2018-2019年吕梁市初中分班数学模拟试题(54)附详细答案
- 格式:doc
- 大小:312.00 KB
- 文档页数:15
人教版2018-2019学年度九年级中考数学模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.﹣2017的倒数是()A.B.﹣C.2017 D.﹣20172.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013 km B.9.5×1012 km C.95×1011 km D.9.5×1011 km4.下面图中所示几何体的左视图是()A.B. C. D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人7.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%8.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5 B.6 C.7 D.89.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a10.如图,AB为⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是()A.2B.3 C.3D.3二.填空题(共4小题,满分20分,每小题5分)11.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.12.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是.13.有一个三角形纸片ABC,∠C=36°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得的两纸片均为等腰三角形,则∠A的度数可以是.14.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为.三.解答题(共2小题,满分16分,每小题8分)15.(8分)化简:(1﹣)÷16.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在如图所示的网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于y轴、原点的对称图形;(2)以原点O为中心,将△ABD顺时针旋转90°,试画出旋转后的图形,并求旋转过程中△ABD扫过图形的面积.18.(8分)学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM 与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)五.解答题(共2小题,满分20分,每小题10分)19.(10分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME 与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF 的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).20.(10分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.21.(12分)向阳中学为了解全校学生利用课外时间阅读的情况,调查者随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表(图).根据图表信息,解答下列问题:频率分布表(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整;(3)阅读时间不低于5小时的6人中,有2名男生、4名女生.现从这6名学生中选取两名同学进行读书宣讲,求选取的两名学生恰好是两名女生的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)已知抛物线的顶点为(1,﹣4),且经过点B(3,0).(Ⅰ)求该抛物线的解析式及抛物线与x轴的另一个交点A的坐标;(Ⅱ)点P(m,1)为抛物线上的一个动点,点P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当P′落在第二象限内,P′A取得最大值时,求m的值.23.(14分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).参考答案与试题解析1.解:﹣2017的倒数是﹣.故选:B.2.解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选:B.方法二:25x=2000∴25xy=2000y=(25×80)y=25y•80y=25y•25x=25x+y,∴xy=x+y,∴+=1,故选:B.3.解:9500 000 000 000km用科学记数法表示是9.5×1012 km,故选:B.4.解:图中所示几何体的左视图是.故选:B.5.解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.6.解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.7.解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.8.解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.9.解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC 上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.10.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3,故选:C.11.解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.12.解:整理方程得:x2﹣2x﹣m=0∴a=1,b=﹣2,c=﹣m,方程有两个不相等的实数根,∴△=b2﹣4ac=4+4m>0,∴m>﹣1.13.解:由题意知△ABD与△DBC均为等腰三角形,①BC=CD,此时∠CDB=∠DBC=(180°﹣∠C)÷2=72°,∴∠BDA=180°﹣∠CDB=180°﹣72°=108°,AB=AD时,∠ABD=108°(舍去);或AB=BD,∠A=108°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=36°;②BC=BD,此时∠CDB=∠C=36°,∴∠BDA=180°﹣∠CDB=180°﹣36°=144°,AB=AD时,∠ABD=144°(舍去);或AB=BD,∠A=144°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=18°;③CD=BD,此时∠CDB=180°﹣2∠C=108°,∴∠BDA=180°﹣∠CDB=180°﹣108°=72°,AB=AD时,∠A=180°﹣2∠ADB=36°;或AB=BD,∠A=72°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=54°.综上所述,∠A的度数可以是18°或36°或54°或72°.故答案为:18°或36°或54°或72°.14.解:∵点A(2,0),点B(0,1),∴直线AB的解析式为y=﹣x+1∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==,∴AP=2,∴m2+(2m)2=(2)2,∴m=±2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),当m=﹣2时,如图2,PC=4,OC=0,P点的坐标为(0,﹣4),如图3,若△PAD∽△BPA,则==,PA=AB=,则m2+(2m)2=()2,∴m=±,当m=时,PC=1,OC=,P点的坐标为(,1),当m=﹣时,如图4,PC=1,OC=,P点的坐标为(,﹣1);故答案为:P(4,4),p(0,﹣4),P(,﹣1),P(,1).15.解:原式=•=•=﹣.16.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)17.解:(1)所画图形如下图所示,(2)如上图所示,△A′B′D′即为△ABD顺时针旋转90°后得到的图形,在旋转过程中可知:△ABD扫过图形的面积即是线段AB所扫过的扇环面积(S1)与△ABD的面积(S2)之和(S),则有:S=S1+S2=[π×OA2﹣π×OB2]+×AD×1=[π×(22+42)﹣π×(12+12)]+×2×1=+1.18.解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:19.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.20.解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).21.解:(1)∵本次调查的总人数b=9÷0.15=60,∴a=60﹣(9+18+12+6)=15,则m==0.25、n==0.2,故答案为:15、60、0.25、0.2;(2)补全频数分布直方图如下:(3)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中选取的两名学生恰好是两名女生的结果数为12,所以选取的两名学生恰好是两名女生的概率为=.22.解:(Ⅰ)∵抛物线的顶点为(1,﹣4),∴可设抛物线解析式为y=a(x﹣1)2﹣4,∵经过点B(3,0),∴0=a(3﹣1)2﹣4,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,令y=0可得x2﹣2x﹣3=0,解得x=3或x=﹣1,∴点A的坐标为(﹣1,0);(Ⅱ)①由点P(m,1)在抛物线y=x2﹣2x﹣3上,有l=m2﹣2m﹣3.又点P关于原点的对称点为P′,∴P′(﹣m,﹣1).∵点P′落在抛物线y=x2﹣2x﹣3上,∴﹣l=(﹣m)2﹣2(﹣m)﹣3,即l=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m1=,m2=﹣;②∵P′落在第二象限内,∴点P(m,1)在第四象限,即m>0,l<0.23.解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.。
2021年9月山西省吕梁市小升初分班数学思维应用题模拟试卷一含答案解析学校:________ 姓名:________ 考号:________ 得分:________一、应用题(精选120题,每题1分。
一、审题:在开始解答前,应仔细阅读题目,理解题目意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用正楷,尽量避免连笔,字迹稍大,并注意排版,确保卷面整洁;四、π一律取值3.14。
)1.有一位精明的老板对某商品用下列办法来确定售价:设商品件数是N,那么N件商品售价(单位:元)按:每件成本×(1+20%)×N算出后,凑成5的整数倍(只增不减),按这一定价方法得到:1件50元;2件95元;3件140元;4件185元;…,如果每件成本是整元,那么这一商品每件成本是多少元?2.李大伯家粮食今年获得了大丰收,足足有3.8吨小麦,如果每条麻袋装48千克小麦,请你算一算,至少需要准备多少条麻袋?3.一种小麦的出粉率为75%,现有320kg小麦,能磨出多少千克的面粉?4.同学们为迎接西安世园会做纸花,女生做的纸花数是男生做的2.6倍.女生给了男生12朵纸花后,男、女生的纸花就一样多了.男、女生各做了多少朵纸花?(用方程解)5.舞蹈队共有队员50人,某天的出勤率为98%,当天出勤多少人?6.甲仓存粮10吨,乙仓存粮是甲仓的4/5,丙仓比乙仓少2/3吨,丙仓存粮多少吨.7.甲、乙两个仓库共存粮300吨,从两个仓库各运出1/5以后,甲仓库还有95吨,乙仓库还有多少吨粮食?8.某工厂女职工有72人,男职工有48人.男、女职工各占全厂总人数的几分之几?9.甲、乙两地之间的高速公路全长820千米。
一辆客车和一辆货车同时从甲、乙两地出发,相向而行,经过4小时相遇。
如果客车的速度是110千米/时,货车的速度是多少千米/时?(列方程解)10.小明早上6:50从家出发,在家门口等2路车用了10分钟,接着坐了15分钟汽车,又步行5分钟到学校,小明到校时间是几时几分?11.食堂买回一桶油,连桶带油称了一下是104千克,用了一半后再称一下是54千克。
吕梁市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,每个小正方形的边长为1个单位长度,图中阴影部分是正方形,则此正方形的边长为()A. B. C. D.【答案】C【考点】算术平方根【解析】【解答】解:∵每个小正方形的边长为1个单位长度,∴S阴影部分=5×5-4××2×3=25-12=13∵图中阴影部分是正方形,∴图中阴影部分的正方形的面积=13∴此正方形的边长为:故答案为:C【分析】观察图形,根据题意可知阴影部分的面积等于整个正方形的面积减去三个直角三角形的面积,再由图中阴影部分是正方形,就可得出此正方形的面积,再开算术平方根,就可得出此正方形的边长。
2、(2分)已知正方体的体积为64,则这个正方体的棱长为()A. 4B. 8C.D.【答案】A【考点】立方根及开立方【解析】【解答】解:∵正方体的体积是64∴正方体的棱长为=4【分析】根据正方体的体积等于棱长的三次方,开立方根求解即可。
3、(2分)为了了解某区初中中考数学成绩情况,从中抽查了1000名学生的数学成绩,在这里样本是()A. 全区所有参加中考的学生B. 被抽查的1000名学生C. 全区所有参加中考的学生的数学成绩D. 被抽查的1000名学生的数学成绩【答案】D【考点】总体、个体、样本、样本容量【解析】【解答】解:本题考查的对象是某区初中中考数学成绩,故样本是所抽查的1000名学生的数学成绩,D正确,符合题意.考查的对象是数学成绩而不是学生,因而A、B错误,不符合题意.全区所有参加中考的学生的数学成绩是总体,则C错误,不符合题意.故答案为:D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量,根据样本、总体、个体、样本容量的定义即可进行判断.4、(2分)已知a、b满足方程组,则3a+b的值为()A. 8B. 4C. ﹣4D. ﹣8【答案】A【考点】代数式求值,解二元一次方程组【解析】【解答】解:,①×2+②得:5a=10,即a=2,将a=2代入①得:b=2,则3a+b=6+2=8.故答案为:A【分析】先利用加减消元法求出方程组的解,再将a、b的值代入3a+b,计算即可。
2023吕梁市新初一分班数学试卷含答案一、选择题1.成语“立竿见影”在《辞源》里的解释为“竿立而影现,喻收效迅速。
”用数学的眼光来看,这是应用了比例知识中的( )关系。
A .正比例 B .反比例 C .比例尺 D .不确定 2.经过1小时,钟面上分针转过的角度与时针转过的角度相差( )。
A .330︒B .300︒C .150︒D .120︒3.一堆煤有12吨,第一次运走14吨,第二次运走总数的18,两次共运走多少吨?正确的算式是( )。
A .1148+B .111()248⨯+C .111428+⨯D .111()248⨯-4.一个三角形三个内角的度数比是1∶2∶3,这个三角形是( )三角形。
A .直角B .锐角C .钝角D .无法确定5.一堆煤,用去了20%后,还剩下60吨,这堆煤共有多少吨? 解:设这堆煤有x 吨。
所列方程正确的是( )。
A .20%60x = B .20%60+=x x C .20%60x x -= D .20%60x -= 6.一个长方体,它有一组相对的面是正方形,其余四个面的面积( )。
A .互不相等B .一定相等C .可能不等D .无法确定7.下列各句话中,表述错误的是( )。
A .把8块糖放进3个盒子里,总有一个盒子里至少放3块糖B .圆的面积和半径不成比例C .两个奇数的和一定是合数D .2017年第一季度有90天8.曹冲称象的故事:聪明的曹冲先把大象赶上船,看船被水淹到什么位置,然后刻上记号,把大象赶上岸,再往船里装石头,当船被水淹没到记号的位置时,就停止装石头,最后把船上的石头称一称,石头共重7.5吨,大象就重7.5吨。
曹冲称象运用了的的数学策略是( )。
A .列举B .假设C .画图D .转化9.下列说法中,正确的有( )个。
①一个正方体铁块锻造成长方体铁块后,体积不变。
②一个数除以真分数,商一定小于这个数。
③如果大圆与小圆的半径比是2∶1,那么大圆与小圆的面积比是4∶1。
吕梁育星中学2018年初一摸底测试题(卷)数 学(60分钟,总分100分)卷首语:天高任鸟飞,海阔凭鱼跃!带着你的自信和智慧,走进这份试卷,相信你是最棒的!一、我会填(30分)1. 一个正方体的棱长扩大2倍,它的表面积扩大( )倍,体积扩大( )倍。
2. 口袋里有8个红球,5个蓝球,1个黑球。
摸到( )球的可能性最大,摸到( )球的可能性最小,不可能摸到( )球。
3.小数2.13的计数单位是( )它有( )个这样的计数单位。
4.75kg 表示把( )平均分成( )份,取其中的( )份;也可以表示把( )平均分成( )份,取其中的( )份。
5.()=3( )()===÷4075.060( )% 6.把一根5米长的木棒锯成同样的6小段,每小段占全长的( ),每段长( )。
如果每锯一次需1分钟,共需要( )分钟。
7.433时=( )时( )分 6千克80克=( )千克 8.10厘米:5分米化简比是( : ),比值是( )9.甲数与乙数的比是2:5,甲数是乙数的( / )、乙数占甲乙总和的( / ) 、甲数比乙数少( )%。
10.a 和b 是互质数,a 和b 的最大公因数是( )最小公倍数是( )。
二、祝你选择成功(12分)1.把3米长的绳子平均分成5段,每段占全长的( )。
A.52 B.51 C.53 2.三角形的面积一定时,它的底和高成 ( )A.反比例B.正比例C.不成比例3.周长相等的正方形、圆、长方形,其中( )的面积最大。
A.正方形B.圆C.长方形4.要反映某地区的气温变化情况,选用( )统计图比较合适。
A.扇形统计图B.条形统计图C.折线统计图5.下列式子中属于方程的是( )A.2X+7B.2X+5>8C.8+3=3+8 D .0.5X=126.2008年奥运会在北京举行,那年的第一季度有( )天。
A.89B.90C.91D.92三、计算:(20分)1.直接写得数(4分)7887⨯ = 31512⨯= 5×3÷5×3= 483÷= 2.5:8.5= 24×5= 30×20%= 2.5×0.8=2.脱式计算(能简算的要简算)(12分)3.712771125÷+⨯ 48÷(32×83+4)6×(18-2.4+3.6) 48.8-(3.8+16.2)÷0.54.解方程(4分)8.5+65%X=15 18:3X=5:10四、分别画出从正面、上面、左面看到的立体图形的形状。
小升初数学综合模拟试卷49一、填空题:1.1997+1996-1995—1994+1993+1992—1991—1990+…+9+8—7—6+5+4—3—2+1=______.3.在图中的七个圆圈内各填一个数,要求每一条直线上的三个数中,当中的数是两边两个数的平均数,现在已经填好两个数,那么,x=______4.把1、2、3、4、5填入下面算式的方格内,使得运算结果最大:□+□-□×□÷□那么这个最大结果是_______.5.设上题答数为a,a的个位数字为b,2×b的个位数字为c.如图,积的比是______.6.要把A、B、C、D四本书放到书架上,但是,A不能放在第一层,B不能放在第二层,C不能放在第三层,D不能放在第四层,那么,不同的放法共有______种.7.从一张长2109毫米,宽627毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形,按照上面的过程,不断地重复,最后剪得的正方形的边长是______毫米.8.龟兔赛跑,全程5.4千米.兔子每小时跑25千米,乌龟每小时跑4千米,乌龟不停地跑,但兔子却边跑边玩,它先跑1分,然后玩15分,又跑2分,玩15分.再跑3分,玩15分,……,那么先到达终点的比后到达终点的快______分.9.从1,2,3,4,5中选出四个数,填入图中的方格内,使得右边的数比左边的数大,下面的数比上面的数大,那么,共有______种填法.比女生少人.二、解答题:1.小明从甲地到乙地,去时每小时走5千米,回来时每小时走7千米,来回共用4小时,小明去时用了多长时间?2.有一个长方体,它的正面和上面的面积之和是119,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?3.在400米环形跑道上,A、B两点相距100米(如图),甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么,甲追上乙需要多少秒?4.五年级三班有26个男生,某次考试全班有30人超过85分,那么女生中超过85分的比男生中未超过85分的多几人?答案,仅供参考。
2024年9月山西省吕梁市小升初分班数学思维应用题模拟试卷一含答案解析学校:________ 姓名:________ 考号:________ 得分:________一、应用题(精选120题,每题1分。
一、审题:在开始解答前,应仔细阅读题目,理解题目意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用正楷,尽量避免连笔,字迹稍大,并注意排版,确保卷面整洁;四、π一律取值3.14。
)1.机器厂计划13天生产一批零件.改革开放后,由于工人努力改进技术,每天比原计划多生产35个,8天就完成任务.这批零件原计划每天生产多少个.2.在抗洪救灾“献爱心”活动中,五年级学生捐款312元,比六年级少捐1/7,六年级学生捐款多少元?(列方程解)3.甲、乙两辆汽车同时从相距225千米的两地相对开出,经过2.5小时相遇,甲车每小时行48千米,乙车每小时行多少千米?4.一件商品以进价百分之二十的利润售卖,再打八折,亏36元,请问原价多少元?5.一辆客车和一辆货车同时从同一地点反向而行,4小时后相距400千米.已知客车每小时行驶58千米,货车每小时行驶多少千米?6.甲乙两个仓库存粮吨数的比为4:3,从甲仓库取出45吨运往乙仓库后,甲乙两仓库存粮吨数的比是7:9,那么原来两仓库各存粮多少吨?7.小华看一本100页的小说,第一天看全书的1/5,第二天看了全书的1/4,第三天应从多少页看起.8.一个圆柱形玻璃容器的底面直径是8厘米,容器内盛有一定量的水,水面高18 厘米.把一块完全浸没在水中的圆锥形铁块取出后,量的这时的水面高16厘米.已知铁块的底面直径是6厘米,铁块的高是多少厘米?9.一辆客车和一辆货车同时从甲地到乙地,已知客车的速度是每小时87千米,货车的速度是每小时73千米,9小时后两车相距多少千米?10.林老师带领44个学生去公园春游,他们准备乘船过河,公园划船处提供了4条船,同学们建议每条船都乘坐偶数个人,同学们的建议可能实现吗?11.做一个无盖的正方体玻璃鱼缸,棱长4分米,制作这个鱼缸至少需要用多少平方分米的玻璃?12.一桶油连桶共重12.65千克,用去一半后,连桶还重6.85千克,桶重多少千克?13.甲、乙、丙三人去存款,已知三人平均存款2000元,甲与乙存款的比是3:2,丙的存款数比甲少400元,三人各存多少元?14.一个三角形和一个平行四边形的面积相等,高也相等,已知平行四边形的底是9分米,三角形的底是多少分米?15.妈妈在银行存入40000元的教育储蓄,存期两年,年利率2.75%,到期后共可取多少元钱?16.仓库里共有货物17吨,第一次运走了7.56吨,第二次运走3.44吨,还剩多少吨没有运走?17.要制作一批竹制工艺品共420件,师徒两人同时开始制作.师傅每时能做24件,徒弟每时比师傅少做6件,几时后能完成这项任务?18.生产一批零件,不合格产品数占合格产品数的2/23,零件的合格率是多少?19.一块三角形土地,底是390米,高是280米.这块土地的面积是多少公顷.20.甲、乙、丙三人在长2790米的环形路上的同一地点同时出发,甲、乙同向,丙与甲、乙背向而走,甲每分钟走80米,乙每分钟走70米,丙在距离乙180米处遇见甲.丙每分钟走多少米.21.一辆汽车3小时可行驶255千米.照这样计算,这辆汽车从甲地出发,经过11小时能到达相距900千米的乙地吗?22.同学们在一块空地上种花,种了7行,每行种114株,大约种了多少株?23.供电局修一段线路,平均每天修600米,要18天完成.如果工作效率提高20%,几天可以修完?24.某厂甲车间有工人120人,乙车间有工人96人,甲车间人数的百分之几调入乙车间后,两车间人数相等?25.服装店年终搞促销活动,原来每条裤子160元,现在买3条送1条,一次买3条,每条比原来便宜多少钱?26.甲、乙两车上午9:30从相距660km的两城同时相向开出.甲车每小时行58km,乙车每小时行62km,两车在何时相遇?27.胜利路小学开展捐款活动,其中五年级捐款576元,比六年级少捐1/7,五、六年级一共捐款多少元?28.一本《福尔摩斯探案集》共335页。
吕梁市初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)二元一次方程组的解为()A.B.C.D.【答案】B【考点】解二元一次方程组【解析】【解答】解:①+②得:3x=6,解得:x=2,把x=2代入②得:2﹣y=3,解得:y=﹣1,即方程组的解是,故答案为:B.【分析】由题意将两个方程左右两边分别相加可求得x的值,再将求得的x的值代入其中一个方程可求得y 的值,则方程组的解可得。
2.(2分)如果(a+1)x<a+1的解集是x>1,那么a的取值范围是()A. a<0B. a<﹣1C. a>﹣1D. a是任意有理数【答案】B【考点】不等式及其性质【解析】【解答】解:如果(a+1)x<a+1的解集是x>1,得a+1<0,a<-1.故答案为:B.【分析】由(a+1)x<a+1的解集是x>1,可知,将未知数的系数化为1时,不等号的方向改变,因此a+1<0,求解即可。
3.(2分)有下列说法:①任何实数都可以用分数表示;②实数与数轴上的点一一对应;③在1和3之间的无理数有且只有,,,这4个;④是分数,它是有理数.其中正确的个数是()A.1B.2C.3D.4【答案】A【考点】实数及其分类,无理数的认识【解析】【解答】解;①实数分为有理数和无理数两类,由于分数属于有理数,故不是任何实数都可以用分数表示,说法①错误;②根据实数与数轴的关系,可知实数与数轴上的点一一对应,故说法②正确;③在1和3之间的无理数有无数个,故说法③错误;④无理数就是无限不循环小数,它不仅包括开方开不尽的数,以及像π、0.1010010001…,等有这样规律的数也是无理数,∴不是分数,是无理数,故说法④错误;故答案为:A.【分析】实数分为有理数和无理数两类,任何有理数都可以用分数表示,无理数不能用分数表示;有理数可以用数轴上的点来表示,无理数也可以用数轴上的点来表示,数轴上的点所表示的数不是有理数就是无理数,故实数与数轴上的点一一对应;无理数就是无限不循环的小数,它不仅包括开方开不尽的数,以及像π、0.1010010001…,等有这样规律的数也是无理数,故在1和3之间的无理数有无数个,也是无理数,根据定义性质即可一一判断得出答案。
2023年9月山西省吕梁市小升初分班数学思维应用题模拟试卷一含答案解析学校:________ 姓名:________ 考号:________ 得分:________一、应用题(精选120题,每题1分。
一、审题:在开始解答前,应仔细阅读题目,理解题目意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用正楷,尽量避免连笔,字迹稍大,并注意排版,确保卷面整洁;四、π一律取值3.14。
)1.甲、乙两车同时从A地出发向B地行进,当甲车到达B地时,乙车离B地还有15千米.如果从甲车行驶至AB两地中点开始,甲、乙两车的车速都增加一倍,那么当甲车到达B地时,乙车距离B地多少千米?2.一批货物有31吨,一辆卡车每次运的比5吨多一些,比6吨少一些.运完这批货物最多要多少次.3.两辆汽车同时从两地相对开出,甲车每小时行54千米,乙车每小时行46千米,全程800米,几小时后两车相距200米?4.甲数是720,乙数是甲数的1/6,丙数是乙数的4/3倍,丙数是多少?5.某工厂共有有177名工人,分成三个车间,已知第一车间和第二车间人数的比是3:4,第二车间和第三车间人数的比是5:6,这三个车间各有多少人?6.植树节到了,某市举行大型植树活动,共有1430人参加植树,要把人数分成相等的若干队,且每队人数在100至200之间,则有分法多少种?7.食堂有面粉120吨,大米是面粉的3倍还多15吨,求食堂有大米面粉多少吨?8.一张圆桌的半径是40厘米,在它的周围加上一圈铁砸,至少需要铁砸多少米?9.商店以每支11元的价格购进一批钢笔,售价为15元,卖到还剩20%时,除去成本外,还获利64元.则这批钢笔共有多少支?10.甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为每小时60千米和48千米.有一辆迎面开来的卡车分别在他们出发后6小时、7小时、8小时先后与甲、乙、丙三辆车相遇.求丙车的速度是多少千米/小时.11.做一个没有盖的长方体玻璃缸,长60厘米,宽50厘米,高40厘米,一共需要玻璃多少平方厘米?合多少平方米?12.一个长方形的面积是210平方厘米,它的长和宽的厘米数是两个连续的自然数,这个长方形的周长是多少厘米.13.一列火车从甲地行驶305千米到乙地,用了4.5小时,平均每小时行驶多少千米?(结果保留一位小数.)14.6名工人8天做了192个零件,平均每人每天做多少个零件?15.王老师要批改48篇作文,已经批改了12篇.如果每小时批改9篇,还要几个小时能够批改完?16.五年级同学栽树1200棵,比六年级同学栽树棵数的80%还少160棵,六年级同学栽树多少棵?17.从甲地到乙有137.6千米,一辆汽车以每小时64.5千米速度,行了1.5小时,还剩多少千米?18.一款儿童套装,红太阳服装店售价170元,网上售价136元,网上售价便宜百分之几?19.筑路队修一条公路,第一天修了全长的4/7,第二天又修了余下的3/5,这时还有42千米没有修,这段公路全长多少千米?20.商店里有红气球308个,黄气球比红气球多95个,蓝气球比黄气球多74个.(1)商店里有多少个黄气球?(2)商店里有多少个蓝气球?(3)红气球比蓝气球少多少个?21.神秘王国有两头怪和三头怪共20只,一共有43个头.那么么你知道有多少个三头怪.22.甲数减少了它的20%后是120,这个数是多少?23.甲乙两地相距189千米,一列快车从甲地开往乙地每小时行72千米,一列慢车从乙地开往甲地每小时行54千米.若两车同时出发,几小时后两车相遇?(列方程并求解)24.李老师给舞蹈队的22名学生每人买一套同样的舞蹈服,每套42元。
小升初数学试卷57一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。
4、明年二月有________天.5、丽丽比亮亮多a张画片,丽丽给亮亮________张,两人画片张数相等.6、一个直角三角形的两个锐角的度数比是3:2.这两个锐角分别是________度和________度.7、红、黄、蓝三种颜色的球各8个,放到一个袋子里,至少摸________个球,才可以保证有两个颜色相同的球,若任意摸一个球,摸到黄色球的可能性是________.8、一个长为6cm,宽为4cm的长方形,以长为轴旋转一周,将会得到一个底面直径是________cm,高________cm的圆柱体.9、一个面积是________平方米的半圆的周长是15.42米.10、保定市某天中午的温度是零上5℃;记作+5℃;到了晚上气温比中午下降了7℃,这天晚上的气温记作________.11、假设你的计算器的一个键“4”坏了,你怎样计算49×76,用算式表示计算过程________.12、琳琳2014年把500元存入银行,年利率2.25%,2016年到期时可以从银行取出________元.13、甲数=2×2×2×3,乙数=2×2×3,这两个数的最小公倍数是________.14、小明每天上午8时到校,11时30分放学,下午2时到校,4时30分放学,她在校的时间占1天的________.15、如图,正方形的面积是20平方厘米,则圆的面积是________平方厘米.二、判断正误.16、两条永不相交的直线叫做平行线.________(判断对错)17、互为倒数的两个分数中,如果其中一个是真分数,那么另一个一定是假分数.________(判断对错)18、两个分数中,分数值大的那个分数单位也大.()19、平行四边形都可以画出对称轴________.20、一个不为0的数除以真分数,所得的商大于被除数.________三、认真选择.(将正确答案的序号填在括号内)21、两个数是互质数,那么它们的最大公因数是()A、较大数B、较小数C、1D、它们的乘积22、3.1与3. 相比()A、3.1 大B、3. 大C、一样大23、男生与女生的人数比是6:5,男生比女生多()A、B、C、24、给分数的分母乘以3,要使原分数大小不变,分子应加上()A、3B、7C、14D、2125、车轮的直径一定,所行驶的路程和车轮的转数()A、成正比例B、反比例C、不成比例四、仔细计算.(5+12+12+4=33分)26、直接写出得数=________ 7÷0.01=________﹣=________ 27、脱式计算(能简算的要简算)÷9+ ×12.69﹣4.12﹣5.880.6×3.3+ ×7.7﹣0.6(+ )×24× .28、解方程(比例)2x+3×0.9=24.73:(x+1)=4:7x+ x= .29、列式计算(1)一个数的是60的,求这个数?(2)乘的倒数,所得的积再减去3个,差是多少?五、操作题:(第2题的第(3)小题2分,其余的每题1分,共6分)30、利用﹣= ,﹣= ,﹣= ,﹣= ,这些规律,计算:1﹣+ ++ + =________.31、按要求答题:(1)三角形的一个顶点A的位置在________ .(2)三角形的另一个顶点B在顶点A正东方3厘米处,在图中标出B点的位置。
小升初数学试卷54一、用心思考,正确填写.(每空1分,共23分)1、气温从﹣3℃上升到10℃,温度上升了________℃.2、九亿九千零五万四千写作________,把这个数改写成用“万”作单位是________,省略亿位后面的尾数约是________.3、21:________=________÷20=________=________%=七折.4、3 的分数单位是________,去掉________个这样的单位后等于最小的质数.5、3时15分=________时480平方米=________公顷.6、一列动车在高速铁路上行驶的时间和路程如图.看图填写如表:①这列动车行驶的时间和路程成________比例②照这样的速度,行1800千米需要________小时.7、已知数a和15是互质数,它们的最大公约数是________,最小公倍数是________.8、用小棒按照如下的方式摆图形,摆一个六边形需要6根小棒,摆4个需要________根小棒,摆n个需要________根小棒.9、如图,把三角形ABC的边BC延长到点D.已知∠2=41°,∠4=79°,那么∠1=________°.10、客车和货车分别从A、B两地同时相对开出,当客车行了全程的时,货车行了48千米;当客车到达B地时,货车行了全程的.A、B两地相距________千米.二、选择题(共5小题,每小题1分,满分5分)11、一袋上好佳薯片的外包装上写着50g±2g,这袋薯片最多或最少重()g.A、50,48B、51,49C、52,48D、49,5212、两个大小不同的圆.如果这两个圆的半径都增加3厘米,那么,它们周长增加的部分相比()A、大圆增加的多B、小圆增加的多C、增加的同样多D、无法比较13、一个圆锥和一个圆柱体积和底面积都相等,圆锥的高是9cm,圆柱的高是()A、3cmB、9cmC、18cmD、27cm14、下面4个算式中,结果一定等于的是()(其中□=2△,△≠0)A、(□+□)÷△B、□×(△﹣△)C、△÷(□+□)D、□×(△+△)15、下列说法正确的是()A、一条射线长30米B、8个球队淘汰赛,至少要经过7场比赛才能赛出冠军C、一个三角形三条边分别为3cm、9cm、5cmD、所有的偶数都是合数三、一丝不苟,巧妙计算.(共26分)16、直接写出得数.﹣+﹣+ =________17、计算下面各题,能简便计算的要用简便方法计算.45×(+ ﹣)1 ÷(+2.5× )(3.75+4+2.35)×9.9[ ﹣(﹣)]÷ .18、求未知数x.x﹣=x+ x=x:2.1=0.4:0.9.四、解答题(共1小题,满分16分)19、动手操作,实践应用.(1)用数对表示A、B、C的位置,A________,B________,C________.(2)以AB为直径,画一个经过C点的半圆.(3)把半圆绕B点按逆时针旋转90°,画出旋转后的图形.(4)画出图中平行四边形向右平移5格后的图形.(5)画出图中小旗按2:1放大后的图形.(6)小明家在学校南偏西________°方向________米处.(7)书店在学校的北偏东30°方向300米处,请在右下图中表示出书店的位置.(8)兴国路过P点并和淮海路平行.请在图中画出兴国路所在的直线.五、活用知识,解决问题.(每小题6分,共30分)20、某品牌的运动装搞促销活动,在中心商城按“满100元减40元”的方式销售,在丹尼斯商城打六折销售.妈妈准备给小美买一套标价320元的这种品牌运动装.在中心商城、丹尼斯商城两个商城买,各应付多少钱?你认为在哪个商城买合算?21、一列快车和一列慢车同时分别从相距630千米的两地相对开出,4.5小时相遇,快车每小时行78千米,慢车每小时行多少千米?22、一个圆柱形铁皮水桶,底面直径4分米,高5分米.(1)做这个水桶至少需要多少平方分米的铁皮?(2)这个水桶里最多能盛水多少升?(铁皮的厚度忽略不计)23、绿化队用三周完成了一条路的绿化任务.第一周绿化了这条路的20%,第二周绿化了400米,第二周与第三周绿化的长度比是5:6.这条路长多少米?24、某校为研究学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图),请你根据图中提供的信息解答下列问题:①这次调研,一共调查了________ 人.②有阅读兴趣的学生占被调查学生总数________ %.③有“其它”爱好的学生共________ 人?④补全折线统计图________ .答案解析部分一、<b >用心思考,正确填写.(每空1</b><b>分,共23</b><b>分)</b>1、【答案】13【考点】正、负数的运算【解析】【解答】解:根据题意得:10﹣(﹣3)=13(℃),故答案为:13℃.【分析】根据题意可得:现在的温度﹣原来的气温=上升的气温.2、【答案】990054000;99005.4万;10亿【考点】整数的读法和写法,整数的改写和近似数【解析】【解答】解:九亿九千零五万四千写作:9 9005 4000;9 9005 4000=9 9005.4万;9 9005 4000≈10亿.故答案为:9 9005 4000,10亿.【分析】根据整数的写法,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0,即可写出此数;改写成用“万”作单位的数,就是在万位数的右下角点上小数点,然后把小数末尾的0去掉,再在数的后面写上“万”字;省略“亿”后面的尾数就是四舍五入到亿位,就是把亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字.3、【答案】30①14②③70【考点】比与分数、除法的关系【解析】【解答】解:21:30=14÷20==70%=七折.故答案为:30,14,,70.【分析】根据折扣的意义七折就是70%;把70%化成分数并化简是;根据比与分数的关系=7:10,再根据比的基本性质比的前、后项都乘3就是21:30;根据分数与除法的有关系=7÷10,再根据商不变的性质被除数、除数都乘2就是14÷20.4、【答案】;7【考点】分数的意义、读写及分类,合数与质数【解析】【解答】解:的分数单位是;﹣2=,里面含有7个,即再去掉7个这样的单位后等于最小的质数.故答案为:、7.【分析】将单位“1”平均分成若干份,表示其中这样一份的数为分数单位.由此可知,的分数单位是;最小的质数是2,﹣2=,里面含有7个,即再去掉7个这样的单位后等于最小的质数.5、【答案】3.25;0.048【考点】时、分、秒及其关系、单位换算与计算,面积单位间的进率及单位换算【解析】【解答】解:3时15分=3.25时480平方米=0.048公顷;故答案为:3.25,0.048.【分析】把3小时15分换算为小时,先把15分换算为小时数,用15除以进率60,然后加上3;把480平方米换算为公顷,用480除以进率10000.6、【答案】正;4【考点】正比例和反比例的意义【解析】【解答】解:(1)因为图中是一条直线,所以这列动车行驶的时间和路程成正比例.(2)设这列动车行驶了1800千米所用的时间是x小时,由题意得:1800:x=200:1200x=1800×1200x=1800x=9答:这列动车行驶了1800千米所用的时间是9小时.就是它们的比值相等;然后根据图直接填表即可.(2)进一步观察图象,可知这列动车行驶了1小时的路程是200千米,据此设行驶了800千米所用的时间是x小时,列出比例式解答即可.【分析】(1)根据图象是一条过原点的直线,可知这列动车行驶的时间和路程成正比例,也7、【答案】1;15a【考点】求几个数的最大公因数的方法,求几个数的最小公倍数的方法【解析】【解答】解:数a和15是互质数,它们的最大公约数是1,最小公倍数是15a;故答案为:1,15a.【分析】根据互质数的意义,互质数的最大公因数是1,最小公倍数是它们的乘积,据此解答.8、【答案】21;5n+1【考点】数与形结合的规律【解析】【解答】解:摆一个六边形需要6根小棒,以后每增加一个六边形,就增加5根小棒,所以摆成n个六边形就需要5n+1根小棒;摆4个需要5×4+1=21(根)即摆4个需要21根小棒,摆n个需要5n+1根小棒.故答案为:21;5n+1.【分析】摆一个六边形需要6根小棒,以后每增加一个六边形,就增加5根小棒,所以摆成n个六边形就需要:6+5(n﹣1)=5n+1根小棒,据此即可解答.9、【答案】38【考点】三角形的内角和【解析】【解答】解:∠3和∠4拼成的是平角∠3═180°﹣∠4=180°﹣79°=101°∠1=180°﹣(∠2+∠3)=180°﹣(41°+101°)=180°﹣142°=38°答:∠1等于38°.故答案为:38°.【分析】根据平角的含义可知,等于180°的角是平角,所以∠3和∠4组成平角;用180°减去∠4的度数,即可求出∠3的度数,再根据三角形的内角和等于180°,用180°减去∠3和∠2的度数和,即可求出∠1的度数,列式解答即可.10、【答案】160【考点】分数四则复合应用题【解析】【解答】解:[(1﹣)÷×48+48]÷=[×48+48]÷=112×=160(千米)答:A、B两地相距160千米.故答案为:160.【分析】当客车行完全程时,客车又行了全程的1﹣=,这时,货车应该又行了÷×48=64千米,货车一共行了全程的,实际行了64+48=112千米,进而求出A、B两地相距:112÷=160千米;由此解答即可.二、<b >选择题(共5</b><b >小题,每小题1</b><b>分,满分5</b><b>分)</b>11、【答案】C【考点】负数的意义及其应用【解析】【解答】解:50克+2克表示比50克多2克,是52克,50克﹣2克表示比50克少2克,是48克.故选:C.【分析】正负数用来表示一组意义相反的数,50克+2克表示比50克多2克,是52克,50克﹣2克表示比50克少2克,是48克.12、【答案】C【考点】圆、圆环的周长【解析】【解答】解:圆的周长=2πr,半径增加3cm,则周长为:2π(r+3)=2πr+6π,所以,半径增加3cm,则它们的周长都是增加2π厘米,增加的一样多.所以它们的周长增加的一样多.故选:C.【分析】圆的周长=2πr,半径增加3cm后,周长为:2π(r+3)=2πr+6π,由此可得,半径增加3cm,则它们的周长就增加了6π厘米,由此即可选择.13、【答案】A【考点】圆柱的侧面积、表面积和体积【解析】【解答】解:设圆柱和圆锥的体积相等为V,底面积相等为S,则:圆柱的高为:;圆锥的高为:;所以圆柱的高与圆锥的高的比是::=1:3,因为圆锥的高是9厘米,所以圆柱的高为:9÷3=3(厘米).答:圆柱的高是3厘米.故选:A.【分析】设圆柱和圆锥的体积相等为V,底面积相等为S,由此利用圆柱和圆锥的体积公式推理得出它们的高的比,即可解答此类问题.14、【答案】C【考点】代换问题【解析】【解答】解:A,(□+□)÷△=(2△+2△)÷△,=4△÷△,=4;不符合要求.B,□×(△﹣△)=2△×(△﹣△),=2△×0,=0;不符合要求.C,△÷(□+□)=△÷(2△+2△),=△÷4△,=;符合要求.D,□×(△+△)=2△×2△=4△;不一定等于,不符合要求.故选:C.15、【答案】B【考点】奇数与偶数的初步认识,直线、线段和射线的认识,三角形的特性,握手问题【解析】【解答】解:A、射线不能计算长度,所以题干的说法是错误的;B、由于是淘汰赛比赛的场次最少,最后留下的冠军只有一个,所以需要淘汰另外7个队,所以至少赛7场,所以题干的说法是正确的;C、3+5<9,所以题干的说法是错误的;D、偶数是能被2整除的数,合数是除了1和它本身以外还有别的约数,2只有1和它本身两个约数,2是偶数但不是合数,所以题干的说法是错误的.故选:B.【分析】(1)射线只有一个端点,可以向一方无限延长,据此判断即可;(2)由于是淘汰赛比赛的场次最少,最后留下的冠军只有一个,所以需要淘汰另外7个队,所以至少赛7场;(3)根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可;(4)明确偶数和合数的定义,根据它们的定义即可解答.三、<b >一丝不苟,巧妙计算.(共26</b><b>分)</b>16、【答案】490;99;995;0.8;7;;100;【考点】整数四则混合运算,分数的四则混合运算【解析】【分析】(1)按照从左到右的顺序计算;(2)根据除法的性质简算;(3)根据凑整法简算;(4)根据小数除法的计算方法求解;(5)根据乘法分配律简算;(6)根据加法交换律简算;(7)按照从左到右的顺序计算;(8)先同时计算两个除法,再算减法.17、【答案】解:①45×(+ ﹣)=45× +45× ﹣45×=35+12﹣27=47﹣27=20;②)1 ÷(+2.5× )=1 ÷(+2)=1 ÷2= ;③(3.75+4+2.35)×9.9=(7.75+2.35)×9.9=10.1×9.9=(10+0.1)×9.9=10×9.9+0.1×9.9=99+0.99=99.99;④[ ﹣(﹣)]÷=[ ﹣+ ]÷=[ + ﹣]÷=[1﹣]÷= ÷= .【考点】运算定律与简便运算,分数的四则混合运算【解析】【分析】(1)根据乘法分配律进行简算;(2)先算小括号里面的乘法,再算小括号里面的加法,最后算除法;(3)小括号里面按照从左向右的顺序计算,然后再根据乘法分配律进行简算;(4)中括号里面根据减法的性质进行简算,最后算除法.18、【答案】解:① x﹣=x﹣+ = +x=x×4= ×4x=2② x+ x=x=x× = ×x=③x:2.1=0.4:0.90.9x=2.1×0.40.9x=0.840.9x÷0.9=0.84÷0.9x=【考点】方程的解和解方程【解析】【分析】(1)根据等式的性质,方程两边同时加上,再同时乘4求解;(2)先化简方程得x=,再根据等式的性质,在方程两边同时乘求解;(3)先根据比例的基本性质,把原式转化为0.9x=2.1×0.4,然后根据等式的性质,在方程两边同时除以0.9求解.四、<b >解答题(共1</b><b >小题,满分16</b><b>分)</b>19、【答案】(1)(2,6);(6,6);(4,8)(2)以AB为直径,画一个经过C点的半圆(下图红色部分)(3)把半圆绕B点按逆时针旋转90°,画出旋转后的图形(下图绿色部分)(4)画出图中平行四边形向右平移5格后的图形(下图黄色部分)(5)画出图中小旗按2:1放大后的图形(下图蓝色部分)(6)45;400(7)300÷200=1.5(厘米)即书店在学校的北偏东30°方向1.5厘米处(画图如下)(8)兴国路过P点并和淮海路平行.在图中画出兴国路所在的直线(下图)【考点】作平移后的图形,作旋转一定角度后的图形,画圆,图形的放大与缩小,数对与位置,在平面图上标出物体的位置,根据方向和距离确定物体的位置【解析】【解答】解:(1)用数对表示A、B、C的位置,A(2,6),B(6,6),C(4,8)(2)200×2=400(米)答:小明家在学校南偏西45°方向400米处【分析】(1)根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,即可用数对表示A、B、C各点的位置.(2)以AB的中心为圆心所画的半圆就经过点C.(3)根据旋转的特征,半圆绕点B逆时针旋转90°后,点B的位置不动,其余各部分均绕此点按相同方向旋转相同的度数,即可画出旋转后的图形.(4)根据平移的特征,把平行四边形的四个顶点分别向右平移5格,首尾连结即可得到平移后的图形.(5)根据图形放大与缩小的意义,把图中小旗子的各对应线段扩大到原来的2倍,就是按2:1放大后的图形.(6)根据地图上的方向,上北下南,左西右东,以学校为观测点即可确定小明的方向,再根据图中的所标注的线段比例尺及小明定与学校的图上距离,即可求出学校与小家的实际距离.(7)以学校为观测点即可确定书店的方向,根据书店与学校的实际距离及图中的线段比例尺即可求出图上距离,进而画出书店的位置.(8)根据过直线外一点作已知直线平行线的方法,即可画出兴国路.五、<b >活用知识,解决问题.(每小题6</b><b>分,共30</b><b>分)</b>20、【答案】解:中心商城:320﹣40×3=320﹣120=200(元)丹尼斯商城:320×60%=198(元)200元>198元.所以丹尼斯商城比较合算.答:中心商城需要200元,丹尼斯商城需要198元;到丹尼斯商城买比较合算.【考点】最优化问题【解析】【分析】根据中心商城的优惠,已经满300元,可以减去40×3=120元;丹尼斯商城打六折,就是售价是原价的60%,用原价乘60%即可;再比较大小即可解答.21、【答案】解:630÷4.5﹣78=140﹣78=62(千米)答:慢车每小时行62千米.【考点】简单的行程问题【解析】【分析】先依据速度=路程÷时间,求出两车的速度和,再依据慢车速度=两车速度和﹣快车速度即可解答.22、【答案】(1)解:3.14×4×5+3.14×(4÷2)2=62.8+3.14×4=62.8+12.56=75.36(平方分米)答:做这个水桶至少需要75.36平方分米的铁皮(2)解:3.14×(4÷2)2×5=3.14×4×5=62.8(立方分米)=62.8(升)答:这个水桶里最多能盛水62.8升【考点】关于圆柱的应用题【解析】【分析】(1)首先分清一个没有盖的圆柱形铁皮水桶,需要计算几个面的面积:侧面面积与底面圆的面积,由圆柱体侧面积和圆的面积计算方法列式解答即可.(2)求这个水桶最多能盛水多少升是求它的容积,根据V=sh进行计算即可.23、【答案】解:(400×+400)÷(1﹣20%)=(480+400)÷80%=880÷80%=1100(米)答:这段路全长为1100米【考点】比的应用【解析】【分析】第二周与第三周绿化的长度比是5:6,则第三周修了400×=480米,第二周与第三周共修了400+480=880米,由于后两周修的占全长的1﹣20%=80%.所以这段路全长为880÷80%=1100(米).24、【答案】200;30;20;【考点】扇形统计图【解析】【解答】解:①40÷20%=200(人)答:这次调研,一共调查了200人.②60÷200=30%答:有阅读兴趣的学生占被调查学生总数的30%.③1﹣20%﹣40%﹣30%=10%200×10%=20(人)答:有“其它”爱好的学生共20人.④200×40%=80(人)爱好娱乐的80人,“其它”爱好的20人,补全折线统计图如下:【分析】①由折线统计图可以看出爱好运动的人数是40人,由扇形统计图看出爱好运动的人数占抽样人数的20%,根据百分数除法的意义,用爱好运动的数除以所占的百分率就是被抽样调查的人数.②用有阅读兴趣的学生数(从折线统计图可以看出)除以被调查总人数(①已求出)).③把被调查的总人数看作单位“1”,用1减去有阅读兴趣、运动兴趣、娱乐兴趣人数所的百分率就是其它兴趣学生人数所占的百分率;根据百分数乘法的意义,用总人数乘其它爱好人数所占的百分率就是有“其它”爱好的学生人数.④根据百分数乘法的意义,用总人数乘爱好娱乐人数所占的百分率求出爱好娱乐人数,即可补全折线统计图.。