M (3,-2x+y )与点(x -y ,4)关于x 轴对称,则x= ,y= .6.已知点A (3,2)与点B (x ,3x+1)在同一条垂直于x 轴的直线上,且点C 是线段AB 的中点,试求出点C 的坐标.7.如图,在平面直角坐标系中,A B C △的顶点坐标为(23)A -,、(32)B -,、(1,1)C -.(1)求出A B C △的面积;(2)若将A B C △向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的111A B C △;(3)画出111A B C △绕原点旋转180°后得到的222A B C △;(4)A B C '''△与A B C △是中心对称图形,请写出对称中心的坐标:___________;(5)顺次连结12C C C C '、、、,所得到的图形是轴对称图形吗?课堂作业A 组1.已知x 轴上点P 到y 轴的距离是3,则点P 坐标是_______ __.2.将点P (-3,2)向下平移3个单位,向左平移2个单位后得到点Q (x ,y ),则xy =___________.3.如果点M (a ,b )第二象限,那么点N (b ,a )在第 象限.4.已知点M ()y x ,与点N ()3,2--关于x 轴对称,则x + y = .5.已知点M ()a a -+4,3在y 轴上,则点M 的坐标为 .6.若点P 到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标为 .7.在平面直角坐标系中,点(25)A ,与点B 关于y 轴对称,则点B 的坐标是 ( ).8.线段C D 是由线段A B 平移得到的,点(14)A -,的对应点为(47)C ,,则点(41)B --,的对应点D 的坐标是 .9.已知点A (x+4,y -2)、B(-3,4-3y),当x= A 、B 的连线平行于y 轴;当x= , y= A 、B 两点关于原点对称.10.已知等腰三角形ABC ,点A 在y 轴上,且A (0,2),y 轴是它的对称轴,若AB=5,BC=6,求B 、C 两点的坐标.B 组已知一个△ABC 是等边三角形,边长为4,(如图)(1)求A 、B 两点坐标;(2)通过平移得△A 'B 'C ',若B '与B 是对应点,且B '(-2,5),则把△ABO 通过怎样的平移得△A 'B 'C '?你能写出A '与C '的坐标吗?教师评价 批改日期主备人:吴寿根 审核人:夏在迅 审批人:马年宣。
11.2 平面直角坐标系导学案(第一课时)学习目标:知识和技能目标1、知道平面直角坐标系的有关概念,理解点的坐标的意义。
2、能正确画出直角坐标系,由点的位置确定坐标,由点的坐标确定位置。
情感目标经历画坐标系以及由点找坐标和由坐标找点的过程,丰富活动经验,培养合作交流意识,体会数形结合的思想。
学习重点:平面直角坐标系的画法,由点的位置写出它的坐标,根据坐标描出点的位置学习过程:一、课前延伸1、规定了、和的直线叫做数轴。
2、写出数轴上A,B,C,D,E各点所表示的数.A B C D E3、在数轴上分别标出坐标为-1,4,2.5,0,-1.5,-3.5的点.-5-4-3-2-1012345二、自主探究、合作交流1、在平面内画两条,并且有O的数轴,通常其中一条画成水平,叫轴(或轴),规定向右的方向为正方向,另一条画成铅直,叫轴(或轴),规定向上的方向为正方向,这样就建立了,简称。
两坐标轴的公共原点O叫做该直角坐标系的,简称. 这个平面叫。
2、画出坐标系,并议一议:画坐标系时要注意什么?3、概括平面直角坐标系具有的特征:在同一平面内两条数轴:①②③通常取为正方向④一般取相同的4、两坐标轴把坐标平面分成几个区域?分别叫什么?对坐标轴上的点做的怎样的规定?5小组交流:举例说明怎样在平面直角坐标系中确定任意一个点的坐标。
四、精讲点拨例1,写出图1中各点的坐标。
例2,在平面内描出各点的位置。
A (3,0)B (0,2)C(-3,2)D(4,-1)E(-2,-3)F(1,3)。
五、拓展提升1、画平面直角坐标系,并在图中描出坐标是:Q(2,3)、S(2-,3)、R.(3,2-)的点。
(1)Q(2,3)与P(3,2)是同一点吗?S(2-,3)与R(3,2-)是同一点吗?(2)、(1)中,对于平面直角坐标系上的点和有序数对来说,你有什么发现吗?2、在点A(-2,-4)、B(-2,4)、C(3,-4)、D(3,4)、E(-1,0)、F(0,8)、G(2,-4)、H (0,-5)中属于第三象限的点是,属于第四象限的是,在X轴上的点是,在Y轴上的点是。
象马6491543287532(街)(巷)2354114532AB O C6045。
1麻城市春蕾学校导学稿七年级数学备课组 撰稿人:蔡晓东 审稿人:郑强 周锦华课题:7.1.1有序数对【学习目标】:1.通过现实情景感受利用有序数对表示位置的广泛性,能利用有序数对来表示位置.2.让学生感受到可以用数量表示图形位置,形成数形结合的意识.3.感受数学源于生活.【学习重点】:理解有序数对的意义和作用 【学习难点】:用有序数对表示平面内的点的位置 【学习方法】:引导自学,合作交流 【学习过程】:、一、预习导学(预习课本第39-40页)1.你能在数轴上找到表示6的点吗?2.地埋图册上有一处写着“北纬44.2°,东经125.7°”,你能在地球仪上找到这个位置吗?3.你买了一张8排6号的电影票,你能很快找到自己的座位吗? 分析以上情景,他们分别利用哪些数据找到位置的。
二、学习研讨问题1:在看电影时,同学都会根据电影票上的“排数”和“号数”准确地“对号入座”。
右边是某电影院的座位示意图,你能指出4排4号,6排4号和6排6号的位置吗(分别记为A 、B)?问题2:由“排数”和“号数”这两个数字就能找到你的位子,用1个数能找到吗?问题3:在电影院里确定你的座位,如果用(2,7)表示第2排第7号的座位,那么(5,8)表示什么意思?它与(8,5)的意义相同吗?问题4:要确定一个位置必须要有几个数,数字的顺序不同意义一样吗?概念:我们把这种有顺序的两个数a 与b 组成的数对叫做有序数对(ordered pair ),记作(a,b )。
它可以很准确的表示出一个位置。
三、练习巩固:问题1:如图所示的马所处的位置为(2,3). (1)你能表示图中象所处的位置吗?(2)写出马下一步可以到达的位置。
方法指导:(1)由马的位置可知:列数在前,行数在后;(2)中国象棋中的规则是“马”走日,“象”飞田。
问题2:如图是某市交通网络图,邮局位于2街与4巷的十字路口,学校位于6街1巷的十字路口,如果用(2,4)表示邮局的位置,张老师想去邮局发一份快递,请你用有序数对写出他从学校到邮局的最近路线。
18.2.1《平面直角坐标系》学案学习目标:1、理解平面直角坐标系的画法;2、掌握各象限点的坐标特点;3、掌握坐标轴上点的坐标特点;4、了解关于坐标轴、坐标原点对称的点的坐标关系;5、坐标内两点之间距离的求法.重点:平面直角坐标系及相关概念.难点:对点坐标的理解.自主学习1、平面直角坐标系:在平面内画两条_____________重合、互相________________且具有相同_____________________的数轴就建立了平面直角坐标系。
2、四个象限内及两条坐标轴上的点的坐标特征分别为:第一象限(+,+),第二象限(___,____),第三象限(____,_____),第四象限(____,_____),x轴上的点的纵坐标为_______,y轴上的点的___________为0;坐标轴上的点____________(填“属于”或“不属于”)任何一个象限,原点既在________又在____________。
3、平面直角坐标系中的点和________________是一一对应的。
[小试身手]1、点(-2,5)在第______象限,点()2,12+a在第_______象限。
2、设点P(x,y)在第三象限,且2x,则点P的坐标为( )=y,1=A.(1,-2)B.(-1,2)C.(-2,-1)D.(-1,-2)3、已知点P(a-3,5+a)在第二象限,则a的取值范围是___________________。
4、如果点P(a,5)与点Q(-3,b)关于y轴对称,则a,b的值分别是( )A.-3,5B.3,-5C.-3,8D.3,55、点M(-5,2)关于x轴的对称点为__________,关于y轴的对称点是____________,关于原点的对称点是_______________。
6、点P(-2,3)关于原点对称的点是点Q,则Q的坐标为( )A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)7、求坐标系内两点间的距离:(1) A( 2, 0)B(-3 ,0 ) (2) A( 0,6 )B(0 , -3) (3) A( 2,3 )B( -3, 3) (4) A( 2, 5)B(2 ,-7 ) (5) A(0 ,0 )B(-2 ,5 )8、已知点P(a+1,2a-1)关于x轴对称点在第一象限,求a的取值范围.9、已知点P到x轴的距离为1,到y轴的距离为2,求点P的坐标,并在平面直角坐标系中描出该点.课后反思:。
6.1.2平面直角坐标系(1)导学案
学习目标:
1、掌握平面直角坐标系有关概念,了解点的坐标。
2、根据点的位置写出点的坐标,由点的坐标找到点。
重点:平面直角坐标系和点的坐标。
难点:在平面直角坐标系钟根据点的位置写出点的坐标,由点的坐标描出点。
问题设计:
一、问题导读:
带着下列问题认真、仔细阅读课本第40页至42页第一行结束
1、什么是平面直角坐标系?
2、在平面直角坐标系中,什么是横轴、纵轴、原点?
3、在平面直角坐标系中如何求一个点的坐标?
二、导读检查:(教师给于补充)
学生板演:
①画平面直角坐标系(应该注意什么?)
②指出横轴、纵轴、原点?
③点坐标的确定:
点的横坐标确定的方法,由点向()作垂线,()对应的数,即为点的横坐标。
点的纵坐标确定方法,由点向()作垂线,()对应的数,即为点纵坐标,所以点的坐标是()。
三、研讨交流:
原点O坐标是什么?X轴Y轴上点的坐标有什么特点?(同桌合作交流)
四、同桌互助(互相补缺,共同进步)
①画平面直角坐标系并标出各部分名称
②43页练习1,写出图中A 、B 、C 、D 、E 、F 坐标 E
F·
D A
B
E E c
③43页练习2,在图中标出下列各点
L (-4,-3),M (4,0),N (-3,2),P (5,-4) Q(0,5)
R(5,2) A(0,0) B(-4,0)。
,
·D ·5
y
纵轴C ·
自我检测(教师面批)
1、在平面内,两条( )的数轴组成平面直角坐标系。
3、在下面直角坐标系中描出下列各组点,并将各组的点用线段依次连接起来. ①(0 , 6), (-4, 3), (4 , 3) ②(-2 , 3), (-2 , -3), (2 , -3), (2 ,3) ·D C ·。