1.3简单的逻辑联结词
- 格式:ppt
- 大小:829.00 KB
- 文档页数:30
1.3 简单的逻辑连结词第一课时 1.3.1且(and )---1.3.2或(or )教学要求:通过教学实例,了解逻辑联结词“且”、“或”的含义,使学生能正确地表述相关数学内容.教学重点:正确理解逻辑联结词“且”、“或”的含义,并能正确表述这“p q ∧”、“p q ∨”、这些新命题.教学难点:简洁、准确地表述新命题“p q ∧”、“p q ∨”.教学过程:一、复习准备:1. 讨论:下列三个命题间有什么关系?(1)12能被3整除;(2)12能被4整除;(3)12能被3整除且12能被4整除.2. 发现:命题(3)是由命题(1)(2)使用联结词“且”联结得到的新命题.二、讲授新课:1. 教学命题p q ∧:①一般地,用联结词“且”把命题p 和命题q 联结起来,就得到一个新命题,记作p q ∧,读作“p 且q ”.②规定:当p ,q 都是真命题时,p q ∧是真命题;当p ,q 两个命题中有一个命题是假命题时,p q ∧是假命题.③例1:将下列命题用“且”联结成新命题,并判断它们的真假:(1)p :平行四边形的对角线互相平分,q :平行四边形的对角线相等;(2)p :菱形的对角线互相垂直,q :菱形的对角线互相平分;(3)p :35是15的倍数,q :35是7的倍数.(学生自练→个别回答→教师点评)④例2:用逻辑联结词“且”改写下列命题,并判断它们的真假:(1)12是48与60的公约数;(2)1既是奇数,又是素数;(3)2和3都是素数.(学生自练→个别回答→学生点评)2. 教学命题p q ∨:讨论:下列三个命题间有什么关系?⑴27是7的倍数;⑵27是9的倍数;⑶27是7的倍数或是9的倍数.发现:命题(3)是由命题(1)(2)使用联结词“或”联结得到的新命题.①一般地,用联结词“或”把命题p 和命题q 联结起来,就得到一个新命题,记作p q ∨,读作“p 或q ”.②规定:当p ,q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p ,q 两个命题都是假命题时,p q ∨是假命题.例如:“22≤”、“27是7或9的倍数”等命题都是p q ∨的命题.③例3:判断下列命题的真假:⑴22≤;⑵集合A 是A B 的子集或是A B 的子集;⑶周长相等的两个三角形全等或面积相等的两个三角形全等.(学生自练→个别回答→教师点评)3. 思考:如果p q ∧为真命题,那么p q ∨一定是真命题吗?反之,如果p q ∨为真命题,那么p q ∧一定是真命题吗?注:逻辑联结词中的“或”相当于集合中的“并集”,它与日常用语中的“或”的含义不同.日常用语中的“或”是两个中任选一个,不能都选,而逻辑联结词中的“或”,可以是两个都选,但又不是两个都选,而是两个中至少选一个,因此,有三种可能的情况.逻辑联结词中的“且”相当于集合中的“并集”即两个必须都选.第二课时 1.3.3非(not )教学要求:通过教学实例,了解逻辑联结词“且”、“或”、“非”的含义,使学生能正确地表述相关数学内容.教学重点:正确理解逻辑联结词“且”、“或”、“非”的含义,并能正确表述这“p q ∧”、“p q ∨”、“p ⌝”这些新命题.教学难点:简洁、准确地表述新命题“p q ∧”、“p q ∨”、“p ⌝”.教学过程:一、复习准备:1. 分别用“p q ∧”、“p q ∨”填空:(1)命题“6是自然数且是偶数”是 的形式;(2)命题“3大于或等于2”是 的形式;(3)命题“正数或0的平方根是实数”是 的形式.2. 下列两个命题间有什么关系?⑴35能被5整除;⑵35不能被5整除.二、讲授新课:1. 教学命题p ⌝:①一般地,对一个命题p 全盘否定,就得到一个新命题,记作p ⌝,读作“非p ”或“p 的否定.②规定:若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.“非”命题最常见的几个正面词语的否定:③例1:写出下列命题的否定,并判断它们的真假:⑴p :sin y x =是周期函数;⑵p :32<;⑶p :空集是集合A 的子集;(学生自练→个别回答→学生点评)④练习:(1)p :tan y x =是周期函数;(2)p :32<;(3)p :空集是集合A 的子集;(4)p :若220a b +=,则,a b 全为0;(5)p :若,a b 都是偶数,则a b +是偶数.⑤例2:分别指出由下列各组命题构成的“p q ∧”、“p q ∨”、“p ⌝”形式的复合命题的真假:(1)p :9是质数,q :8是12的约数;(2)p :1{1,2}∈,q :{1}{1,2}⊂;(3)p :{0}∅⊂,q :{0}∅=;(4)p :平行线不相交.2. 小结:逻辑联结词的理解及“p q ∧”、“p q ∨”、“p ⌝”这些新命题的正确表述和应用.三、巩固练习:1. 练习:判断下列命题的真假:(1)23≤;(2)22≤;(3)78≥.2. 分别指出由下列命题构成的“p q ∧”、“p q ∨”、“p ⌝”形式的新命题的真假:(1)p :π是无理数,q :π是实数;(2)p :23>,q :8715+≠;(3)p :李强是短跑运动员,q :李强是篮球运动员.3. 作业:教材。
_1.3 简单的逻辑联结词1.3简单的逻辑联结词如图所示,有三种电路图.问题1:甲图中,什么情况下灯亮?提示:开关p闭合且q闭合.问题2:乙图中,什么情况下灯亮?提示:开关p闭合或q闭合.问题3:丙图中,什么情况下灯不亮?提示:开关p不闭合时.如知识点一中的图,若开关p,q的闭合与断开分别对应命题p、q的真与假,则灯亮与不亮分别对应着p∧q,p∨q,綈p的真与假.问题1:什么情况下,p∧q为真?提示:当p真,q真时.问题2:什么情况下,p∨q为假?提示:当p假,q假时.问题3:什么情况下,綈p为真?提示:当p假时.“p∧q”“p∨q”“綈p”的真假判断:1.对“或”的理解,可联想集合中并集的概念.A∪B={x|x∈A,或x∈B}中的“或”,是指“x∈A”“x∈B”其中至少一个是成立的,即可以是x∈A,且x∉B,也可以是x∉A,且x∈B,还可以是x∈A,且x∈B.逻辑联结词中的“或”的含义与“并集”中的“或”的含义是一致的,它们都不同于生活用语中的“或”的含义.生活用语中的“或”表示“不兼有”,而我们在数学中所研究的“或”则表示“可兼有但不必兼有”.由“或”联结两个命题p 和q构成的复合命题“p或q”,当“p真q假”“p假q真”“p真q真”时,都为真.2.对“且”的理解,可联想集合中“交集”的概念.A∩B={x|x∈A,且x∈B}中的“且”,是指“x∈A”“x∈B”同时满足,即x既属于集合A,同时又属于集合B.用“且”联结两个命题p与q构成的复合命题“p且q”,当且仅当“p真q真”时,为真.3.对“非”的理解,可联想集合中“补集”的概念.“非”有否定的意思,一个命题p经过使用逻辑联结词“非”而构成一个复合命题“非p”.当p真时,则“非p”为假;当p假时,则“非p”为真.若将命题p对应集合P,则命题非p就对应着集合P在全集U 中的补集∁U P.[例1](1)24既是8的倍数,也是6的倍数;(2)菱形是圆的内接四边形或是圆的外切四边形;(3)矩形不是平行四边形.[思路点拨]解答本题先进行命题结构分析,再写出每个简单命题.[精解详析](1)这个命题是“p∧q”的形式,其中p:24是8的倍数,q:24是6的倍数.(2)这个命题是“p∨q”的形式,其中p:菱形是圆的内接四边形,q:菱形是圆的外切四边形.(3)这个命题是“綈p”的形式,其中p:矩形是平行四边形.[一点通](1)不含逻辑联结词“且”“或”“非”的命题是简单命题,由简单命题与逻辑联结词构成的命题是复合命题,因此就有“p∨q”“p∧q”“綈p”形式的复合命题,其中p,q 为简单命题.(2)在“p∨q”“p∧q”“綈p”中,p,q都是命题,但在“若p,则q”中,p,q可以是命题,也可以是含有变量的陈述句.(3)正确理解逻辑联结词“或”“且”“非”是解题的关键,有些命题并不一定包含“或”“且”“非”这些逻辑联结词,要结合命题的具体含义正确进行命题构成的判定.1.命题“平行四边形的对边平行且相等”是()A.简单命题B.“(綈p)∧(綈q)”的形式C.“p∧q”的形式D.“p∨q”的形式解析:含有逻辑联结词“且”,故为“p∧q”的形式.答案:C2.分别指出下列各命题的形式及构成它的简单命题.(1)方程x2+x+1=0无实根;(2)他是运动员兼教练;(3)这些文学作品不仅艺术上有缺点,而且逻辑上有错误;(4)3≥1.解:(1)这个命题是“綈p”的形式,其中p:方程x2+x+1=0有实根.(2)这个命题是“p∧q”的形式,其中p:他是运动员,q:他是教练.(3)这个命题是“p∧q”的形式,其中p:这些文学作品艺术上有缺点,q:这些文学作品逻辑上有错误.(4)此命题为“p∨q”的形式,其中p:3>1,q:3=1.[例2](1)p:6<6,q:6=6.(2)p:梯形的对角线相等,q:梯形的对角线互相平分.(3)p:函数y=x2+x+2的图象与x轴没有公共点,q:不等式x2+x+2<0无解.(4)p:函数y=cos x是周期函数,q:函数y=cos x是奇函数.[思路点拨]先判断p,q的真假,再利用真值表判断“p∧q”“p∨q”“綈p”的真假.[精解详析](1)∵p为假命题,q为真命题,∴p∧q为假命题,p∨q为真命题,綈p为真命题.(2)∵p为假命题,q为假命题,∴p∧q为假命题,p∨q为假命题,綈p为真命题.(3)∵p为真命题,q为真命题,∴p∧q为真命题,p∨q为真命题,綈p为假命题.(4)∵p为真命题,q为假命题,∴p∧q为假命题,p∨q为真命题,綈p为假命题.[一点通]判断复合命题的真假可以总结为三句话,即(1)对“p∨q”命题:一真必真.也就是p,q中只要有一个是真命题,则“p∨q”一定是真命题.(2)对“p∧q”命题:一假必假.也就是p,q中只要有一个是假命题,则“p∧q”一定是假命题.(3)对“綈p”命题:真假相反,也就是p与非p的真假不同,p真,非p就假;p假,非p就真.3.由下列各组命题构成的“p或q”“p且q”“非p”形式的新命题中,“p或q”为真,“p且q”为假,“非p”为真的是()A.p:3是偶数,q:4是奇数B.p:3+2=6,q:5>3C.p:a∈{a,b},q:{a} {a,b}D.p:Q R,q:N=N*解析:“p或q”为真,“p且q”为假,“非p”为真,所以可知:p假、q真.对照分析四个选项,只有B符合.答案:B4.判断下列命题的真假:(1)等腰三角形顶角的平分线平分底边并且垂直于底边;(2)x=1是方程x2+3x+2=0的根或x=-1是方程x2+3x+2=0的根;(3)A ⃘(A ∪B ).解:(1)这个命题是“p 且q ”的形式,其中p :等腰三角形顶角的平分线平分底边,q :等腰三角形顶角的平分线垂直于底边.因为p 真q 真,则“p 且q ”真,所以该命题是真命题.(2)这个命题是“p 或q ”的形式,其中p :1是方程x 2+3x +2=0的根,q :-1是方程x 2+3x +2=0的根.因为p 假q 真,则“p 或q ”真,所以该命题是真命题.(3)这个命题是“非p ”的形式,其中p :A ⊆(A ∪B ).因为p 真,则“非p ”假,所以该命题是假命题.[例3] 函数f (x )=-(5-2a )x 是减函数.若p 或q 为真,p 且q 为假,求实数a 的取值范围.[思路点拨] 解答本题可先求p ,q 中a 的范围,再利用p ∨q 为真,p ∧q 为假,构造关于a 的不等式组,求出a 的范围.[精解详析] 设g (x )=x 2+2ax +4.因为关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴-2<a <2, ∴命题p :-2<a <2.函数f (x )=-(5-2a )x 是减函数, 则有5-2a >1,即a <2.∴命题q :a <2.由p 或q 为真,p 且q 为假,可知p 和q 一真一假.(1) 若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥2,此不等式组无解.(2)若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2,或a ≥2,a <2,∴a ≤-2.综上,实数a 的取值范围是(-∞,-2]. [一点通](1)根据p ,q 的真假可判断命题p ∧q ,p ∨q 的真假;反之根据命题p ∧q ,p ∨q 的真假也可以判断命题p ,q 的真假.(2)解答这类问题的一般步骤: ①求出命题p ,q 为真时参数的条件;②根据命题p ∧q ,p ∨q 的真假判定命题p ,q 的真假; ③根据p ,q 的真假建立不等式(组),求出参数的取值范围.5.已知p :1x -3<0,q :x 2-4x -5<0,若p 且q 为假命题,则x 的取值范围是________.解析:p :x <3;q :-1<x <5.∵p 且q 为假命题, ∴p ,q 中至少有一个为假,∴x ≥3或x ≤-1. 答案:(-∞,-1]∪[3,+∞)6.已知p :方程x 2+mx +1=0有两个不等的负根;q :方程4x 2+4(m -2)x +1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.解:p :⎩⎪⎨⎪⎧Δ=m 2-4>0,m >0.解得m >2.q :Δ=16(m -2)2-16=16(m 2-4m +3)<0. 解得1<m <3.∵p 或q 为真,p 且q 为假, ∴p 为真,q 为假,或p 为假,q 为真.故⎩⎪⎨⎪⎧ m >2,m ≤1,或m ≥3,或⎩⎪⎨⎪⎧m ≤2,1<m <3.解得m ≥3,或1<m ≤2.所以m 的取值范围是(1,2]∪[3,+∞).1.一个复合命题,从字面上看不一定含“或”、“且”字样.这就需要我们掌握一些词语、符号或式子与逻辑联结词的关系,如“或者”“x =±3”“≤”的含义为“或”;“并且”“綊”的含义为“且”.2.判断复合命题真假的步骤:①确定复合命题的构成形式,是“p ∧q ”“p ∨q ”,还是“綈p ”的形式; ②判断其中简单命题p ,q 的真假; ③根据真值表判断复合命题的真假.3.已知命题的真假求参数的取值范围,可以先求出构成命题的p 和q 为真时参数的范围,然后根据条件判断出p 和q 的真假,建立不等式(组)求参数的范围.1.命题“p 或q 为真”是命题“q 且p 为真”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当p 或q 为真时,可以得到p 和q 中至少有一个为真,这时q 且p 不一定为真;反之当q 且p 为真时,必有p 和q 都为真,一定可得p 或q 为真.答案:B2.给出命题p :3≥3;q :函数f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0在R 上的值域为[-1,1].在下列三个命题:“p ∧q ”“p ∨q ”“非p ”中,真命题的个数为( )A .0B .1C .2D .3解析:p 为真命题.对于q ,∵f (x )对应的函数值只有两个,即1或-1,所以f (x )的值域为{1,-1},∴q 为假命题,∴p ∧q 假,p ∨q 真,非p 假. 答案:B3.已知p :函数y =2|x-1|的图象关于直线x =1对称;q :函数y =x +1x在(0,+∞)上是增函数.由它们组成的新命题“p 且q ”“p 或q ”“綈p ”中,真命题有( )A .0个B .1个C .2个D .3个解析:命题p 是真命题.y =x +1x 在(0,1)上为减函数,在(1,+∞)上为增函数,故q 为假命题.∴p 且q 为假,p 或q 为真,綈p 为假. 答案:B4.已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数.在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( ) A .q 1,q 3 B .q 2,q 3 C .q 1,q 4D .q 2,q 4解析:∵y =2x 在R 上为增函数,y =2-x =(12)x 在R 上为减函数,∴y =-2-x =-(12)x 在R 上为增函数,∴y =2x -2-x 在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q 1:p 1∨p 2是真命题,因此排除B 和D. q 2:p 1∧p 2是假命题,q 3:綈p 1是假命题,(綈p 1)∨p 2是假命题,故q 3是假命题,排除A. 答案:C5.已知p :不等式ax +b >0的解集为{x |x >-ba },q :关于x 的不等式(x -a )(x -b )<0的解集为{x |a <x <b }.若“p ∨q ”是假命题,则a ,b 满足的条件是________.解析:∵p ∨q 为假命题,∴p ,q 均为假命题.p 假⇔a ≤0,q 假⇔a ≥b ,则b ≤a ≤0. 答案:b ≤a ≤06.已知p :x 2-x ≥6,q :x ∈Z.若“p ∧q ”“綈q ”都是假命题,则x 的值组成的集合为________.解析:因为“p ∧q ”为假,“綈q ”为假,所以q 为真,p 为假.故⎩⎪⎨⎪⎧ x 2-x <6,x ∈Z ,即⎩⎪⎨⎪⎧-2<x <3,x ∈Z.因此,x 的值可以是-1,0,1,2. 答案:{-1,0,1,2}7.分别写出由下列各组命题构成的“p ∨q ”“p ∧q ”“綈p ”形式的新命题,并判断其真假:(1)p :6是自然数;q :6是偶数. (2)p :∅⊆{0};q :∅={0}.解:(1)p ∧q :6是自然数且是偶数.它是真命题. p ∨q :6是自然数或是偶数.它是真命题. 綈p :6不是自然数.它是假命题. (2)p ∧q :∅⊆{0}且∅={0}.它是假命题. p ∨q :∅⊆{0}或∅={0}.它是真命题. 綈p :∅⃘{0}.它是假命题.8.已知a >0,a ≠1.设p :函数y =log a (x +1)在(0,+∞)内单调递减;q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点.若p 或q 为真,p 且q 为假,求a 的取值范围.解:当0<a <1时,函数y =log a (x +1)在(0,+∞)内单调递减.当a >1时,y =log a (x +1)在(0,+∞)内不是单调递减函数,故p 真时0<a <1. q 真等价于(2a -3)2-4>0,即a <12或a >52.又a >0,∴0<a <12或a >52.∵p 或q 为真,p 且q 为假, ∴p ,q 中必定是一个为真一个为假.(1)若p 真,q 假, 则⎩⎪⎨⎪⎧0<a <1,12≤a <1或1<a ≤52⇒12≤a <1, 即a ∈[12,1).(2)若p 假,且q 真, 则⎩⎪⎨⎪⎧a >1,0<a <12或a >52⇒a >52,即a ∈(52,+∞).综上可知,a 的取值范围为[12,1)∪(52,+∞).。