高中数学:《空间几何体》
- 格式:ppt
- 大小:872.00 KB
- 文档页数:25
可编辑修改精选全文完整版第1讲空间几何体一、空间几何体1、空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分。
如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。
2、多面体和旋转体多面体:由若干个平面多边形围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱及棱的公共点叫做多面体的顶点。
旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转几何体。
这条定直线叫做旋转体的轴。
多面体旋转体圆台圆柱-圆锥圆柱+圆锥圆台+大圆锥-小圆锥二、柱、锥、台、球的结构特征1.棱柱定义图形表示分类性质有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。
用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDEF-A1B1C1D1E1F1。
棱柱的分类一(底面):棱柱的底面可以是三角形、四边形、五边形、……我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……棱柱的分类二(根据侧棱及底面的关系):斜棱柱: 侧棱不垂直于底面的棱柱.直棱柱: 侧棱垂直于底面的棱柱叫做直棱柱(1)上下底面平行,且是全等的多边形。
(2)侧棱相等且相互平行。
(3) 侧面是平行四边形。
正棱柱: 底面是正多边形的直棱柱叫做正棱柱三棱柱四棱柱五棱柱斜棱柱直棱柱正棱柱2.棱锥定义图形表示性质分类有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
用顶点及底面各顶点字母表示棱锥,如:棱锥S-ABC侧面是三角形,底面是多边形。
按底面多边形的边数分类可分为三棱锥、四棱锥、五棱锥等等,其中三棱锥又叫四面体。
特殊的棱锥-正棱锥定义:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心三棱锥四棱锥五棱锥直棱锥2.棱台定义图形表示分类性质用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台。
高中数学空间几何体知识点总结2000字(5篇)关于高中数学空间几何体知识点总结,精选6篇范文,字数为2000字。
空间的认识空间的认识空间认识:在空间认识时,我们要注意以下两点:。
高中数学空间几何体知识点总结(范文):1一、空间的认识1.空间认识:在空间认识时,我们要注意以下两点:一是空间概念二是空间认识时,我们要注意以下两点:一是空间认识时,我们要注意以下两点:2.空间认识时,我们要注意以下两点:a)空间认识时。
b)空间认识时,我们要注意以下两点:3)空间认识时,我们要注意以下两点:4)空间认识时,我们要注意以下两点:a)空间认识时,我们要注意以下两点:一是空间认识时,我们要注意以下两点:5)空间认识时,我们要注意以下两点:二是空间认识时,我们要注意以下两点:二是空间认识时,我们要注意以下两点:7)空间认识时,我们要注意以下两点:8)空间认识时,我们要注意以下两点:9)空间认识时,我们要注意以下两点:10.空间认识时,我们要注意以下两点:11)空间认识时,我们要注意以下两点:a、空间认识时,我们要注意以下两点:12)空间认识时,我们要注意以下两点:13)空间认识时,我们要注意以下两点:14)空间认识时,我们要注意以下两点:15)空间认识时,我们要注意以下两点:a、空间认识时,我们要注意以下两点:16)空间认识时,我们要注意以下两点:a、空间认识时,我们要注意以下两点:17)空间认识时,我们要注意以下两点:a)空间认识时,我们要注意以下两点:a、空间认识时,我们要注意以下两点:18)空间认识时,我们要注意以下两点:19.空间认识时,我们要注意以下两点:a、空间认识时,我们要注意以下两点:a)空间认识时,我们要注意以下两点:a、空间认识时,我们要注意以下两点:a)空间认识时,我们要注意以下两点:21)空间认识时,我们要注意以下两点:a)空间认识时,我们要注意以下两点:22)空间认识时,我们要注意以下两点:a)空间认识时,我们要注意以下两点:a、空间认识时,我们要注意以下两点:a、空间认识时,我们要注意以下两点:a)空间认识时,我们要注意以下两点:a、空间认识时,我们要注意以下两点:23)空间认识时,我们要注意以下两点:a)空间认识时,我们不要以下两点:b)空间认识时,我们要注意以下两点:a)空间认识时,我们要注意以下两点:a)空间认识时,我们要注意以下两点:a)空间认识时,我们要注意以下两点:a)空间认识时,我们要注意以下两点:a)空间认识时,我们要注意以下两点;b)空间认识时,我们要注意以下两点:a)空间认识时,我们要注意以下两点:a)空间认识时,我们应该注意以下两点:b)空间认识时,我们应该注意以下两点:a)空间认识时,我们应该注意以下两点:b)空间认识时,我们要注意以下两点:a)空间认识时,我们要注意以下两点:a)空闲时,我们应该注意以下两点:b)空闲时,我们应该注意以下两点:a)空闲时,我们应该注意以下两点:a)空闲时,我们应该注意以下两点;b)空闲时,我们应该注意以下两点:a)空闲时,我们应该注意以下两点:a)空闲时,我们应该注意以下两点:a)空闲时,我们应该注意以下两点:a)空闲时,我们应该注意以下两点:a)空闲时,我们应该注意以下两点:a)空闲时,我们应该注意以下两点:b)空闲时,我们应该注意以下两点:a)空闲时,我们应该注意以下两点:a)空闲时,我们应该注意以下两点:a)空闲时,我们应该注意以下两点:a)空闲时,我们应该注意以下两点:b)空闲时,我们应该注意以下两点:a)空闲时,我们应该注高中数学空间几何体知识点总结(范文):2 空间概念a、空间概念中的含义:(1)含义:2)含义:3)含义:4)含义:5)含义:6)含义:7)含义:8)含义:9)10.空间概念11)含义:12、空间概念中的含义:13)含义:空间与空间(含有时间、空间与空间与空间的关系) 21)含义:22)14、空间概念中的含义:23)含义:15、空间概念中的含义:24)含义:25)含义:26)含义:16)高中数学空间几何体知识点总结(范文):31、概念、方法的内涵概念是数学知识的核心之一,也是最容易被忽视的,它的内涵主要包括概念、方法和内容三方面。
空间几何体1、 多面体的定义:由几个多边形围成的封闭立体叫多面体。
2、 棱柱定义:两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体叫做棱柱。
棱柱的互相平行的两个面叫做棱柱的底面,其余各面叫做棱柱的侧面,相邻的两个侧面的公共边叫做棱柱的侧棱,两个底面间的距离叫做棱柱的高。
基本性质:侧面都是平行四边形;两个底面及平行于底面的截面都是全等的多边形;过不相邻的两条侧棱的截面是平行四边形。
棱柱的分类:侧棱与底面不垂直的的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱。
直棱柱侧面都是矩形;直棱柱侧棱与高相等;正棱柱的侧面都是全等的矩形。
底面是平行四边形的棱柱叫做平行六面体;底面是矩形的直棱柱是长方体。
祖暅原理:夹在两个平行平面间的两个几何体,如果被平行于这两个平面的任何平面所截得的两个截面的面积都相等,那么这两个几何体的体积相等。
侧面积和体积公式:S Cl =侧(C 为垂直于侧棱的直截面的周长,l 为侧棱长),V Sh =(S 为底面面积,h 为高)3、 棱锥(1) 定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
棱锥的这个多边形的面叫做底面,其余各个三角形的面叫做侧面。
相邻的两个侧面的公共边叫做棱锥的侧棱。
各个侧面的公共顶点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高。
(2) 基本性质:如果一个棱锥被平行于底面的一个平面所截,那么侧棱和高被这个平面分成比例线段;截面与底面都是相似多边形;截面面积与底面面积之比,等于顶点到截面与顶点到底面的距离平方之比。
4、 正棱锥(1) 定义:如果一个棱锥的底面是多边形,且顶点在诺面的射影是底面的中心,这个棱锥叫做正棱锥; (2) 基本性质:各侧棱相等,各侧面都是全等的等腰三角形;正棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;正棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。
高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=222r rl S ππ+=第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。
高中数学空间几何体知识点总结一、空间几何体的基本概念1、空间几何体的定义:在空间中,由一些平面和曲面所围成的封闭图形称为空间几何体。
2、空间几何体的分类:空间几何体可分为多面体和旋转体两大类。
多面体是由平面多边形围成的立体图形,而旋转体则是由平面图形绕其中一边旋转形成的。
二、空间几何体的表面积和体积1、空间几何体的表面积:表面积是指空间几何体的所有外露平面的面积之和。
对于一些规则的空间几何体,如长方体、圆柱体、球体等,表面积的计算公式相对简单。
对于不规则的空间几何体,一般需要通过拆分和组合的方法,将它们分解成简单的几何体来计算表面积。
2、空间几何体的体积:体积是指空间几何体所占空间的大小。
对于一些规则的空间几何体,如长方体、圆柱体、球体等,体积的计算公式相对简单。
对于不规则的空间几何体,一般需要通过拆分和组合的方法,将它们分解成简单的几何体来计算体积。
三、空间几何体的视图和直观图1、空间几何体的视图:视图是指从空间几何体的某一个方向看过去所得到的图形。
常见的视图包括主视图、俯视图、左视图等。
在求解空间几何体的体积或表面积时,通过视图可以帮助我们更好地理解空间几何体的形状和结构。
2、空间几何体的直观图:直观图是指用平行投影的方法将空间几何体投影到一个平面上所得到的图形。
直观图可以反映空间几何体的整体结构和相互关系,是求解空间几何问题的重要工具。
四、空间几何体的常见问题1、空间几何体的形状识别:在解决空间几何问题时,首先需要识别空间几何体的形状。
这可以通过观察空间几何体的特征、测量其边长和角度等方法来实现。
2、空间几何体的表面积和体积计算:表面积和体积是空间几何体的两个重要属性。
对于一些规则的空间几何体,其表面积和体积的计算公式相对简单。
对于不规则的空间几何体,需要采用拆分和组合的方法,将它们分解成简单的几何体来计算表面积和体积。
3、空间几何体的相交问题:当两个或多个空间几何体相交时,会产生交线或交面的问题。
空间几何体知识点总结高三空间几何体是高中数学中的重要组成部分,特别是在高三阶段,对于空间几何体的理解和运用能力是解决高考数学题目的关键。
本文将对空间几何体的主要知识点进行总结,帮助学生巩固基础,提高解题能力。
一、空间几何体的基本概念空间几何体是指在三维空间中所占有一定体积的图形。
根据构成方式和形状的不同,空间几何体可以分为多面体、旋转体和曲面等几大类。
多面体是由若干个平面多边形所围成的几何体,如正方体、长方体、棱锥、棱柱等。
旋转体则是由一个平面图形绕着某一条直线旋转所形成的几何体,如圆柱、圆锥和球体等。
曲面则是由参数方程或隐函数方程所定义的几何体,如圆环面、抛物面等。
二、空间几何体的性质1. 体积与表面积对于任何一个空间几何体,其体积和表面积是基本的几何量度。
对于规则的几何体,如正方体和球体,其体积和表面积都有固定的计算公式。
而对于不规则的几何体,则需要通过积分或其他方法来求解。
2. 空间关系空间几何体之间的相互位置关系,如平行、相交、包含等,是解决空间几何问题的基础。
在解析几何中,通过坐标系可以精确地描述这些关系。
3. 几何体的对称性许多空间几何体具有一定的对称性,如正方体具有六个面的对称性,球体则具有全方位的对称性。
对称性在解决几何体的计算和证明问题时具有重要作用。
三、空间几何体的计算1. 多面体的体积与表面积对于规则的多面体,其体积和表面积可以通过公式直接计算。
例如,正方体的体积V=a³,表面积S=6a²,其中a为正方体的边长。
对于不规则的多面体,则需要利用向量、平面几何等知识,通过分割和组合的方法来求解。
2. 旋转体的体积与表面积旋转体的体积和表面积计算通常涉及到积分。
例如,圆柱体的体积V=πr²h,表面积S=2πrh+2πr²,其中r为底面半径,h为高。
对于更复杂的旋转体,如圆锥和球体,也需要通过积分来计算其体积和表面积。
3. 组合体的计算在实际问题中,经常会遇到由多个简单几何体组合而成的复杂几何体。
描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。