金属半固态成形工艺概述
- 格式:pdf
- 大小:162.42 KB
- 文档页数:4
金属半固态成形一、引言金属半固态成形是一种新兴的金属成形技术,它是在半固态状态下对金属进行成形加工,具有高效、高精度、高质量等优点。
近年来,随着科技的不断进步和人们对产品质量的要求越来越高,金属半固态成形技术得到了广泛的应用和研究。
二、什么是金属半固态成形1.定义金属半固态成形是指在合适温度下,将金属材料加工到一定程度时,使其呈现出部分晶粒熔化和部分晶粒未熔化的状态。
这种状态被称为半固态状态。
在这个状态下进行成型加工可以得到具有优异性能的零件。
2.特点(1)高效:相比传统的铸造和锻造工艺,金属半固态成形具有更快的生产速度。
(2)高精度:由于采用了先进的数控技术和模具制造技术,使得加工精度更高。
(3)高质量:由于采用了先进的材料处理方法和模具制造技术,使得产品质量更高。
三、金属半固态成形的工艺流程1.原材料制备:将金属材料经过特殊处理,使其呈现出半固态状态。
2.模具设计:根据产品的形状和尺寸,设计出合适的模具。
3.加热处理:将金属材料加热到合适的温度,使其呈现出半固态状态。
4.成型加工:将半固态金属材料放入模具中进行成型加工。
5.冷却处理:将成型后的零件进行冷却处理,使其达到稳定状态。
6.后续加工:根据需要对零件进行后续加工和表面处理。
四、金属半固态成形的应用领域1.航空航天领域:由于航空航天领域对于零件质量和性能要求非常高,因此金属半固态成形技术在该领域得到了广泛应用。
例如飞机发动机叶片、涡轮叶片等高精度零部件都可以采用该技术进行生产。
2.汽车制造业:汽车制造业是金属半固态成形技术的另一个重要应用领域。
例如汽车发动机缸体、曲轴等高精度零部件都可以采用该技术进行生产。
3.医疗器械领域:金属半固态成形技术在医疗器械领域的应用也越来越广泛。
例如人工关节、牙科种植体等高精度零部件都可以采用该技术进行生产。
五、金属半固态成形的未来发展趋势1.智能化:随着科技的不断进步,金属半固态成形技术将更加智能化,通过计算机控制和自动化设备,使得生产效率更高、产品质量更稳定。
半固态成形利用金属材料在固液共存状态下所特有的流变特性进行成形的技术。
首先要制造含有一定体积比例的非枝晶固相的固液混合浆料,成形方法有流变成形和触变成形两种。
优点:1、在工艺方面:成型温度低,延长模具寿命(热冲击小);节省能源;改善生产条件和环境。
2、在产品方面:铸件质量提高(减少气孔和凝固收缩);减少加工余量;零件的尺寸和精度能达到近终形;扩大压铸合金的范围并可以发展金属复合材料。
所谓半固态加工是指金属在凝固过程中,对其施以剧烈的搅拌作用或扰动作用,得到一种液态金属母液,其中均匀悬浮着一定量的球状初生固相或退化的枝晶固相的固2液混合浆料(也称流变浆料) ,对这种浆料进行的加工成型的方法。
半固态成型包括半固态流变成型和半固态触变成型两类,前者是将制备好的半固态浆料直接用于成型,如压铸成型(称为半固态流变压铸成型) ;后者是对制备好的半固态坯料进行重新加热使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压)[1]。
1半固态金属成形的发展及现状(半固态成形铝合金材料研究)半固态金属(SSM)成形技术自DavidSpencer于1971年首次提出至今,已有30多年历史【2-5】。
综观整个历史过程,其发展可以分为实验研究、应用研究和工程化应用三个阶段。
从20世纪70年代初开始,实验研究工作大约延续了15年。
这一阶段的研究主要集中在探索具有流变性和触变性的有色金属合金半固态试样的组织特征与制备方法上。
主要成果包括:①揭示了流变性和触变性坯料的组织特征;②提出了枝晶组织向非枝晶组织转变的物理模型:③研究了搅拌速度、强度以及温度等工艺参数对非枝晶化过程的影响规律:④初步探讨了半固态微观组织与流变性能的关系;⑤测试了半固态合金流变性能,并建立了相关的数学模型。
上世纪80年代中期是半固态成形技术应用研究的迅速发展阶段,并且从早期的有色金属合金扩展到高熔点合金以及复合材料的半固态成形。
这期间,开发与研制了包括电磁搅拌在内的多种半固态制坯技术与连铸设备;利用计算机模拟技术揭示了半固态合金充型过程;深入细致研究了成形工艺对产品组织性能影响的规律。
1)半固态金属成形( SMP ) 于20 世纪70 年代初研究开发的新一代金属加工技术[ 1] ,这种对半固态金属浆料进行成形的加工工艺称为半固态成形技术.这一技术综合了凝固加工和塑性加工的长处, 即加工温度比液态低, 变形抗力比固态小, 可一次大变形量加工形状复杂且精度和性能质量要求较高的零件。
2) 非枝晶半固态金属浆料的制备是半固态成形技术的关键环节之一, 关系到成形件的质量和成本。
半固态金属浆料的制备技术分为2 类: 液相过程和固相过程。
目前普遍采用的技术是在金属凝固过程中进行强烈搅拌, 破碎枝晶, 得到一种液态金属母液中均匀悬浮着近似球形微观结构的非枝晶半固态金属( Sem-i solid Metal, 简称SSM) , 在SSM 的液相基体中, 固相颗粒之间很容易产生相互移动, 从而使SSM 浆料具有一定流动能力, 以利于充型。
半固态金属浆料制备方法有机械搅拌法、电磁搅拌法、应变诱发熔体激活法、粉末冶金法.液相线铸造法,超声处理法等。
机械搅拌法是最早用于半固态浆料制备的方法。
其原理是在合金凝固过程中, 使用搅拌器对合金熔体进行强烈的机械搅拌, 树枝晶由于剪切力的作用而断裂成为颗粒状结构。
机械搅拌分间歇式和连续式两种.搅拌时产生的剪切速率一般为100~ 300/s。
剪切速率受搅拌器结构、材料耐腐蚀、耐高温磨损性能的制约。
浆料的质量主要由搅拌温度、搅拌速度以及冷却速度这3 个参数控制。
然而, 由于这些工艺参数不易控制, 容易发生卷气等缺陷; 搅拌器和合金熔体是直接接触的, 因而容易造成污染; 另外搅拌器与容器间存在搅拌死角, 影响浆料的质量。
机械搅拌法在工业生产中应用较少。
电磁搅拌法是应用最为广泛的一种方法。
它利用旋转磁场使金属液内部产生感应电流, 并在洛伦兹力的作用下发生强迫对流, 从而达到搅拌的目的。
产生旋转磁场的方法有两种, 一种是在感应线圈中通入交变电流, 另一种则采用旋转永磁体的方法。
半固态金属铸造工艺引言半固态金属铸造(Semi-Solid Metal Casting, SSMC)是一种新兴的金属加工技术,它结合了传统铸造和塑性加工的优点,在制造高性能金属零件方面展现出巨大的潜力。
本文将介绍半固态金属铸造工艺的基本原理、优势和应用领域。
工艺原理半固态金属铸造工艺是指将金属材料在半固态(呈半固态状态)下进行铸造制作零件的技术。
其基本原理是通过精确控制金属的温度和组织结构,在高温下使金属呈现出部分固态和部分液态的状态,以便于形成高质量的零件。
半固态金属铸造的关键是控制金属的固相含量和液相形态。
固态粒子的存在可以提供一定的支撑力,防止破裂或变形,同时液态相的存在有助于金属的流动和充填。
通常使用精确控制温度和加热时间的方式,使金属逐渐达到半固态状态,在此状态下进行铸造。
工艺步骤半固态金属铸造工艺的一般步骤如下:1.材料准备:选择适合的金属合金,准备所需的原材料。
2.加热处理:将原材料放入特定的熔炼设备中,进行加热处理,使金属逐渐达到半固态状态。
3.浇注:将半固态金属倒入铸模中,通过重力或压力使金属充填整个模型空腔。
4.冷却固化:待金属充填完成后,让金属在模具中冷却和凝固,形成所需零件的形状。
5.取模:将模具打开,取出冷却固化后的零件。
6.精加工:对取模零件进行必要的机加工和表面处理,以获得最终产品。
工艺优势相对于传统的铸造工艺,半固态金属铸造具有以下优势:1.高成形性:半固态金属在流动性上表现出类似于塑料的特性,可实现复杂零件的精确铸造。
2.优良表面质量:由于金属呈半固态状态,能够更好地填充模具空腔,从而获得更高的表面质量和精度。
3.减少缺陷:半固态金属铸造可以有效减少常见的铸造缺陷,例如气孔和收缩缺陷。
4.提高材料性能:半固态处理能够使金属材料的晶粒变细,提高材料的强度和耐热性,同时减少金属的残留应力。
5.快速生产周期:相对于传统的金属加工方法,半固态金属铸造能够大幅缩短生产周期,提高生产效率。
半固态金属铸造工艺1. 引言半固态金属铸造是一种先进的金属加工工艺,它结合了传统金属铸造和金属注射成型的优点。
该工艺通过控制金属的凝固过程,使金属在部分凝固的状态下进行铸造,从而获得具有优异性能的金属零件。
本文将详细介绍半固态金属铸造的工艺流程、优势以及在工业中的应用。
2. 半固态金属铸造的工艺流程半固态金属铸造的工艺流程主要包括以下几个步骤:2.1 材料准备半固态金属铸造使用的材料主要是半固态金属(SSM)合金。
这些合金通常由金属基体和固态渣滓相组成。
在铸造过程中,需要对材料进行预处理,以达到适合半固态铸造的状态。
2.2 熔化与凝固控制熔化是半固态金属铸造的关键步骤之一。
合金需要在高温熔炉中被加热,达到液态状态。
接下来,通过控制冷却速度和温度梯度,使合金在部分凝固的状态下进行铸造。
2.3 注射成型在凝固过程控制好后,将半固态合金注入到铸造模具中。
模具通常采用金属材料或陶瓷材料制成,以确保注射后的零件具有较高的精度和表面质量。
2.4 冷却与处理注射完成后,零件需要经过冷却和处理过程。
冷却过程可以使用冷却液或空气来加速金属的凝固。
处理过程则包括去除模具、清洁表面以及进行热处理等步骤。
2.5 后续加工与检测铸造完成后的零件可能需要进行后续加工,如切割、车削、铣削等,以达到最终的形状和尺寸要求。
同时,对零件进行必要的检测和质量控制,确保产品的合格率。
3. 半固态金属铸造的优势半固态金属铸造相比传统的金属铸造具有以下优势:3.1 高成形性半固态金属铸造能够在低温、低应力条件下进行,使得金属能够更易于塑性变形,提高了材料的成形性能。
相比之下,传统的铸造工艺通常需要高温和高应力条件下进行,容易导致材料变形和裂纹。
3.2 较高的力学性能半固态金属铸造制备的零件具有较高的力学性能。
由于半固态金属在凝固过程中保持有一定的流动性,较完全凝固的材料具有更细小的晶粒尺寸和更好的晶界组织。
这使得材料的硬度、强度和韧性等力学性能得到了显著提高。
半固态压铸工艺( Semi-Solid(Metal(Casting,简称SSM或SSMC)是一种介于传统铸造和锻造之间的先进金属成型技术。
它利用金属在半固态状态下的流变特性进行成型,结合了铸造和锻造的优点。
半固态压铸工艺过程主要包括以下几个步骤:
1.(金属熔炼:首先将金属原料加热至熔点,形成液态金属。
2.(半固态处理:将液态金属冷却至半固态,即部分凝固状态。
这一过程可以通过搅拌、振动或其他方法实现,目的是使金属在半固态时形成均匀的微观结构,包括细小的固态颗粒和液态金属相。
3.(半固态金属的预热:将半固态金属加热至适当的温度,以确保其具有良好的流动性和可塑性。
这一步骤对于保证成型质量至关重要。
4.(压铸成型:将预热后的半固态金属注入压铸模具中。
由于半固态金属的流动性好,可以在较低的压力下填充模具,减少成型缺陷。
5.(冷却与凝固:半固态金属在模具中冷却并凝固,形成所需的零件形状。
6.(脱模与后处理:冷却后的零件从模具中取出,进行必要的后处理,如去毛刺、热处理、表面处理等,以满足最终产品的性能要求。
半固态压铸工艺的优点包括:
提高材料利用率:由于半固态金属的流动性好,可以减少材料浪费,提高材料利用率。
减少成型缺陷:半固态金属的流动性和可塑性有助于减少成型过程中的缺陷,如气孔、缩孔等。
提高生产效率:半固态压铸工艺可以在较低的压力下成型,缩短了生产周期,提高了生产效率。
改善产品性能:半固态压铸工艺可以产生细小的晶粒结构,提高材料的力学性能和耐磨性。
半固态压铸工艺广泛应用于汽车、航空航天、电子和消费品等领域,用于生产各种复杂的金属零件。