电流纵差动保护原理(一)
- 格式:docx
- 大小:11.23 KB
- 文档页数:3
线路纵联差动零序差动保护原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!线路纵联差动保护是电力系统中一种常见的保护手段,它主要用于保护电力输电线路免受纵联故障的影响。
纵联电流差动保护意义纵联电流差动保护是电力系统中常用的一种保护方式,它的作用是检测电力系统中的电流差异,当电流差异超过设定值时,发出保护信号,切断故障电路,保护电力设备的安全运行。
本文将从纵联电流差动保护的原理、应用和发展趋势等方面进行探讨。
纵联电流差动保护是一种基于电流差异的保护方式,它通过比较电流差动值与设定值的大小来判断系统是否存在故障。
在电力系统中,各个相位的电流值应该是相等的,但当系统存在故障时,电流的分布会发生变化,导致电流差异产生。
纵联电流差动保护利用这种差异来进行故障检测和保护动作。
纵联电流差动保护的主要应用是在变电站和输电线路中。
在变电站中,电流差动保护可以用于保护变压器、发电机和母线等设备,及时切断故障电路,防止故障扩大。
在输电线路中,电流差动保护可以用于保护线路的安全运行,检测和切除故障电流,保证电力系统的可靠性。
纵联电流差动保护具有以下几个优点。
首先,它可以实现快速的动作,及时切断故障电路,减小故障损失。
其次,它具有灵敏度高、可靠性好的特点,可以检测到微弱的电流差异,有效保护电力设备的安全运行。
此外,纵联电流差动保护还具有自适应性,可以根据系统的变化自动调整保护参数,提高保护的准确性和稳定性。
纵联电流差动保护在近年来得到了广泛的应用和发展。
随着电力系统规模的不断扩大和电力设备的不断更新,对保护技术的要求也越来越高。
纵联电流差动保护作为一种成熟的保护方式,具有较高的可靠性和适应性,受到了广大电力工程师的青睐。
然而,纵联电流差动保护也存在一些问题和挑战。
首先,纵联电流差动保护对系统的接地方式有一定要求,需要保证系统的中性点接地可靠。
其次,纵联电流差动保护对系统的接线方式和电流互感器的布置也有一定的要求,需要满足一定的准确性和可操作性。
此外,纵联电流差动保护在应对复杂故障情况时可能出现误动作或漏动作的情况,需要进一步提高保护的灵敏度和准确性。
为了解决以上问题,纵联电流差动保护的发展方向主要有以下几个方面。
热电厂主变压器的纵差动保护原理及整定方法浙江旺能环保股份有限公司 作者:周玉彩一、构成变压器纵差动保护的基本原则我们以双绕组变压器为例来说明实现纵差动保护的原理,如图1所示。
由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差动保护的正确工作,就必须适当选择两侧电流互感器的变比,使得在正常运行和外部故障时,两个二次电流相等,亦即在正常运行和外部故障时,差动回路的电流等于零。
例如在图1中,应使图 '2I =''2I = 。
同的。
这个区别是由于线路的纵差动保护可以直接比较两侧电流的幅值和相位,而变压器的纵差动保护则必须考虑变压器变比的影响。
二、变压器纵差动保护的特点变压器的纵差动保护同样需要躲开流过差动回路中的不平衡电流,而且由于差动回路中不平衡电流对于变压器纵差动保护的影响很大,因此我们应该对其不平衡电流产生的原因和消除的方法进行认真的研究,现分别讨论如下: 1、由变压器励磁涌流LY I 所产生的不平衡电流变压器的励磁电流仅流经变压器的某一侧,因此,通过电流互感器反应到差动回路中不能平衡,在正常运行和外部故障的情况下,励磁电流较小,影响不是很大。
但是当变压器空载投入和外部故障切除后电压恢复时,由于电磁感应的影响,可能出现数值很大的励磁电流(又称为励磁涌流)。
励磁涌流有时可能达到额定电流的6~8倍,这就相当于变压器内部故障时的短路电流。
因此必须想办法解决。
为了消除励磁涌流的影响,首先应分析励磁涌流有哪些特点。
经分析得出,励磁涌流具有以下特点:(1) 包含有很大成分的非周期分量,往往使涌流偏向于时间轴的一侧 ; (2) 包含有大量的高次谐波,而以二次谐波为主; (3) 波形之间出现间断,在一个周期中间断角为ɑ。
根据以上特点,在变压器纵差动保护中,防止励磁涌流影响的方法有: (1) 采用具有速饱和铁心的差动继电器;İ1′′ n İ1′(2) 利用二次谐波制动;(3) 鉴别短路电流和励磁涌流波形的差别等。
电动机纵联差动保护一、比率制动差动保护 (1)电动机二次额定电流1n TAI n =•(2)差动保护最小动作电流I s =K rel (·K cc ·K er +Δm )I nap K K rel ——可靠系数,取K rel =2ap K ——外部短路切除引起电流互感器误差增大的系数(非周期分量系数)=2 ap K K cc ——同型系数,电流互感器同型号时取K cc =0.5,不同型号时K cc =1 K er ——电流互感器综合误差取K er =0.1 Δm ——通道调整误差,取Δm =0.01~0.02I s =2 (2×0.5×0.1+0.02)I n =0.24 I n一般情况下,取I s =(0.25~0.35)I n ,当不平衡电流较大时,I s =0.4I n (3)确定拐点电流I t 有些装置中拐点电流是固定的,如I t = I n ;当拐点电流不固定时可取I t = (0.5~0.8)I n (4)确定制动特性斜率s 按躲过电动机最大起动电流下差动回路的不平衡电流整定最大起动电流I st ·max 下的不平衡电流I umb ·max 为I umb ·max =(·K cc ·K er +Δm ) I st ·maxap K =2,K cc =0.5,K er =0.1,Δm=0.02,I st ·max =K st I n (取I st =10)ap KI umb ·max =(2×0.5×0.1+0.02)10I n =1.2I n比率制动特性斜率为tn st sumb rel I I K I I K s −−=•maxK rel =2,当I s =0.3 I n ,I t =0.8 I n ,K st =72 1.20.30.3470.8n n n nI I s I I ×−==−一般取s =0.3~0.5 (5)灵敏系数计算电动机机端最小两相短路电流为(2)12K L I x x =•′+x ′- 电动机供电系统处最小运行方式时折算到S B 基准容量的系统阻抗标幺值 U B - 电动机供电电压级的平均额定电压U B =6.3(10.5)kV X L - 电动机供电电缆折算到S B 基准容量的阻抗标幺值制动电流(2)resTA2K I I n =相应的动作电流为(2)op s t TA 2KI I I S I n ⎛⎞=+−⎜⎟⎝⎠灵敏系数满足以下条件(2)senTA op1.5(2)K I K n I =≥ (6)差动速断动作电流按躲过电动机起动瞬间最大不平衡电流条件整定 I i =K rel I umb ·maxK rel – 可靠系数取K rel =3.5~4.5I umb ·max =1.2 I n 则I i =(3.5~4.5)×1.2 I n =(4.2~5.2) I n一般取I i =(4~6) I n 要求电动机机端两相短路时(2)senTA i1.2K I K n I =≥ (7)差流越限告警,取差流越限告警定值为15% I n ,告警延时一般装置内部固定(8)动作时限,差动保护本身不需设动作时限,但有的装置为躲暂过程而设了动作时限,此时可取动作时限0.03~0.05 s 。
变压器纵联差动保护基本原理在我们生活的世界里,有一个很重要的东西叫变压器。
变压器就像是一个神奇的“电力魔法师”,它能把电变得更适合我们使用。
比如说,发电厂发出来的电电压很高,不能直接送到我们家里,这时候变压器就能把高电压变成低电压,让电安全地进入我们的家,让电灯亮起来,电视、冰箱都能正常工作。
可是,变压器有时候也会出点小毛病。
这就好比我们人会生病一样,变压器要是生病了,那可就麻烦,会影响我们用电的。
那怎么知道变压器有没有生病?这就需要一种特殊的保护方法,叫纵联差动保护。
那这个纵联差动保护到底是怎么工作的?来打个比方。
想象一下,有一条小河,河水从上游流到下游。
正常情况下,流进小河的水和流出小河的水应该是差不多的。
如果突然有很多水在半路上漏掉了,或者多出来了一些水,那是不是说明小河出问题?变压器的纵联差动保护就有点像在看这条小河的水流情况。
在变压器这里,有两条“电流小路”,一条是流进变压器的电流,一条是流出变压器的电流。
当变压器一切正常的时候,流进的电流和流出的电流大小是差不多的,就像小河里的水正常流动一样。
这时候,纵联差动保护就会安静地待着,知道变压器很健康。
可是,如果变压器出了问题,比如说里面的电线短路了。
这时候,流进变压器的电流还是那么多,但是流出的电流就会变少,因为有一部分电流在短路的地方“迷路”了,跑不出去了。
这就好比小河中间破了个洞,水都漏下去了。
纵联差动保护就像一个聪明的小卫士,它一发现流进和流出的电流不一样了,就知道变压器出问题。
它会马上发出警报,就像我们遇到危险会大声呼救一样,告诉工作人员快来看看,变压器需要修理。
再举个例子,就像我们家里的水龙头。
正常情况下,打开水龙头,水会顺畅地流出来。
如果突然水流变小了,那可能是水管堵住了或者破了。
变压器的纵联差动保护就是通过看电流的大小变化,来判断变压器是不是“堵住”或者“破了”,是不是很神奇?所以,变压器纵联差动保护就像是变压器的“健康小卫士”,时刻盯着变压器的情况,一旦发现问题,就赶紧通知大家来修理,这样就能保证我们一直有稳定的电用。
Science &Technology Vision科技视界0引言随着社会的快速发展,电力系统在人们生活中所占的地位已经越来越重要,因此,维护输电线路的安全稳定运行,就成为了一个对当前所以电力从业人员来说都十分重要的问题。
在输电线路的保护中,距离保护及电流电压保护只需将其中一端线路的电流电压引入继电保护装置,但是由于多种原因,这种保护装置可能将区外故障误判为区内故障,因此,只有将保护的无时限保护范围缩短至小于线路的全长。
例如,保护I 段的定值一般设定为线路全长的80%到85%,在被保护线路其余部分发生故障时,都只能由II 段来切除。
但对于某些重要的线路来说,是不允许出现此类情况的,所以从为了实现能够无时限切除被保护线路的全长的目标出发,现阶段许多输电线路都采用了纵联保护的原理。
1电流纵联差动保护的原理及优点所谓输电线路的纵联保护,就是用某种通信通道将输电线路两端的保护装置纵向联结起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是在线路范围之外,从而决定是否切断被保护线路。
因此,理论上这种纵联保护具有绝对的选择性[1]。
而电流纵联差动保护的原理,是基于基尔霍夫电流定律的。
其判据为:∑I ≥I ZD式中∑I 为流入差动继电器的总电流,I ZD 为保护动作整定值。
图1-1输电线路电流纵联差动保护原理图在图1-1中,KD 为差动继电器,设电流的正方向为母线流向被保护线路的方向。
当线路内部故障时(如k1点短路),流经输电线路两侧的故障电流均朝正方向,且I ̇M +I ̇N =I ̇k ,式中I ̇k为k1点的短路电流;当线路正常运行或被保护线路外部短路时(如k2点短路),输电线路两侧的电流大小相等且方向相反,I ̇M +I ̇N=0。
即在内部短路时,短路电流很大,差动继电器动作;而外部短路时,短路电流几乎为0,差动继电器不动作。
从上述原理的叙述中,可以看出,电流纵联差动保护具有如下诸多优点:能正确地判别内部故障和外部故障,灵敏度高,简单可靠,全线速动,流入继电器的总电流不受系统运行方式、非全相运行和系统振荡等影响,本身具有选相功能,这些优点都是距离保护及电流电压保护所没有的,故如今电流差动保护已经成为输电线路主保护的首选原理之一,全国各地长期的运行经验也证明了其优越性。
线路纵联差动保护的原理线路纵联差动保护,听起来有点高深,其实它就像我们生活中保护自己的“小卫士”。
想象一下,咱们在马路上走,突然有车冲过来,肯定得迅速躲开吧?这就是保护机制的核心!线路纵联差动保护就是在电力系统中,负责监测电流的变化,一旦发现异常,它就会“警报大作”,确保设备的安全。
你可能会问,什么叫纵联差动保护呢?简单说,就是通过比较进出电流的差别来判断设备是否出现故障。
就好比咱们买水果,秤上显示的重量跟实际不符,肯定得检查一下。
正常情况下,电流进来的数量和出去的数量应该是一样的,就像你进门和出门时拿的包包一样多。
如果有“包包”少了,那就得引起警觉了。
这套保护机制工作起来可是一点不含糊。
它通常会把进线和出线的电流进行实时比较,如果发现电流有明显的差异,就会发出“嘿,出问题了”的信号,进而迅速切断电源。
就像你在家里看到电器冒烟,第一反应肯定是拔掉插头,防止火灾发生。
这样一来,线路上的设备就能得到及时的保护,避免出现更大的损失。
在电力系统中,纵联差动保护可不是单枪匹马,它往往和其他保护装置一起联手作战。
想象一下,一个保安队伍,大家分工明确,互相配合。
当其中一个发现了可疑人员,立刻就会通知其他人,形成合力来解决问题。
这样一来,整体的保护效果就大大提升了。
哎,生活中也是这样,团队的力量就是大!这种保护机制在实际应用中也特别灵活。
无论是变电站还是发电厂,线路纵联差动保护都能派上用场。
比如说,发电机一旦发生短路,电流变化很大,保护系统就会迅速响应,切断电源,确保其他设备不受影响。
说白了,就是为设备撑起一把保护伞,抵挡风雨,给我们带来安心。
这套系统的设计也不是一朝一夕能完成的。
它需要专业的人士进行细致的调试和维护,确保每一个环节都能顺畅运行。
就像开车上路,车子得定期保养,不然出个小故障,那就麻烦大了。
电力系统也一样,时刻保持良好的状态,才能避免突发事件。
在未来,随着科技的进步,线路纵联差动保护的技术也会越来越先进。
电流纵差动保护原理(一)
电流纵差动保护
什么是电流纵差动保护?
电流纵差动保护(Differential Current Protection)是一种用于保护电力系统中的设备和电路的保护装置。
它通过检测电流的差值来判断系统是否出现故障,并迅速采取措施以减小故障造成的影响。
原理概述
电流纵差动保护的原理是基于保护对象的电流变化情况来判断是否存在故障。
在正常运行中,电流应在设定范围内波动,当设备或电路出现故障时,电流的差值将超过设定的阈值,触发电流纵差动保护装置。
工作原理
电流纵差动保护的工作原理可以分为以下几个步骤:
1.上下游电流检测:电流纵差动保护装置通过分别检测
保护对象上游和下游的电流值。
2.电流差值计算:保护装置将上下游电流的差值进行计
算,并与设定的阈值进行比较。
3.比较判断:如果电流差值超过设定阈值,则判断系统
出现故障,触发保护动作。
4.保护动作:一旦保护动作触发,装置会快速断开故障
电路,并发送信号给上位系统,以通知操作人员存在故障。
特点和优势
•灵敏度高:电流纵差动保护装置能够精确检测微小的电流差值,并判断系统是否出现故障。
•速度快:一旦检测到电流差值超过阈值,保护装置迅速采取措施,快速断开故障电路,以防止进一步扩大事故。
•精准性高:通过设置适当的阈值,可以避免误判和误动作,提高系统的可靠性和稳定性。
•可靠性强:电流纵差动保护装置采用了高可靠性的硬件和软件设计,确保了其长时间稳定工作的能力。
应用领域
电流纵差动保护广泛应用于电力系统中,常见的应用领域包括:•发电厂:用于保护发电机和输电系统,防止电流异常导致设备故障和事故发生。
•变电站:用于保护变压器和其他设备,有效减小故障对电力系统的影响。
•配电系统:用于保护配电线路和电力设备,提高电网的可靠性和安全性。
总结
电流纵差动保护是一种重要的电力系统保护装置,通过检测电流差值来判断设备和电路是否存在故障,并采取迅速的措施进行保护。
它的快速响应、高灵敏度和可靠性强等特点,使其在电力系统的运行中扮演着重要的角色。
随着技术的不断发展,电流纵差动保护将进一步提高其性能和应用范围,为电力系统的稳定运行提供更好的保障。
参考文献
1.[电流保护–电流纵差保护](
2.[Differential Protection / Relay Principle, Function and
Application](
3.[Differential Current Protection](。