黑龙江省大兴安岭市漠河县一中高中数学第一章空间几何体1.3.2球的体积和表面积学案新人教A版
- 格式:docx
- 大小:67.56 KB
- 文档页数:5
高一数学必修2导学案主备人: 备课时间: 备课组长:空间几何体结构周测试一、选择题:(50分)1、在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行2、下列说法错误的是()A:由两个棱锥可以拼成一个新的棱锥B:由两个棱台可以拼成一个新的棱台C:由两个圆锥可以拼成一个新的圆锥D:由两个圆台可以拼成一个新的圆台3、下列说法正确的是()A:以直角三角形的一边为轴旋转而成几何体是圆锥B:圆柱、圆锥、圆台的底面都是圆面C:以直角梯形的一腰为轴旋转成的是圆台D:圆锥的侧面展开图为扇形,这个扇形所在的圆的半径等于圆锥底面圆的半径4、下列关于长方体的叙述不正确的是()A:长方体的表面共有24个直角B:长方体中相对的面都互相平行C:长方体中某一底面上的高的长度就是两平行底面间的距离:D;两底面间的棱互相平行且相等的六面体是长方体5、将图1所示的三角形线直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形()6、如图一个封闭的立方体,它6个表面各标出1、2、3、4、5、6这6个数字,现放成下面3个不同的位置,则数字l、2、3对面的数字是()A.4、5、6 B.6、4、5 C.5、4、6 D.5、6、47、如图,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4B.A1B l=1,AB=2,B l C l=1.5,BC=3,A1C1=2,AC=3C.A l B l=1,AB=2,B1C l=1.5,BC=3,A l C l=2,AC=4D.AB=A1B1,BC=B1C1,CA=C1A18、有下列命题(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的;其中正确的是()A.(1)(2) B.(2)(3) C.(1)(3) D.(2)(4)9、下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆面D.圆锥所有的轴截面是全等的等腰三角形10、图1是由图2中的哪个平面图旋转而得到的()二、填空题(20分)11、如图,长方体ABCD—A1B l C l D1中,AD=3,AA l=4,AB=5,则从A点沿表面到C l的最短距离为___ ___.12、在三棱锥S—ABC中,SA=SB=SC=1,∠ASB=∠ASC=∠BSC=30°,如图,一只蚂蚁从点A出发沿三棱锥的表面爬行一周后又回到A点,则蚂蚁爬过的最短路程为___ __.13、高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是__ ____.14如图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D与点M与点R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是__ __.(注:把你认为正确的命题的序号都填上)三、解答题(30分)15、(15分)长方体的全面积是11,十二条棱长度之和为24,求这个长方体的一条对角线长?16、(15分)一个圆锥的底面半径为2cm,高为6cm,在其中有一个高为xcm的内接圆柱。
黑龙江省大兴安岭市漠河县一中高中数学第一章空间几何体1.3.1空间几何体的表面积和体积学案新人教A版必修2一、学习目标:知识与技能:通过学习掌握柱、锥、台表面积、体积的计算公式并会灵活运用,会求简单组合体的表面积和体积。
过程与方法:通过对柱、锥、台表面积和体积的公式的探究学习,体会观察、类比、归纳的推理方法。
情感态度与价值观:培养学生从量的角度认识几何体,培养学生的空间想象能力和思维能力。
二、学习重点、难点:学习重点:柱、锥、台表面积、体积的计算公式。
学习难点:利用相应公式求柱、锥、台表面积、体积。
三、使用说明及学法指导:掌握并理解公式,熟练运用公式,培养空间想象能力。
四、知识链接:柱、锥、台体的基本特征:五、学习过程:A问题1:棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧面展开图是什么?如何计算它们的表面积?例1:已知棱长为a,各面都是等边三角形的四面体S—ABC,求它的表面积?A问题2:圆柱、圆锥、圆台都是旋转体,它们的侧面展开图是什么?如何计算它们的表面积?例2:如图,一个圆台形花盆盆口直径20 cm,盆底直径为15cm,底部渗水圆孔直径为1.5 cm,盆壁长15cm.那么花盆的表面积约是多少平方厘米(π取3.14,结果精确到1 )?A问题3:柱体、锥体、台体的体积如何计算?(分别写出计算公式)例3:有一堆规格相同的铁制(铁的密度是7.8g/3cm)六角螺帽共重5.8kg,已知底面是正六边形,边长为12mm,内孔直径为10mm,高为10mm,问这堆螺帽大约有多少个(π取3.14)?A问题4:组合体的表面积和体积如何计算?六、达标测试A1、正方体的全面积为24 cm2,则它的体积是()cm20cm15cm15A .4cm 3B .16cm 3C .64cm 3D .8cm 3A2、已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V 1和V 2,则V 1:V 2=( )A .1:3B .1:1C .2:1D .3:1A3、用长为4,宽为2的矩形做面围成一个圆柱,则此圆柱的侧面积为 ( )A .2πB .π8C .4πD .8 A4、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后 ,剩下的几何体的体积是 ( )A .23B .76C .45D .56A5、有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体表面积及体积为:( )A 224cm π,312cm πB 215cm π,312cm π C 224cm π,336cm π D 都不正确B6、Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体的体积为____________B7、已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为___________七、小结与反思:【励志良言】当你只有一个目标时,全世界都会给你让路。
黑龙江省大兴安岭市漠河县一中2019-2020学年高中数学第一章空间几何体1.4 空间几何体习题新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(黑龙江省大兴安岭市漠河县一中2019-2020学年高中数学第一章空间几何体1.4 空间几何体习题新人教A版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为黑龙江省大兴安岭市漠河县一中2019-2020学年高中数学第一章空间几何体1.4 空间几何体习题新人教A版必修2的全部内容。
空间几何体结构周测试一、选择题:(50分)1、在棱柱中()A.只有两个面平行 B.所有的棱都平行C.所有的面都是平行四边形 D.两底面平行,且各侧棱也互相平行2、下列说法错误的是 ( )A:由两个棱锥可以拼成一个新的棱锥 B:由两个棱台可以拼成一个新的棱台C:由两个圆锥可以拼成一个新的圆锥 D:由两个圆台可以拼成一个新的圆台3、下列说法正确的是( )A:以直角三角形的一边为轴旋转而成几何体是圆锥B:圆柱、圆锥、圆台的底面都是圆面C:以直角梯形的一腰为轴旋转成的是圆台D:圆锥的侧面展开图为扇形,这个扇形所在的圆的半径等于圆锥底面圆的半径4、下列关于长方体的叙述不正确的是()A:长方体的表面共有24个直角B:长方体中相对的面都互相平行C:长方体中某一底面上的高的长度就是两平行底面间的距离:D;两底面间的棱互相平行且相等的六面体是长方体5、将图1所示的三角形线直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形( )6、如图一个封闭的立方体,它6个表面各标出1、2、3、4、5、6这6个数字,现放成下面3个不同的位置,则数字l、2、3对面的数字是( )A.4、5、6 B.6、4、5 C.5、4、6 D.5、6、47、如图,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4B.A1B l=1,AB=2,B l C l=1.5,BC=3,A1C1=2,AC=3C.A l B l=1,AB=2,B1C l=1.5,BC=3,A l C l=2,AC=4D.AB=A1B1,BC=B1C1,CA=C1A18、有下列命题(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的;其中正确的是( )A.(1)(2) B.(2)(3) C.(1)(3) D.(2)(4)9、下列命题中错误的是( )A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆面D.圆锥所有的轴截面是全等的等腰三角形10、图1是由图2中的哪个平面图旋转而得到的()二、填空题(20分)11、如图,长方体ABCD—A1B l C l D1中,AD=3,AA l=4,AB=5,则从A点沿表面到C l的最短距离为___ ___.12、在三棱锥S-ABC中,SA=SB=SC=1,∠ASB=∠ASC=∠BSC=30°,如图,一只蚂蚁从点A 出发沿三棱锥的表面爬行一周后又回到A点,则蚂蚁爬过的最短路程为___ __.13、高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是__ ____.14如图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D与点M与点R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是__ __.(注:把你认为正确的命题的序号都填上)三、解答题(30分)15、(15分)长方体的全面积是11,十二条棱长度之和为24,求这个长方体的一条对角线长?16、(15分)一个圆锥的底面半径为2cm,高为6cm ,在其中有一个高为xcm 的内接圆柱.(1)用x 表示圆柱的轴截面面积S ;(2)当x 为何值时,S 最大?【励志金语】在学业的峰峦上,有汗水的溪流飞淌;在智慧的珍珠里,有勤奋的心血闪光。
1.3.2球的体积和表面积
一、学习目标:
知识与技能:⑴通过对球的体积公式的推导,了解推导过程中所用的基本数学思想方法,知道祖暅原理。
⑵能运用球的公式灵活解决实际问题。
培养空间想象能力。
过程与方法:通过球的体积公式的推导,从而得到一种推导球体积公式的方法,
情感与价值观:通过学习,使我们对球的表面积、体积公式的推导方法有了一定的了解,提高空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。
二、学习重难点:
学习重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。
学习难点:推导体积和面积公式中空间想象能力的形成。
三、使用说明及学法指导:
1、限定45分钟完成,认真阅读教材内容,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。
3、小班完成A,B,C全部内容;实验班完成B级以上;平行班完成A~B.(其中A、B级问题自主完成;C级问题可由合作探究方式完成)四、知识链接:
什么是球?
球的半径?
球的直观图怎样画?
球的半径,截面圆的半径,球心与截面圆心的距离间有何关系?
五、学习过程:
B问题1:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?
(阅读32页了解球的体积的推导即可,球的表面积的推导不要求了解)
B 问题2:球的表面积的公式怎样?球的体积怎样?
A 例1:圆柱的底面直径与高都等于球的直径。
求证:(1)球的体积等于圆柱的体积的3
2;(2)球的表面积等于圆柱的侧面积; A 例2:已知:钢球直径是5cm,求它的体积.
B (变式1)一种空心钢球的质量是142g,外径是5cm,求它的内径.(钢的密度是7.9g/cm2)
六、达标训练
一、选择题
A1一个正方体的顶点都在球面上,此球与正方体的表面积之比是( ) A. 3π B. 4π C. 2π
D. π
B2.在一个侧置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的 一条侧棱和高作截面,正确的截面图形是
( )
B3正方体的全面积为a ,它的顶点都在球面上,则这个球的表面积是:( ) A.3a
π; B.2a
π; C.a π2; D.a π3.
B4已知正方体外接球的体积是323
π,那么正方体的棱长等于 ( )
(A ) (B )
3 (C )3 (D )3
二、填空题 A5、球的直径伸长为原来的2倍,体积变为原来的 倍.
B6、一个正方体的顶点都在球面上,它的棱长是4cm,这个球的体积为 cm 3.
B7、长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是 。
B8、有三个球,一球切于正方体的各面,一球切于正方体的各侧棱,一球过正方体的各顶点,求这三个球的体积之比_________.
B9、正方体的内切球和外接球的体积的比为 ,表面积比为 。
B10、一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米
三、解答题
B11、在球心同侧有相距9cm 的两个平行截面,它们的面积分别为49πcm 2和400πcm 2,求球的表面积。
七、小结与反思
【心灵鸡汤】行动和不满足是进步的第一必需品!
球的体积和表面积
知识链接:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球.
半圆的半径在球体中分别叫做球的半径.设球的半径为R ,截面圆半径为r ,球心与截面圆圆心的距离为d ,则R 、r 、d 三者之间的关系
问题1:答案见教材32页
问题2: 32
4,43V R S R ππ==
例1:见教材27页
例2: 3334
4
5
125
()3326V R cm πππ==⋅=
变式1: 解:设空心钢球的内径为2xcm,则钢球的质量是
334
5
4
7.9[()]1423232 4.5
x x ππ⋅⋅-=∴≈
达标测试: 1----4 CBBD5. 8 6. π332 7. π50 8.
33:22:1 9. 9:3 1:3
10. 12 11. 2500π。