2013年数学建模b题纸片拼接
- 格式:docx
- 大小:36.69 KB
- 文档页数:2
碎纸片的拼接复原模型摘要本文主要问题是将附件中的所给的碎纸片按照一定的方法拼接复原。
通过一定的方法把碎纸片进行分组:题目给了四种类型的碎片,有长条形的,即全是竖切的中英文碎片,也有横竖都切的中文碎片,有横竖都切的单面英文碎片和横竖都切的双面英文碎片。
对于中英文长碎纸片分组拼接的问题,我们直接通过观察法,按照文字和字母的结构很容易完成了拼接。
对与中文横竖碎纸片拼接的问题,我们利用Matlab 编程并加入人工干预。
本文的主要拼接过程都是通过Matlab 软件实现的,通过Matlab 软件读取图片的信息,根据图像灰度的原理,图片包含着灰度信息,碎纸片左右的文字在纵切面上的灰度应该是完全对应的。
但把所有图片的灰度拿出来匹配是很不现实的。
于是我们想到可以通过灰度赋值,由于碎片中间文字的信息对于拼接是没有太大用途的,我们更关心左右切面的文字信息,即灰度信息。
因此将纵切面上的灰度矩阵的第一列和最后一列单独抽出,形成矩阵,然后设定一定的算法,通过Matlab 进行编程,相邻的两张碎纸片左右边缘信息匹配度非常高,其差值接近于0。
,,|p(i)p(j)|m n m n ρ=-编写的程序完全可以对所分的各组碎纸片进行拼接,而且效果非常明显。
对于英文碎纸片问题,我们采用了同样方法的分组,只是按照上下切掉的英文部分所占四线格的比例进行分组,此分组方法分组快且相对准确。
我们第二问中所编程序对英文碎纸片的拼接也完全适用。
对于双面英文的情况,也是按照上述思想方法进行分组,只是工作量稍微大些。
分组后我们也通过所编程序实现了双面英文的拼接复原。
关键词:碎纸片;拼接;图像灰度;灰度矩阵;分组1、问题重述论题给出了5个附件——反应了几种不同纸片破碎的情况,要求我们构建相应的碎纸片复原模型,以解决实际生活中出现的需要我们进行碎纸片复原的问题。
首先进行简单情况的碎纸片复原,即附件1中和附件2中的仅纵切的中英文19个碎纸片。
构建一个可以操作的拼接模型,将附件中的纵切纸片拼接。
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2013 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原模型摘要:本文针对碎纸片的拼接复原问题,提出了互相关匹配模型。
首先对附件图片数值化处理并建立矩阵;然后根据图像页边距特点定位最左边和最右边的碎片;按照每张碎片中的文字部分所在位置,提取同一行碎片,利用互相关函数横向拼合。
在第一问中,附件一、二仅作横向相关性比较即可;在第二、三问中,需要提取同一行碎片横向拼接,并将横向拼合完整的碎片进行竖向拼合,经过人工干预得到结果。
121数学学习与研究2014.11碎纸片拼接复原的数学模型◎杨武李博(江苏南京农业大学工学院210000)【摘要】本文对碎片的拼接复原问题,建立了碎纸片拼接模型,编写matlab 程序,利用人机交互指令实现碎片的快速拼接.对2013年“高教社杯”全国大学生数学建模竞赛的B 题中所给11x 19个碎片文件进行拼接.【关键词】碎片拼接模型;matlab ;灰度值矩阵;Kmeans 聚类;人机交互一、研究背景及意义近年来,大量政府机关、企事业单位采用碎纸机对废弃文件或失效的机密文件进行破碎,这种破碎方法产生的碎片多为规则的.这使得在进行破碎文件的复原拼接时,只能根据文字内容进行匹配,为此,本文考虑应用当前的计算机识别技术开发碎纸片的自动拼接技术,对所有碎片搜索和筛选,寻找能够在某种指标上匹配的碎片进行拼接.提高拼接复原效率,从而大大降低人工工作量和难度.对碎片自动拼接问题的研究,不仅具有广阔的应用前景,而且具有很强的理论意义.二、图像碎片预处理首先,利用matlab 图像处理功能对碎纸片进行图像预处理.即将碎纸片数字化,转化为图片文件的数据.即一个二维数组构成的灰度值矩阵,这个矩阵存储着一张碎纸片各个像素点的颜色值,其中255表示白色,0表示黑色,图片中颜色均处在黑白、或黑白之间,图片数字化后的数字范围在0 255之间.三、碎纸片拼接模型的假设1.假设碎片原文件都存在上、下、左、右的页边距,且边距大于行间距和列间距;2.假设相邻碎片间纸张信息的损失可以忽略不计;3.假设碎纸机是沿平行或垂直于文字的方向对纸张进行切割的.四、碎纸拼接模型的建立1.挑出每行最左边的图片:根据图片的边缘留有空白部分的特性,挑选出图片最左边存在空白部分的图片作为左边界的候选图片.方法实现:计算图片左边距留白宽度:即可用灰度值矩阵中左端竖列上全为255(即左侧完全空白)的连续列数度量,由matlab 检测出每张图片的留白宽度.留白宽度排序:对上面得到的留白宽度进行排列,取排在前面的11张图片作为拼接过程的起始碎片.2.图片按行分类:根据Kmeans 聚类算法,对碎片进行按行分类.分类实现:①先根据底端一行是否为纯空白将209幅图分为下端有纯空白行和下端有被截文字两类.②对于空白行一类,下端空白行数相同或相近的纸条属于原文件同一行;③对于下端有被截文字的一类,下端被截文字高度相同或相近的纸条属于原文件同一行.④分析确定好的最左端图片的特征,依此为11个聚类中心,利用matlab 程序分类.3.对同行碎片进行拼接①拼配原则———突变数将所有的碎片进行处理后得到灰度值矩阵,分别记作M i (i =1,…,n )(n 为图片的数量)通过对每一张碎片的数据进行了分析,不难发现在每一张碎片上,同一行相邻两个点的像素值从0变为255或者从255变到0的比例仅有0.016%左右.将相邻两个像素值由0变到255或者由255变到0定义为一次突变.定义两张碎片的突变数如下:设Ri 为某张碎片M i 的最右侧一列像素值,L j 为另一张碎片M j 的最左侧一列像素值(Ri 和L j 均为180行的列向量),碎片M i 和M j 的突变数:T ij =∑180k =1flag (k )ij ,flag (k )ij =1R(k )i -L (k )j =2550R(k )i -L (k )j <{255,其中R(k )i 表示向量Ri 的第k 个分量,L (k )j 表示向量L j 的第k 个分量.②匹配过程以上面确定的最左边的碎片为起点,计算该碎片所在行的可能的碎片与其的突变数T.理论上T 值越小,两个图片的匹配的可能性最大,将T 进行由小到大的排序,在matlab 程序中让起始碎片优先与T 值最小的匹配,若匹配不成功再依次考虑T 值较大的,直至匹配成功.4.人工干预①人工干预时机:本文对209个已有碎片,分析发现若其余碎片与其的突变数仅有一个为0,则突变数为零的那个碎片一定与该碎片相匹配,一旦出现突变数均不为0,则需进行人工干预.②人工干预方法:为减少人工干预次数,做如下工作:1)计算碎片M i 灰度值矩阵最右一列Ri 与位于M i 行的其余碎片灰度值矩阵最左一列L j 的偏差平方和S 作为人工干预的指标:S =∑180i =1(Ri-L i )2.2)对偏差平方和S 由大到小进行排序,将碎片的序号放入集合US 中,S 大的最有可能与碎片M i 相匹配③在matlab 程序中让碎片M i 依次与集合US 中的图片进行匹配,每次对两个图进行匹配时,令命令窗口弹出这两个图匹配在一起的图片,进行人工观察.通过对拼接处文字字形和语义的分析,人工检查该匹配是否合理.5.纵向拼接①观察11条已拼好的横切纸条,根据所有纸条的上边缘特征确定位于原文件顶端的横切纸条,并以该纸条为起始纸条.②根据起始纸条的下边缘灰度值特征,利用上述步奏拼出整张文件.五、模型的评价与改进1.模型的优点:模型采用突变数和偏差平方和作为评价函数评定碎片间邻边的相关度,高效而且实用.能大大减少人工干预的次数.2.模型的局限性:由于研究的是碎纸机产生的碎片.该模型只考虑了对多个相同的形状规则的碎片进行拼接,且当碎片的数量增加且单个碎片的文字覆盖率越小时,更易产生灰度分布情况相似的碎片,需要进行人工干预的次数会相应增多.六、结论本文对碎纸片的匹配原则和人工干预进行了探讨和研究,建立了一个可靠高效的数学模型,利用图片数字化后数值之间的分布规律和相关度引入突变值和偏差平方和作为评价指标,利用matlab 软件实现快速拼接.并为了提高拼接准确性,巧妙地使用人机交互指令进行人工的检测干预.【参考文献】[1]何鹏飞,等.基于蚁群优化算法的碎纸拼接.计算机工程与科学,2011,33(7).[2]邓薇.MATLAB 函数速查手册.北京:人民邮电出版社,2010.[3]宋晓闯.基于灰度和几何特征的图像匹配算法研究.万方数据库,2013-09-13.。
碎纸片的拼接复原摘要目前,碎片的拼接技术广泛应用于司法物证复原、历史文物修复以及军事情报获取等领域。
本文旨在研究碎纸片的复原,其中包括单面打印文件的纵切复原、单面打印文件的纵横切复原以及双面打印文件的纵横切复原。
首先,对附件1-附件5中的图片数据进行处理。
通过Matlab软件利用灰度函数imread将图片数据提取出来,并利用二进制数表示该像素的颜色:将灰度值为255的值置为1,代表白色区域;将灰度值小于255的值置为0,代表黑色区域。
这样,便可得到每张图片的0-1矩阵。
针对问题一,本文基于重合率先建立了基本模型一。
第一,通过图片0-1矩阵最左列的值得出1所占的比例,比例最高的0-1矩阵所对应的图片为最左边的图片,从中可得附件1中最左边图片为008.bmp,附件2中最左边图片为003.bmp;第二,以最左边的图片的0-1矩阵的最右列值为准,通过遍历剩余图片的0-1矩阵中最左列的值,求出对应两列值的重合率,重合率最高值所对应的图片为相邻图片。
然后,在模型一的启发下,基于0-1整数线性规划又建立了模型二,通过引入左右连接的0-1变量,把遍历逐步求出图片邻接关系变为求所有对接处相应向量差的二范数的平方和的最小值整体确定相应相邻的图片的模型求解。
最后,模型一与模型二的结果对比表明,模型一与模型二对于问题一均可适用,而且两个模型启到相互检验作用,同时模型二具有较大的适用范围和益改进的性能。
针对问题二,在意建立的0-1整数线性规划模型的基础上,通过增加上下连接的0-1变量,和增加采取每个碎片第一个完整字行道上边缘的高度,建立使用与问题的0-1整数规划模型,该模型对任意一个图片的所有边同时进行比对,通过所有对接处相应向量差的二范数的平方和的最小值,以及所有图片上边缘距离第一行黑色字体下边差的平方和的最小值确定相邻图片,对于不能自动拼接的图片进行人工干预。
该模型下附件3、4中的图片均拼接成功。
针对问题三,本文在问题二的0-1整数线性规划模型的基础上,通过把每个碎片的a面的左边向量与b面的右边向量对接,把a面的右边向量与b面的左边向量对接;a 面的上边向量与b面的上边向量对接,把a面的下边向量与b面的下边向量对接;再分别引入每个碎片的右边和另一图片右边,左边和左边连接的0-1变量,建立出适用该问题的0-1整数规划模型,通过求解,求出左右,上下连接的小块,再通过人工干预,完成附件5碎片的拼接。
2013高教社杯全国大学生数学建模竞赛B题碎纸片的拼接复原首先分析问题:对于第一问分析如下对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。
如果复原过程需要人工干预,请写出干预方式及干预的时间节点。
求matlab图像拼接程序clear;I=imread('xingshi32.bmp');if(isgray(I)==0)disp('请输入灰度图像,本程序用来处理128 *128的灰度图像!');elseif (size(I)~=[128,128])disp('图像的大小不合程序要求!');elseH.color=[1 1 1]; %设置白的画布figure(H);imshow(I);title('原图像');zeroImage=repmat(uint8(0),[128 128]);figure(H); %为分裂合并后显示的图设置画布meansImageHandle=imshow(zeroImage);title('块均值图像');%%%%%设置分裂后图像的大小由于本图采用了128像素的图blockSize=[128 64 32 16 8 4 2];%%设置一个S稀疏矩阵用于四叉树分解后存诸数据S=uint8(128);S(128,128)=0;threshold=input('请输入分裂的阈值(0--1):');%阈值threshold=round(255*threshold);M=128;dim=128;%%%%%%%%%%%%%%%%% 分裂主程序%%%%%%%%%%%while (dim>1)[M,N] = size(I);Sind = find(S == dim);numBlocks = length(Sind);if (numBlocks == 0)%已完成break;endrows = (0:dim-1)';cols = 0:M:(dim-1)*M;rows = rows(:,ones(1,dim));cols = cols(ones(dim,1),:);ind = rows + cols;ind = ind(:);tmp = repmat(Sind', length(ind), 1);ind = ind(:, ones(1,numBlocks));ind = ind + tmp;blockValues= I(ind);blockValues = reshape(blockValues, [dim dim numBlocks]);if(isempty(Sind))%已完成break;end[i,j]=find(S);set(meansImageHandle,'CData',ComputeMeans(I,S));maxValues=max(max(blockValues,[],1),[],2);minValues=min(min(blockValues,[],1),[],2);doSplit=(double(maxValues)-double(minValues))>threshold;dim=dim/2;Sind=Sind(doSplit);Sind=[Sind;Sind+dim;(Sind+M*dim);(Sind+(M+1)*dim)];S(Sind)=dim;end对于第二问于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。
精心整理碎纸片的拼接复原【摘要】:碎纸片拼接技术是数字图像处理领域的一个重要研究方向,把计算机视觉和程序识别应用于碎纸片的复原,在考古、司法、古生物学等方面具有广泛的应用,具有重要的现实意义。
本文主要结合各种实际应用背景,针对碎纸机绞碎的碎纸片,基于计算机辅助对碎纸片进行自动拼接复原研究。
针对问题1,依据图像预处理理论,通过matlab程序处理图像,将图像转化成适合于计算机处理的数字图像,进行灰度分析,提取灰度矩阵。
对于仅纵切的碎纸片,根据矩阵的行提取理论,将。
建中的任一列与矩阵值,序列号。
将程序进行循环操作,得到最终的碎片自动拼接结果。
、;分别作为新生成的矩阵、。
,将矩阵中的任一列分别与矩阵中每一列代入模型,所得p值对应的值即为横排序;将矩阵中的任一行分别于矩阵中的任一行代入模型,所得q值对应的值即为列排序。
循环进行此程序,得计算机的最终运行结果。
所得结果有少许误差,需人工调制,更正排列顺序,得最终拼接结果。
针对问题3,基于碎纸片的文字行列特征,采用遗传算法,将所有的可能性拼接进行比较,进行择优性选择。
反面的排序结果用于对正面排序的检验,发现结果有误差,此时,进行人工干预,调换碎纸片的排序。
【关键词】:灰度矩阵欧式距离图像匹配自动拼接人工干预一、问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。
传统上,大量的纸质物证复原工作都是以人工的方式完成的,准确率较高,但效率很低。
特别是当碎片数量巨大,人工拼接不但耗费大量的人力、物力,而且还可能对物证造成一定的损坏。
随着计算机技术的发展,人们试图把计算机视觉和模式识别应用于碎纸片复原,开展对碎纸片自动拼接技术的研究,以提高拼接复原效率。
试讨论一下问题,并根据题目要求建立相应的模型和算法:、附件4(1)(2)(3)(4)纸片的自动拼接。
问题1:根据图像预处理理论,通过程序语言将图像导入matlab程序,对图像进行预处理,将碎纸片转换成适合于计算机处理的数字图像形式,并对数字图像进行灰度分析,提取灰度矩阵。
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):楚雄师范学院参赛队员(打印并签名) :1. 陈志明2. 施明杰3. 阮秀婷指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 3013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原算法及MATLAB实现摘要:对于只有纵切的情形,文章通过比较当前待拼碎片与剩余碎片的信噪比psnr[1,3,4]的值来确定两碎片是否为邻接碎片;拼接算法首先连续调用右拼函数直到拼接到原图右边界,然后连续调用左拼函数直到拼接到原图左边界,从而得到整幅复原图像;对于单面纵横交错切的情形,文章对首先采用纵切拼接算法将碎片拼接成多幅横条图片,然后将各横条图片矩阵转置[2],再次采用纵切拼接算法拼接;两种情形的拼接,都存在人为参与;实验证明,我们的算法对纵切情形是有效的,对纵横切情况是可行的。
2013年数学建模b题纸片拼接
(最新版)
目录
一、2013 年数学建模 b 题背景
二、纸片拼接问题的基本概念
三、纸片拼接问题的解决方法
四、纸片拼接问题的实际应用
正文
一、2013 年数学建模 b 题背景
数学建模是一种重要的数学方法,它将实际问题抽象为数学问题,再通过数学方法求解,以解决实际问题。
2013 年数学建模 b 题就是一道典型的数学建模题目,它涉及到的问题是纸片拼接。
二、纸片拼接问题的基本概念
纸片拼接问题是指,给定一些形状、大小和颜色不同的纸片,要求将它们拼接在一起,使得拼接后的图形满足一定的要求,比如面积最大、周长最小等。
纸片拼接问题实际上是一个组合优化问题,它需要寻找一种最优的拼接方案。
三、纸片拼接问题的解决方法
解决纸片拼接问题的方法主要有两种,一种是基于启发式的方法,另一种是基于精确算法的方法。
基于启发式的方法,如模拟退火算法、遗传算法等,它们通过模拟自然界的进化过程,逐步寻找到最优的拼接方案。
这类方法的优点是计算速度快,缺点是可能无法得到全局最优解。
基于精确算法的方法,如整数线性规划、混合整数线性规划等,它们
通过建立数学模型,精确求解拼接问题。
这类方法的优点是能得到全局最优解,缺点是计算过程复杂,需要大量的计算资源。
四、纸片拼接问题的实际应用
纸片拼接问题在实际生活中有着广泛的应用,比如在制造业中,它可以用于优化材料的切割方案,提高材料的利用率;在图像处理中,它可以用于图像的拼接,提高图像的分辨率等。
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):楚雄师范学院参赛队员(打印并签名) :1. 陈志明2. 施明杰3. 阮秀婷指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 3013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原算法及MATLAB实现摘要:对于只有纵切的情形,文章通过比较当前待拼碎片与剩余碎片的信噪比psnr[1,3,4]的值来确定两碎片是否为邻接碎片;拼接算法首先连续调用右拼函数直到拼接到原图右边界,然后连续调用左拼函数直到拼接到原图左边界,从而得到整幅复原图像;对于单面纵横交错切的情形,文章对首先采用纵切拼接算法将碎片拼接成多幅横条图片,然后将各横条图片矩阵转置[2],再次采用纵切拼接算法拼接;两种情形的拼接,都存在人为参与;实验证明,我们的算法对纵切情形是有效的,对纵横切情况是可行的。
2013年数学建模b题纸片拼接1. 引言2013年数学建模比赛中的B题,是一道关于纸片拼接的问题。
纸片拼接这一主题,在数学建模的题目中并不常见,但却涉及了许多有趣的数学和几何问题。
在接下来的文章中,我将从不同的角度和深度来探讨这一主题,希望能够对你的理解和思考有所启发。
2. 纸片拼接的基本概念让我们来了解一下纸片拼接的基本概念。
在这个问题中,我们需要将大量的纸片按照一定的规则进行拼接,以得到一个特定的形状或图案。
这涉及到对纸片的形状、尺寸和拼接方式的研究和分析。
还需要考虑到纸片的变形和叠放等因素,这是一个具有挑战性的问题。
3. 纸片拼接的数学模型在解决纸片拼接的问题时,我们需要建立相应的数学模型来描述和分析。
这包括对纸片的几何形状进行建模,考虑到其尺寸、边界和变形等因素;同时需要建立拼接规则和约束条件,以确保拼接的合理性和有效性。
通过建立数学模型,可以更好地理解纸片拼接问题的本质,并为后续的求解和优化提供基础。
4. 深入探讨纸片拼接的几何特性在纸片拼接的过程中,我们不仅需要考虑到其形状和尺寸,还需要深入研究其几何特性。
这涉及到对纸片的曲率、折叠和叠放等几何特征的分析,以便更好地理解和控制拼接的过程。
还需要考虑到纸片的叠放和叠合时可能出现的奇异现象,这对于拼接的成功至关重要。
5. 数学建模与实际应用让我们来谈谈纸片拼接的数学建模与实际应用。
纸片拼接这一看似抽象的问题,实际上与现实生活中的许多工程和制造过程有着密切的联系。
在纺织、纸品和航空航天等领域,都存在着类似的拼接和叠放问题。
通过对纸片拼接问题的研究和建模,可以为这些实际应用提供理论支持和技术指导。
6. 总结回顾通过以上的探讨,我们可以看到,纸片拼接这一看似简单的问题,实际上涉及到许多有趣的数学和几何问题。
从纸片的基本概念、数学建模到几何特性和实际应用,我们可以更加全面、深刻和灵活地理解这一主题。
我个人认为,纸片拼接问题不仅具有学术研究的价值,还具有实际应用的潜力,希望能够引起更多人的关注和研究。
2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆邮电大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2013 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要本文研究的是碎纸片的拼接复原问题。
由于人工做残片复原虽然准确度高,但有着效率低的缺点,仅由计算机处理复原,会由于各类条件的限制造成误差与错误,所以为了解决题目中给定的碎纸片复原问题,我们采用人机结合的方法建立碎纸片的计算机复原模型解决残片复原问题,并把计算机通过算法复原的结果优劣情况作为评价复原模型好坏的标准,通过人工后期的处理得到最佳结果。
面对题目中给出的BMP格式的黑白文字图片,我们使用matlab软件的图像处理功能把图像转化为矩阵形式,矩阵中的元素表示图中该位置像素的灰度值,再对元素进行二值化处理得到新的矩阵。
题目每一个附件中的碎纸片均为来自同一页的文件,所以不需考虑残片中含有未知纸张的残片以及残片中不会含有公共部分。
选择题在2013年数学建模B题纸片拼接问题中,以下哪项不是纸片拼接需要满足的基本条件?A. 纸片形状必须完全相同B. 纸片大小可以有所不同C. 纸片边缘必须能够完全吻合(正确答案)D. 拼接后不能重叠也不能有缝隙在处理纸片拼接问题时,以下哪种方法不是常用的数学建模方法?A. 几何分析B. 图论应用C. 占卜预测(正确答案)D. 最优化方法若要将多个不同形状的纸片拼接成一个正方形,以下哪项是拼接成功的关键?A. 纸片数量足够多B. 纸片总面积等于正方形面积C. 每种纸片都有相同的数量D. 纸片边缘能够相互匹配(正确答案)在纸片拼接的数学模型中,以下哪项不是影响拼接难度的因素?A. 纸片的形状复杂度B. 纸片的数量C. 纸片的颜色(正确答案)D. 拼接目标的形状若要将一系列矩形纸片拼接成一个无缝隙的大矩形,以下哪项条件不是必须满足的?A. 所有矩形纸片的长宽比相同B. 矩形纸片可以旋转使用C. 矩形纸片必须按特定顺序拼接(正确答案)D. 拼接后的大矩形边缘必须平直在解决纸片拼接问题时,以下哪种工具或技术可能不会被用到?A. 计算机编程B. 数学公式推导C. 手工剪纸实验(正确答案)D. 数据可视化软件对于一个给定的纸片拼接问题,以下哪项不是评估拼接方案优劣的标准?A. 拼接后的形状是否规则B. 拼接过程中是否产生浪费C. 拼接速度是否足够快(正确答案)D. 拼接后的图案是否美观在纸片拼接的数学建模中,以下哪项不是优化目标的可能选择?A. 最小化拼接后的面积B. 最大化拼接后的稳定性C. 最小化拼接所需的纸片数量(正确答案)D. 最大化拼接图案的对称性若要通过数学模型解决一个复杂的纸片拼接问题,以下哪项步骤可能是不必要的?A. 对纸片进行精确测量B. 建立纸片的几何模型C. 预测纸片的未来变形情况(正确答案)D. 设计有效的拼接算法。
2013年数学建模b题纸片拼接2013年数学建模B题:纸片拼接一、引言纸片拼接是数学建模中的一个重要问题,它不仅有着广泛的应用领域,同时也涉及到许多数学概念和技巧。
本文旨在通过对2013年数学建模B题的研究,探讨如何在给定的条件下进行纸片拼接,并给出相应的数学模型和算法。
二、问题描述在本题中,我们需要将一张白纸剪成一些小纸片,并按照一定规则将它们拼接成一个大正方形。
给定一张n * m的白纸,我们需要将其剪成纸片,每个纸片的面积为1 * 1,并且不能有重叠。
然后,我们需要将这些纸片按照一定的方式拼接成一个边长为k的正方形(k <= n, k<= m),并使得正方形中没有漏缝和重叠。
三、数学模型为了解决这个问题,我们可以使用数学模型来描述纸片拼接的过程。
假设我们将纸片按顺序编号为1, 2, 3, ..., N(N为总纸片数),并用二维数组P(i)来表示第i个纸片的坐标(x, y)。
那么,我们可以定义一个n * m的二维数组M,其中M(x, y)表示坐标为(x, y)的纸片编号。
通过构建这个数学模型,我们可以方便地表示和操作纸片拼接过程。
四、纸片拼接算法在进行纸片拼接时,我们可以使用递归算法来实现。
具体步骤如下:1. 在开始时,将M数组全部初始化为0,表示没有纸片被放置在该位置。
2. 从第一个纸片开始,依次尝试将其放置在M数组的空位上,直到找到一个合适的位置。
合适的位置满足以下条件:a) 该位置未被占用;b) 该位置以及相邻位置的纸片可以形成一个正方形。
3. 如果找到了一个合适的位置,将该纸片放置,并将其编号填入M数组对应的位置中。
4. 继续将下一个纸片进行放置,直到所有纸片都被放置完毕。
5. 如果无法找到合适的位置放置当前纸片,则将该纸片放回上一个位置,并重新选择一个合适的位置放置前一个纸片。
6. 重复步骤3-5,直到找到合适的位置放置所有纸片或者找遍所有位置仍无法放置。
五、实例分析考虑一个具体的例子,假设给定的白纸为3 * 5,我们需要将其剪成纸片并拼接成一个2 * 2的正方形。
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):西华大学参赛队员(打印并签名) :1. 尚安2. 洋3. 叶军指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:2013 年09 月15 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要本文通过分析题中相关要求及条件,建立数学模型解决了各种规则碎纸片的拼接复原问题。
针对问题一,首先将题中所给图片导入matlab软件,利用imread函数得到每图片的文字灰度像素矩阵,再取出所有矩阵左、右列,建立像素绝对差拟配模型,得到拟配程度最高的两幅图片,进行拼接,出现不合理拼接情况则进行人工干预,最后重复上述过程,完成全部拼接并导出图像。
2013年数学建模b题纸片拼接
2013年数学建模B题是关于纸片拼接的问题。
以下是该题的
问题描述和解题方法的一个简要说明。
问题描述:
问题要求将一张长为L1、宽为W1的纸片与另一张长为L2、
宽为W2的纸片进行拼接,形成一个平面图案。
拼接的要求是两张纸片不能重叠,且只能通过边缘进行拼接。
问是否存在一种拼接方式满足要求,并给出拼接的方法。
解题方法:
1. 首先,我们需要明确问题的约束条件。
根据题目的描述,可以得到以下约束条件:
- 拼接后的平面图案的长为L1+L2或W1+W2
- 拼接后的平面图案的宽为W1或W2
- 拼接的方式有两种情况:将L1与L2拼接,或将W1与
W2拼接
2. 根据约束条件,我们可以列出两种情况的拼接方式,并通过计算判断是否满足要求。
具体步骤如下:
- 情况一:将L1与L2拼接。
这种情况下,需要比较W1和
W2的大小。
若W1>=W2,则满足要求,可以得到拼接的方法;
若W1<W2,则需要继续考虑情况二。
- 情况二:将W1与W2拼接。
这种情况下,需要比较L1和
L2的大小。
若L1>=L2,则满足要求,可以得到拼接的方法;
若L1<L2,则无法满足要求。
3. 根据以上步骤,可以得出结论:若情况一满足,将L1与L2拼接;若情况二满足,将W1与W2拼接;若两种情况都不满足,则无法完成纸片的拼接。
注意事项:
- 在计算过程中需要注意单位一致性。
- 在判断拼接条件时,需要考虑等号情况。
以上是对2013年数学建模B题纸片拼接问题的简要说明。
具体的计算步骤和具体数值计算需要根据实际题目给出的数值进行具体分析和计算。