2013年全国大学生数学建模竞赛B题全国一等奖论文
- 格式:doc
- 大小:425.00 KB
- 文档页数:15
2013年数学建模国赛b题
摘要:
1.背景介绍:2009 年3 月合肥市非国有建筑专业职称资格评审通过人员名册
2.名册内容:通过人员名单、职称、资格等信息
3.意义:对非国有建筑行业的专业人才的肯定和鼓励
正文:
2009 年3 月,合肥市对非国有建筑专业职称资格进行了评审,并通过了一份详细的名册。
这份名册包含了通过人员名单、职称、资格等信息,是对非国有建筑行业的专业人才的肯定和鼓励。
在这个名册中,我们可以看到各位通过人员的姓名、工作单位、评审职称以及资格等信息。
他们经过了严格的评审,最终脱颖而出,获得了相应的职称资格。
这不仅是他们个人努力的结果,也是他们所在单位和行业的认可。
这份名册的意义不仅在于对个人的肯定,更在于对整个非国有建筑行业的
推动。
它鼓励了更多的专业人士积极投身于建筑行业,提高了整个行业的专业水平。
同时,它也为行业内外提供了一个参考,让人们更好地了解非国有建筑行业的发展和人才状况。
车道被占用对城市道路通行能力的影响摘要本文主要研究交通事故占用车道对城市道路通行能力的影响.针对问题一,首先求出道路的基本通行能力,结合道路基本通行能力与定义的交通事故修正系数求得出事故发生后的实际通行能力.用SPSS软件采用Mann-Whitney U检验方法对事故发生前的实际通行能力值与事故发生后的实际通行能力值进行两独立样本检验,结果表明两者存在显著性差异.再作图观察实际通行能力值变化趋势,且对其分三个阶段进行描述,得到事故发生起伏期的实际通行能力变化很大,交通事故发生后实际通行能力在调整期相对稳定;稳定期曲线趋于平缓,实际通行能力基本稳定.针对问题二,由于在同一横断面发生的两次交通事故所占车道不同时,利用SPSS 软件对两起交通事故的实际通行能力值进行两配对样本检验,采用Wilcoxon配对秩检验方法得到:随时间的推移,两次事故发生后的实际通行能力的变化有显著性差异.然后计算两次事故稳定期车流量的比值为37%:63%,而右转与左转的流量比为38%:62%,说明左、右转流量的不同是造成两次交通事故对应的实际通行能力差异的直接原因.针对问题三,首先根据实际通行能力、上游车流量定义出拥堵系数;然后通过讨论拥堵系数与事故路段车辆排队长度之间的关系,确定了事故路段车辆排队长度与实际通行能力、事故持续时间以及上游车流量之间关系的积分模型;最后考虑到从视频中统计出的是离散型数据,因此将上述积分模型进行离散化处理,求出了事故发生后该路段部分时刻的排队长度的具体值,通过与视频中实际的排队长度进行比较,从而检验了模型的准确性.针对问题四,为了求出估算车队排队长度将到达上游路口的时间,建立了两个模型对其进行对比求解.从问题1得出的实际通行能力的数据可以拟合出其与时间的关系函数,进而得出不同时间段的实际通行能力值.模型A中,将上游车流量定为1500pcu/h,通过排队长度模型的求解得到排队长度达到140米时,持续时间为18min.模型B首先检验得到第一次交通事故发生后的上游车流量符合泊松分布.通过对实际情况的MATLAB实验仿真求出满足泊松分布的上游车流量在一小时内的随机分布数组,并将其代入排队长度模型进行求解,得到结果在1240s时,修正后的排队长度达到140米,即认为在事故持续时间20.5min左右时,车辆排队长度到达上游路口.通过对比得到,模型B较模型A更为贴近实际.关键词:两独立样本检验;Mann-Whitney U检验;Wilcoxon配对秩检验;拥堵系数;MATLAB仿真一、问题的重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象.由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞.如处理不当,甚至出现区域性拥堵.车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据.视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道.请研究以下问题:1.根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程.2.根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异.3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系.4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离.请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口.二、问题的分析按照题目要求,本文主要研究因交通事故车道被占用对城市道路通行能力的影响.交通事故发生后,由于发生事故的车辆对自己所行驶车道造成堵塞,使得该横断面实际通行能力有很大变化;而对于不同交通事故发生后堵塞不同车道的情况,同一横断面交通事故所占车道不同,该横断面实际通行能力也会有差异;不同状况的交通事故所造成的道路堵塞,对路段车辆排队长度也有很大的影响.2.1问题一的分析问题一要求描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程.通过对附件视频1的观察,交通事故发生后,两辆相撞的车在第一时间对自己所行驶车道(第二、三车道)造成堵塞(附件3中所标注右转车道为车道一,直行车道为车道二,左转车道为车道三),仅剩唯一的第一车道可以通行.这导致事故所处横断面的实际通行能力有很大的变化.根据题目提供的视频附件,提取相关数据.通过对视频中所提供数据进行分析,统计以10秒为组距驶入驶出固定路段的车辆数.根据统计得到的数据,求出事故发生前道路的实际通行能力,并以此作为基准.再拟定事故发生后所处横断面的实际通行能力指标,求出从交通事故发生至事故撤离整个期间内的实际通行能力值.分析比较事故发生前的实际通行能力与事故发生后的实际通行能力的差异,说明发生事故后对道路通行能力的影响.再对事故发生后的各个实际通行能力值作散点图,观察其变化趋势,分阶段描述发生交通事故的整个期间,事故所处横断面实际通行能力的变化.2.2问题二的分析对于问题二中所要求的,分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异.根据两段附件视频可知,第一次交通事故的发生造成第二、三车道被堵塞,只有第一车道可以通行;第二次交通事故的发生造成第一、二车道被堵塞,只有第三车道可以通行.根据题目的附件三可知,第一车道为右转车道,通行流量比例为21%,第三车道为左转车道,通行流量比例为35%,即两条车道的通行流量是有差异的,就有可能造成两起交通事故实际通行能力的差异.为比较所占车道不同对实际通行流量的影响,首先按第一问求实际通行能力的思路进行求解,得到各时间段车流量的实际通行能力.然后进一步分析自发生事故起,两起交通事故的实际通行能力随时间推移有无显著性差异.对于产生差异的原因,从各车道流量不同的角度出发,说明车流量对实际通行能力的影响.2.3问题三的分析问题三中要求构建数学模型分析交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系.根据实际情况可知,当道路实际通行能力降低,而车流量较大时,道路车辆的排队现象越容易出现.车辆的排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量这三个变量均有很大关系.为研究该问题,建立用实际通行能力、上游车流量、事故持续时间表示排队长度的数学模型.事故发生后,道路横断面可供通车辆通行的车道减少,在很大程度上减弱了道路实际通行能力,使得车辆从路段上游驶入已知路段时的速度大于车辆驶出事故横断面的平均速度.当事故路段上游的车驶入该路段时发现路段内原有的车还没有驶离事故横断面,未驶出的车辆积少成多,就会导致该路段的拥堵.为此,定义一个拥堵系数来描述t时刻车辆进入拥堵队列的可能性大小.又由于本题道路的横断面有三条车道,且下游转道车流量的比例分别为21%,44%,35%,因此道路拥堵时,按照车流量比例最大的车道上的队列长度作为车辆排队长度计算,用微分确定单位时间内的车辆排队长度,最后建立积分模型得到排队长度的表达式,进行离散化处理,求出不同时间段的排队长度的具体值.2.4 问题四的分析问题四假设交通事故所处横断面距离上游路口变为140米,已知上游车流量和初始排队长度,要求估算车队排队长度将到达上游路口的时间.从问题1得出的实际通行能力的数据可以拟合出其与时间的关系函数,进而得出不同时间段的实际通行能力值.再分别建模模型A 、B 对此问题进行求解.模型A 中根据题意将上游车流量恒定为1500pcu/h ,再通过得到的实际通行能力值及排队长度进行求解.模型B 考虑到实际中路口上游车流量不可能在一小时内为一定值,分析在上游车流量为1500pcu/h 的情况下,车流量在一小时内连续的时间段内的车流量分布情况,所以先要得出在视频1中在交通事故发生后的上游车流量分布规律,进而求出1500pcu/h 的车流量在一小时的随机分布数组,并对实际情况的实验仿真.最后将各时间段实际通行能力值,上游车流量代入第三问模型的函数表达式中,得到各时间段的排队长度,计算第一次排队长度达到140米的时间.三、模型的假设1.假设题目中的发生的两个交通事故处于同一路段的同一横断面,且发生事故后完全占用两条车道;2.假设只考虑四轮及以上机动车、电瓶车的交通流量,且换算成标准车当量数;3.假设公交车及大巴车的的车长为标准小汽车车身长度的二倍;4.假设本文所研究的道路平坦,不考虑因发生交通事故的车辆造成道路堵塞以外的其它道路障碍.四、符号的说明1T :缺失数据的第一时间段;n T :缺失数据的第n 时间段 (42或 n );1N :驶入等待通行区域的车辆数;2N :驶出等待通行区域的车辆数;3N :标志性车辆前至事故发生地点的车辆数;4N :标志性车辆至等待通行区域的上游边界的车辆数;N : 缺失数据的补全值;11N :事故发生前驶入等待通行区域的车辆数;12N :事故发生前驶出等待通行区域的车辆数;13N :事故发生前等待通行区域内车辆数;11'N :事故发生前上一时间段驶入等待通行区域的车辆数;12'N :事故发生前上一时间段驶出等待通行区域的车辆数;13'N :事故发生前上一时间段等待通行区域内车辆数;21N :事故发生后驶入等待通行区域的车辆数;22N :事故发生后驶出等待通行区域的车辆数;N:事故发生后等待通行区域内车辆数;23'N:事故发生后上一时间段驶入等待通行区域的车辆数;21'N:事故发生后上一时间段驶出等待通行区域的车辆数;22'N:事故发生后上一时间段等待通行区域内车辆数;23U:正常通行时间内所处横断面的实际通行能力;1U:在交通事故影响下所处横断面的实际通行能力;2T:单位时间;hQ:基本通行能力;U:事故后实际通行能力;l:等待通行区域车辆排队长度;W:路段上游车流量;N:单位时间最大车流量;t:事故持续时间;:拥堵系数;v:汽车通过事故横断面的平均速度.五、模型的建立与求解5.1问题一:事故发生至撤离期间断面通行能力的变化问题一要求描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程.针对此问题,具体求解分为以下三个步骤:Step1:根据统计得到的数据,求出事故发生前道路的实际通行能力;Step2:拟定事故发生后所处横断面实际通行能力指标,求出从交通事故发生至发生事故车辆撤离整个期间内的实际通行能力;Step3:分析比较以上两种情况的实际通行能力,并对其进行差异性检验;Step4:对事故发生后的实际通行能力值作图,通过适当的分析,分阶段描述在各不同阶段事故所处横断面实际通行能力的变化过程.5.1.1模型的准备1.通过视频统计数据为进行严谨详细的问题求解,首先从题目所给出的视频附件中统计详细数据.附件1中的视频记录了2013年2月28日16:38:39~17:03:50期间某路段的道路通行情况,视频共26分58秒,包括发生交通事故前的第一段正常通行时间,发生交通事故至撤离现场期间在事故影响下的实际通行时间,以及撤离后的第二段正常通行时间.第一段正常通行时间从16:38:39开始,大约持续了四分钟;发生交通事故至撤离现场时间为16:42:32~17:01:21,大约持续了19分钟.通过观察视频1中道路上车辆行驶的情况,将事故发生地点至其上游120米处划为等待通行区域的规定路段,由于统计每秒进出等待通行区域车辆数的过程时间太短,不利于统计数据,因此划定以10秒为统计时间间距,选定进出等待通行区域的参考系,根据城市道路工程设计规范内的车辆换算表,可知小汽车为1辆标准车辆,大客车换算为2辆标准车]1[.以此分别统计出每10秒驶入规定路段的车辆数及同时间段内驶出该规定路段的车辆数.2.缺失数据处理(1)由于视频1中事故发生后16:49:40~16:50:10与16:54:00~16:54:10两个时间段的影像被剪去,造成数据缺失.本文通过以标志性车辆为参考系,统计缺失数据的时间段中两个时间点1T 与n T 画面中出现的车辆数3N 与4N ,3N 为标志性车辆前至事故发生地点的车辆数,4N 为标志性车辆至等待通行区域的上游边界的车辆数. 其中1T 至n T 共经过了n 个时间间距.为补全数据,本文通过对统计的两时间点内的车辆数进行做差求平均值,得出缺失的数据均为均值N :n N N 34N -=. 补全数据结果如下:表1 补全数据表5.1.2模型的建立与求解道路通行能力是指道路上某一点某一车道或某一横断面处,单位时间内可能通过的最大交通实体(车辆或行人)数,用辆/h 或用辆/昼夜或辆/秒表示,车辆多指小汽车,当有其它车辆混入时,均采用等效通行能力的标准车辆(小汽车)为单位(pcu ). 影响道路通行能力的主要因素是道路条件、交通条件和交通外环境等.基本通行能力是指在理想的道路、交通、控制和环境条件下,理论上所能通行的最大小时交通量.实际通行能力是指在设计或评价某一具体路段时,根据该设施具体的公路几何构造、交通条件以及交通管理水平,按实际公路条件、交通条件等进行相应对基本通行能力进行修正后的小时交通量]1[.实际通行能力的计算是假定没有偶然事件发生的情况下进行的.实际交通系统中,路段可以服务的最大交通量除了受车道宽度、侧向净空等确定性因素以外,还受许多随机性因素影响,如交通事故,自然灾害、恶劣天气、道路维护等]2[.由于本文研究的对象是同一条道路,并且车道的宽度均为3.25m ,以及其他确定性因素均相同.由于研究的时间相差不大(26分钟),所以自然灾害、恶劣天气、道路维护等随机性因素均相同.因此,此路段的实际通行能力只受交通事故的影响.模型的具体建立求解过程如下:1.实际通行能力的确定实际通行能力是由道路的基本通行能力乘上若干个对其造成影响的修正系数而得到的,由于此路段的实际通行能力只受交通事故的影响,故设定交通事故修正系数来对发生交通事故后道路基本通行能力进行修正,修正后的基本通行能力即为发生交通事故后道路的实际通行能力.(1)确定交通事故修正系数f通过对视频1中事故发生至撤离的数据采集,得到了每10秒驶入等待通行区域的车辆数1N 以及驶出的车辆数2N 的数据,进而分别统计出进入等待通行区域的车流量与驶出等待通行区域的车流量.由统计结果可发现,当道路拥堵严重时,从上游路口进入该路段的车辆数会在很大程度上减少(初步分析出现这种状况的原因是由于红绿灯以及车主主观对道路的判断放弃从该路段上通行),而进出路段的车流量之比却很大,与实际通行能力相悖,因此无法直接用进出路段的车流量之比来表示事故发生后道路的实际通行能力.为此,结合道路实际情况以及上述统计结果,本文以每10秒内驶出等待通行区域的车辆数比上相同时间段等待通行区域内的车辆数来反映事故发生后的实际通行能力.处于等待通行区域的车辆越多,则实际通行能力越小,联系视频中出现的情形,当道路拥堵严重时,进入该路段的车辆数会减少,反映事故发生后的实际通行能力并不受进入车辆数的影响,而取决与等待的车辆数,因此此指标克服了上述矛盾的情况.交通事故前的第一段正常通行时间内的交通事故修正系数用1f 表示,驶入等待通行区域的车辆数为11N ,驶出此区域的车辆数为12N ,在区域内停留的车辆数为13N ,上一时间段的相应指标量分别表示为11'N ,12'N ,13'N ,定义1f 为:1312111213111'''N N N N N N f -+==; 设发生交通事故至撤离现场期间在事故影响下所处横断面的实际通行能力用2f 表示,驶入等待通行区域的车辆数为21N ,驶出的车辆数为22N ,在区域内停留的车辆数为23N ,上一时间段的相应指标量分别表示为21'N ,22'N ,23'N ,定义2f 为:2322212123212'''N N N N N N f -+==; 由于事故发生后某一时间段仍可能出现等待通行区域内的车辆数为0,即023=N .又因为22N 可能为0时,其交通事故修正系数求得为0,但事实上此处有两种可能:一是因为堵塞严重无车通过,交通事故修正系数为0;二是因为等待通行区域内无车通过,交通事故修正系数为1(表示正常通过),故产生歧义,所以采用加“1”的方法进行处理.采用加“1”法对实际通行能力影响较小,即23N 、22N 均加1后,再求两者之间的比仍可作为交通事故修正系数.因此本文采取加“1”法进行修正其交通事故系数,既消除歧义,又反映了实际通行能力.经过加“1”法修正后:事故发生前修正系数:1'''111'1312111213111+-++=++=N N N N N N f ; 事故发生后修正系数: 1'''111'2322212123212+-++=++=N N N N N N f . (2)确定基本通行能力Q由附件3图中可知,道路同一方向横断面上的三条车道,每条车道的宽度为固定的3.25m,根据查阅相关资料,宽度为3.25m 的车道最大通行速度为60km/h,当道路通行速度为60km/h 时,查表可知该段道路的一般基本通行能力为1800pcu/h ]3[.由于基本通行能力是指在理想状态下,理论上所能通行的最大小时交通量,为进一步确定已知道路基本通行能力,根据基本通行能力定义,道路基本通行能力为道路理想状态下单位时间h T 内,可能通过的最大车辆数N ,得到计算已知道路基本通行能力的公式:)/(h pcu T N Q h=; 设事故发生前没有任何堵塞的情况下道路为理想状态,且在此时间段内(不考虑堵车),通过该路段的车辆中,根据发生交通事故前道路上行驶的车流量统计数据,每10秒通过规定的120m 路程的车辆最大值为5辆,代入公式计算得:)(180********h / pcu ss pcu T N Q h===; (3)求解发生事故后实际通行能力U 根据相关资料]2[由基本通行能力与修正系数计算实际通行能力的关系公式为:f Q U ⨯=.2.事故发生前后实际通行能力的差异分析比较以上两组统计值,即未发生交通事故时的实际通行能力值和发生交通事故期间的道路实际通行能力值.由于视频所给出的两个时期时间长短不一致,故统计出的数值个数不同,并且我们对其总体分布不甚了解,两独立样本的非参数检验是在对总体的分布不了解的情况下,通过对独立样本的Mann-Whitney U 检验分析来推断样本来自的两个总体的分布等是否存在显著性差异的方法]4[.因此本文通过SPSS 采用两独立样本检验法来对这两组数据样本进行差异性检验(具体操作步骤及详细结果见附录1):表2 发生交通事故前后实际通行能力独立样本检验结果表检验统计量a实际通行能力Mann-Whitney U 344.500Wilcoxon W 7484.500Z -5.170渐近显著性(双侧) .000a. 分组变量: 是否发生车祸由上表知,采用Mann-Whitney U 检验,渐近显著性(双侧)值为0.000,小于0.01,因此拒绝原假设,认为发生车祸的前后的实际通行能力指标存在极显著差异.得出结论:由于突发的交通事故,对原来正常的道路通行能力有显著性影响,对比道路正常通行能力和事故期间的实际通行能力,可知交通事故的发生使得道路通行能力明显下降.3. 结果分析对事故发生后的实际通行能力值作图,并分阶段描述在各不同阶段事故所处横断面实际通行能力的变化过程.根据统计出的交通事故发生至事故撤离整个期间内的实际通行能力值,做出散点图如下:图1 第一起交通事故发生后实际通行能力变化图由图像观察可得,事故发生初期0~200秒的实际通行能力变化很大,定为交通事故发生后实际通行能力的起伏期;200~400秒相对稳定可设为交通事故发生后实际通行能力的调整期;400秒以后曲线趋于平缓,事故发生后的实际通行能力趋于稳定.对于事故发生初期实际通行能力起伏较大的原因,根据视频的显示,初步分析其原因为红绿灯的变化及上下班高峰期的影响,而对于后期实际通行能力趋于稳定的原因,是由于出现了交通堵塞,开始进行排队通过,且随着排队的车辆数目量增多,红绿灯对平稳期的通行影响逐渐较小.4.红绿灯的影响通过上诉的结果分析,可知红绿灯对实际通行能力有一定的影响,本文将以红绿灯的相位时间为统计时间间距对视频1中进出等待通行区域的车辆数进行统计.选定进出等待通行区域的参考系,以此分别统计出每30秒进入规定路段的车辆数及同时间段内驶出该规定路段的车辆数.将进入规定的等待通行区域对应的时间化为1,2,3, (26)做出实际通行能力与对应时间的关系图,如下:图2 实际通行能力与红绿灯对应时间的关系图通过对实际通行能力与对应时间的关系图的观察,可知在1~16的时间内,实际通行能力呈起伏状,红绿灯的相位周期为1分钟,整个阶段内红灯为峰值,绿灯为谷值.而在17~26的时间内,开始进行排队,实际通行能力趋于稳定,因此红绿灯对事故发生后前期有较显著变化,而对事故发生后末期并不影响.5.2问题二:交通事故所占车道不同对通行能力的影响问题二要求分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异.针对此问题,具体求解为以下三个步骤:Step1:拟定发生事故后事故所处横断面实际通行能力,求出从交通事故发生至事故撤离整个期间内的实际通行能力;Step2:对两次交通事故发生后,随时间的推移,对相同时段的道路实际通行能力值用SPSS软件两配对样本检验进行显著性差异分析;Step3:画图比较分析,说明两次交通事故发生所占车道不同对该横断面实际通行能力影响的差异.5.2.1模型的准备为对问题进行严谨详细的求解,首先从题目所给出的视频附件中统计详细数据.针对问题中所提出的对比两起事故在发生之后对道路实际通行能力的影响,我们仅对发生交通事故至撤离现场这一阶段进行数据统计.发生交通事故至撤离现场阶段的时间为。
基于打车软件的出租车供求匹配度模型研究与分析摘要目前城市“出行难”、“打车难”的社会难题导致越来越多的线上打车软件出现在市场上。
“打车难”已成为社会热点。
以此为背景,本文将要解决分析的三个问题应运而生。
本文运用主成分分析、定性分析等分析方法以及部分经济学理论成功解决了这三个问题,得到了不同时空下衡量出租车资源供求匹配程度的指标与模型以及一个合适的补贴方案政策,并对现有的各公司出租车补贴政策进行了分析。
针对问题一,根据各大城市的宏观出租车数据,绘制柱形图进行重点数据的对比分析,首先确定适合进行分析研究的城市。
之后,根据该市不同地区、时间段的不同特点选择多个数据样本区,以数据样本区作为研究对象,进行多种数据(包括出租车分布、出租车需求量等)的采集整理。
接着,通过主成分分析法确定模型的目标函数、约束条件等。
最后运用spss软件工具对数据进行计算,求出匹配程度函数F与指标的关系式,并对结果进行分析。
针对问题二,在各公司出租车补贴政策部分已知的情况下,综合考虑出租车司机以及顾客两个方面的利益,分别就理想情况与实际情况进行全方位的分析。
在问题一的模型与数据结果基础上,首先分别从给司机和乘客补贴两个角度定性分析了补贴的效果。
重点就给司机进行补贴的方式进行讨论,定量分析了目前补贴方案的效果,得出了如果统一给每次成功的打车给予相同的补贴无法改善打车难易程度的结论,并对第三问模型的设计提供了启示,即需要对具有不同打车难易程度和需求量的区域采取分级的补贴政策。
针对问题三,在问题二的基础上我们设计了一种根据不同区域打车难易程度和需求量来确定补贴等级的方法。
设计了相应的量化指标,以极大化各区域打车难易程度降低的幅度之和作为目标,建立该问题的规划模型。
目的是通过优化求解该模型,使得通过求得的优化补贴方案,能够优化调度出租车资源,使得打车难区域得到缓解。
通过设计启发式原则和计算机模拟的方法进行求解,并以具体案例分析得到,本文方法相对统一的补贴方案而言的确可以一定程度缓解打车难的程度。
基于最小二乘法的碎纸片拼接复原数学模型摘要首先对图片进行灰度化处理,然后转化为0-1二值矩阵,利用矩阵行(列)偏差函数,建立了基于最小二乘法的碎纸片拼接数学模型,并利用模型对图片进行拼接复原。
针对问题一,当两个数字矩阵列向量的偏差函数最小时,对应两张图片可以左右拼接。
经计算,得到附件1的拼接结果为:08,14,12,15,03,10,02,16,01,04,05,09,13,18,11,07,17,00,06。
附件2的拼接结果为:03,06,02,07,15,18,11,00,05,01,09,13,10,08,12,14,17,16,04。
针对问题二,首先根据每张纸片内容的不同特性,对图片进行聚类分析,将209张图片分为11类;对于每一类图片,按照问题一的模型与算法,即列偏差函数最小则进行左右拼接,对于没有拼接到组合里的碎纸片进行人工干预,我们得到了11组碎纸片拼接而成的图片;对于拼接好的11张图片,按照问题一的模型与算法,即行偏差函数最小则进行上下拼接,对于没有拼接到组合里的碎纸片进行人工干预。
我们最终经计算,附件3的拼接结果见表9,附件4的拼接结果见表10。
针对问题三,由于图片区分正反两面,在问题二的基础上,增加图片从下到上的裁截距信息,然后进行两次聚类,从而将所有图片进行分类,利用计算机自动拼接与人工干预相结合,对所有图片进行拼接复原。
经计算,附件5的拼接结果见表14和表15该模型的优点是将图片分为具体的几类,大大的减少了工作量,缺点是针对英文文章的误差比较大。
关键字:灰度处理,图像二值化,最小二乘法,聚类分析,碎纸片拼接一、问题重述碎纸片的拼接复原技术在司法鉴定、历史文献修复与研究、军事情报获取以及故障分析等领域都有着广泛的应用。
近年来,随着德国“斯塔西”文件的恢复工程的公布,碎纸文件复原技术的研究引起了人们的广泛关注。
传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。
特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。
数学建模国赛2013年b题(最新版)目录一、数学建模国赛 2013 年 b 题概述二、题目背景及要求三、解题思路与方法四、具体解题过程五、总结与展望正文【一、数学建模国赛 2013 年 b 题概述】数学建模国赛是一项面向全国大学生的竞技活动,旨在通过对现实问题进行抽象、建模和求解,培养学生的创新意识、团队协作精神和实际问题解决能力。
2013 年 b 题为该年度竞赛中的一道题目,具有一定的代表性和难度,本文将对此题进行分析和解答。
【二、题目背景及要求】2013 年 b 题的题目背景是关于某城市公交车站的乘客候车问题。
题目要求参赛选手建立一个数学模型,描述乘客的候车时间、乘客数量以及公交车的发车间隔等要素之间的关系,并通过模型求解在满足乘客舒适度的前提下,如何调整公交车的发车间隔,使得乘客的候车时间最短。
【三、解题思路与方法】针对这道题目,我们可以采用以下思路和方法:1.根据题目描述,建立乘客候车时间的数学模型。
我们可以将乘客的候车时间看作一个随机变量,其期望值表示乘客平均候车时间。
2.建立乘客数量与公交车发车间隔的关系。
根据题目描述,当公交车站内乘客数量超过一定阈值时,公交车会提前发车。
因此,我们可以将乘客数量作为一个影响发车间隔的因素。
3.利用数学方法求解最优的发车间隔。
根据乘客候车时间的数学模型和乘客数量与公交车发车间隔的关系,我们可以建立一个优化问题,求解在最小化乘客平均候车时间的前提下,公交车的最佳发车间隔。
【四、具体解题过程】具体解题过程如下:1.根据题目描述,建立乘客候车时间的数学模型。
假设乘客到达公交车站的间隔时间为{λ_i},每个乘客的候车时间为{t_i},则乘客平均候车时间为 E(t) = ∑(t_i * λ_i)。
2.建立乘客数量与公交车发车间隔的关系。
假设公交车发车间隔为Δt,当乘客数量超过阈值 K 时,公交车提前发车。
因此,我们可以得到以下关系式:E(t) = ∫(λ_i * min(t_i, Δt)) dλ_i + K * ∫(min(t_i, Δt - τ)) dλ_i,其中τ表示公交车提前发车的时间。
数学建模国赛2013年b题【最新版】目录一、数学建模国赛 2013 年 b 题概述二、题目背景与要求三、题目分析与解题思路四、解答过程与结果五、总结与启示正文【一、数学建模国赛 2013 年 b 题概述】数学建模国赛是一项面向全国大学生的竞赛活动,旨在培养学生的创新意识、团队协作精神和实际问题解决能力。
2013 年的 b 题是关于传染病传播的动力学模型,要求参赛选手运用数学方法对传染病的传播进行建模和预测。
【二、题目背景与要求】传染病在全球范围内造成了巨大的经济损失和人员伤亡。
因此,研究传染病的传播规律,预测疫情发展趋势,对制定防控措施具有重要意义。
2013 年 b 题要求参赛选手建立一个传染病传播的动力学模型,并根据实际数据进行参数估计和模型验证,最终预测疫情在未来一段时间内的传播情况。
【三、题目分析与解题思路】传染病传播的动力学模型主要包括三个基本要素:感染者、易感者和康复者。
根据题目给出的数据,我们需要建立一个包含这三个要素的数学模型,并利用相关数学方法对模型进行求解。
【四、解答过程与结果】解答过程主要包括以下几个步骤:1.根据题目描述,确定感染者、易感者和康复者之间的转换关系。
2.根据实际数据,建立初始值和边界条件。
3.利用微分方程等数学方法,求解模型。
4.对模型进行参数估计和模型验证。
5.根据模型预测疫情在未来一段时间内的传播情况。
通过以上步骤,我们可以得到传染病在未来一段时间内的传播趋势,从而为政府和相关部门制定防控措施提供科学依据。
【五、总结与启示】数学建模国赛 2013 年 b 题的解答过程充分体现了数学方法在解决实际问题中的应用价值。
通过参加此类竞赛,学生可以提高自己的数学素养、团队协作精神和创新能力。
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):西华大学参赛队员(打印并签名) :1. 张圣2. 王维华3. 蒋青霞指导教师或指导教师组负责人(打印并签名):蒲俊(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:年月日编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文主要研究车道被占用对城市道路通行能力的影响情况。
针对问题一,统计视频1中交通事故发生开始每30秒内采集事故所处横断面的车流量,并折算成标准车;通过matlab编程,分别画出的实际通行能力随时间变化的直方图和用插值拟合的方法画出的曲线图,两者都说明交通能力随时间有明显波动。
结合视频1可知该横截面的实际通行能力随上游红绿灯的周期性变化而变化。
车道被占用对城市道路通行能力的影响模型摘要本文研究在信号灯下游车道被占用后对道路通行能力的影响。
对第1个问题,本文对附件一的视频进行实时数据采集,对通行能力的决定因素进行简化,以事故处横断面的单位时间车流量作为拥堵时刻的道路上的实际通行能。
运用matlab软件对数据进行统计,绘制出事故处横断面的实际通行能力的变化过程。
得出事故处横断面上的实际交通能力受交通信号灯的影响成周期性变化。
对第2个问题,同样本文对附件二的视频进行实时数据采集,绘制出事故处横断面上的实际通行能力的变化过程。
因为两个视频中车道被占用的情况不同,根据附件3的信息,分析出两组数据与实际通行能力变化过程的差异主要与不同车道上的车流量比率有关。
并且在模型改进中,提出了定量分析所占车道的位置与实际通行能力的关系。
在问题3的模型中,本文利用波的生成与传播理论,建立了车流波模型。
因为事故上游的红绿灯的影响,本文所建立的排队长度与实际通行和事故持续时间的函数关系为周期性变化的分段函数,在计算特定时间点的排队长有一定困难,通过运用计算机仿真的办法,编写matlab仿真程序,从而很容易得出特定时间点的排队长度。
在问题4 的模型中,本文通过分析问题4模型与问题3模型的区别,对模型3的车流量与每个周期形成排队的时间做适当的修改,很好的算出了解决了问题4,通过matlab算出经过148s后排队长度到达上游路口。
关键词:交通波模型排队论计算机仿真通行能力一、问题重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。
由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。
如处理不当,甚至出现区域性拥堵。
车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。
2013建模美赛B题思路摘要水资源是极为重要生活资料,同时与政治经济文化的发展密切相关,北京市是世界上水资源严重缺乏的大都市之一。
本文以北京为例,针对影响水资源短缺的因素,通过查找权威数据建立数学模型揭示相关因素与水资源短缺的关系,评价水资源短缺风险并运用模型对水资源短缺问题进行有效调控。
首先,分析水资源量的组成得出影响因素。
主要从水资源总量(供水量)和总用水量(需水量)两方面进行讨论。
影响水资源总量的因素从地表水量,地下水量和污水处理量入手。
影响总用水量的因素从农业用水,工业用水,第三产业及生活用水量入手进行具体分析。
其次,利用查得得北京市2001-2008年水量数据,采用多元线性回归,建立水资源总量与地表水量,地下水量和污水处理量的线性回归方程yˆ=-4.732+2.138x1+0.498x2+0.274x3根据各个因数前的系数的大小,得到风险因子的显著性为r x1>r x2>r x3(x1, x2,x3分别为地表水、地下水、污水处理量)。
再次,利用灰色关联确定农业用水、工业用水、第三产业及生活用水量与总用水量的关联程度r a=0.369852,r b= 0.369167,r c=0.260981。
从而确定其风险显著性为r a>r b>r c。
再再次,由数据利用曲线拟合得到农业、工业及第三产业及生活用水量与年份之间的函数关系,a=0.0019(t-1994)3-0.0383(t-1994)2-0.4332(t-1994)+20.2598;b=0.014(t-1994)2-0.8261t+14.1337;c=0.0383(t-1994)2-0.097(t-1994)+11.2116;D=a+b+c;预测出2009-2012年用水总量。
最后,通过定义缺水程度S=(D-y)/D=1-y/D,计算出1994-2008的缺水程度,绘制出柱状图,划分风险等级。
我们取多年数据进行比较,推测未来四年地表水量和地下水量维持在前八年的平均水平,污水处理量为近三年的平均水平,得出2009-2012年的预测值,并利用回归方程yˆ=-4.732+2.138x1+0.4982x2+0.274x3计算出对应的水资源总量。
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写) B我们的参赛报名号为(如果赛区设置报名号的话):024B03所属学校(请填写完整的全名):山东科技大学参赛队员(打印并签名) :1. 张鑫2. 吕彦全3. 孙红华指导教师或指导教师组负责人(打印并签名):赵文才(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于最小二乘法的碎纸片拼接复原数学模型摘要首先对图片进行灰度化处理,然后转化为0-1二值矩阵,利用矩阵行(列)偏差函数,建立了基于最小二乘法的碎纸片拼接数学模型,并利用模型对图片进行拼接复原。
针对问题一,当两个数字矩阵列向量的偏差函数最小时,对应两张图片可以左右拼接。
数学建模国赛2013年b题摘要:一、数学建模国赛简介1.数学建模国赛背景2.2013 年数学建模国赛B 题内容二、2013 年数学建模国赛B 题解析1.题目背景及要求2.问题一解析3.问题二解析4.问题三解析三、数学建模竞赛对参赛者的意义1.提升实际问题解决能力2.增强团队协作能力3.培养创新思维四、数学建模竞赛的准备与建议1.积累建模知识与技能2.加强团队配合与沟通3.注重实际问题分析与解决正文:数学建模国赛是一项在我国有着广泛影响力的学科竞赛活动,旨在选拔优秀的数学建模人才,推动数学建模教育的发展。
2013 年的数学建模国赛B题,以一道实际问题为背景,要求参赛者运用数学方法解决实际问题。
2013 年数学建模国赛B 题的内容是:“输电线路的优化设计”。
该题目要求参赛者针对一个实际的输电线路工程,通过建立数学模型,分析并提出优化方案。
具体包括三个问题:1.根据给定的线路参数,计算输电线路的总电阻;2.分析不同输电线路的设计方案,确定最优设计方案;3.建立输电线路的运行维护模型,预测线路的运行状态。
通过参与数学建模竞赛,参赛者能够提升自己的实际问题解决能力。
在竞赛过程中,他们需要针对实际问题,灵活运用数学知识和方法,寻求问题的解决方案。
此外,数学建模竞赛也非常注重团队协作,参赛者需要与队友紧密配合,共同完成竞赛任务。
这不仅能够增强团队协作能力,还能培养参赛者的创新思维。
对于想要参加数学建模竞赛的同学们,有以下几点建议:1.积累建模知识与技能:熟练掌握常用的数学建模方法和工具,例如线性规划、动态规划、图论等;2.加强团队配合与沟通:与队友共同学习、讨论和解决问题,提高团队协作效率;3.注重实际问题分析与解决:在平时的学习和生活中,多关注实际问题,培养自己分析问题和解决问题的能力。
数学建模国赛对于参赛者来说,既是一次挑战,也是一次锻炼和成长的机会。
(由由由由由由)第十届华为杯全国研究生数学建模竞参学校南京师范大学参参队号103190031.佟德宇队员姓名2.顾燕3.贾泽慧(由由由由由由)第十届华为杯全国研究生数学建模竞参题 目 功率放大器非线性特性及预失真建模摘 要针对问题一中求解输入输出信号之间的非线性功放特性函数问题, 采用了不同的多项式函数, 运用最小二乘法或正则化后的最小二乘法进行拟合求解. 并用参数NMSE 来评价所建模型的准确度. 结果发现在逼近函数选为函数基的情况下, 采用正则化后的最小二乘法得出的模型准确度最好, 其对应的参数NMSE=-68.6294.同时考虑计算量和模型准确度, 在由多项式变形函数逼近功放的模型基础上, 来进行预失真模型的建立. 根据题中给出的原则和约束, 可知预失真模型的表达式与功放模型的表达式是类似的, 从而可建立相应的预失真模型.:-11()()()K k k k z t h x t x t ==∑K=4时, 整体模型的放大倍数g=1.8693, 参数NMSE=-32.5819, EVM=2.3491; K=5时, g=1.8473, 参数NMSE=-37.1398, EVM=1.3900; K=7时, g=1.8326, 参数NMSE=-46.0624, EVM=0.4976.针对问题二, 直接将功放的输入输出与题目中所提的“和记忆多项式”模型进行拟合, 运用正则化后的最小二乘法进行求解, 这很好的保证了模型的可解性. 本题只考虑功放模型次数为5的情形. 当记忆深度为7时, 得NMSE=-45.8394; 当记忆深度为3时, 得NMSE=-44.5315. 预失真模型的建立与问题一类似, 文中以框图的方式建立了预失真处理的模型实现示意图, 并对次数为5、记忆深度为3的情形, 求解出整体模型的放大倍数g=9.4908, 参数NMSE=-37.8368, EVM=0.0128.针对问题三, 将所给的离散的、有限的输入输出数据作为随机过程的样本函数,通过其傅立叶变换得到功率谱参度函数. 文中分别给出了输入信号、无预失真补偿的功率放大器输出信号、采用预失真补偿的功率放大器输出信号的功率谱参度图形. 可解出它们的ACPR 分别为-155.6610、-74.3340、-104.4904, 最后对结果进行分析评价, 得出采用预失真补偿的功率放大器的输出信号效果比无预失真补偿的效果好. 关键字:最小二乘法、Tikhonov正则化、Fourier变换一、问题重述信号的功率放大是电子通信系统的关键功能之一, 其实现模块称为功率放大器( PA, Power Amplifier), 简称功放. 功放的输出信号相对于输入信号可能产生非线性变形, 这将带来无益的干扰信号, 影响信信息的正确传递和接收, 此现象称为非线性失真.功放非线性属于有源电子器件的固有特性, 研究其机理并采取措施改善, 具有重要意义. 目前已经提出了各种技术来克服功放的非线性失真, 其中预失真技术是被研究的较多的一项技术, 其最新的研究成果已经被运用于实际的产品中, 但在新算法、实现复杂度、计算速度、效果精度等方面仍有相当的研究价值.预失真的基本原理是:在功放前设置一个预失真处理模块, 这两个模块的合成总效果使整体输入-输出特性线性化, 输出功率得到充分利用.文中给出了NMSE 、EVM 等参数评价所建模型其准确度, 以及ACPR 表示信道的带外失真的参数.根据数据文件中给出的某功放无记忆效应、有记忆效应的复输入输出测试数据:(1)我们建立此功放的非线性数学模型()G ⋅, 并用NMSE 来评价所建模型的准确度.(2)根据线性化原则以及“输出幅度限制”和“功率最大化”约束, 计算线性化后最大可能的幅度放大倍数, 建立预失真模型. 并运用评价指标参数NMSE/EVM 评价预失真补偿的计算结果.(3)应用问题二中所给的数据, 计算功放预失真补偿前后的功率谱参度(输入信号、无预失真补偿的功率放大器输出信号、采用预失真补偿的功率放大器输出信号), 并用图形的方式表示了这三类信号的功率谱参度. 最后用相邻信道功率比ACPR 对结果进行分析.二、模型假设1、假设题中所给的功放输入输出数据采样误差为0.2、假设题中所给的功放输入输出数据具有代表性、一般性.3、假设存在这样的预失真处理器, 能够做到将输入数据变为模型求解所得的预失真 处理输出结果.三、基本知识§3.1 最小二乘方法最小二乘方法[][]12产生于数据拟合问题, 它是一种基于观测数据与模型数据之间的差的平方和最小来估计数学模型中参数的方法. 输入数据t 与输出数据y 之间大致服从如下函数关系(,)y x t φ=,式中n x R ∈为待定参数. 为估计参数x 的值, 要先经过多次试验取得观测数据1122(,),(,),,(,)m m t y t y t y , 然后基于模型输出值和实际观测值的误差平方和21((,))m i ii y x t φ=−∑最小来求参数x 的值, 这就是最小二乘问题. 一般地, m n .引入函数()(,), 1,2,,i i i r x y x t i m φ=−= ,并记12()((), (), , ())m r x r x r x r x = ,则最小二乘问题即为n min ()()T x Rr x r x ∈. 如果最小二乘问题中的模型函数估计准确, 那么最小二乘问题的最优值是很靠近零的. 因此()r x 常称作残量函数.对于线性最小二乘问题, 残量函数可以表示为()r x b Ax =−,从而线性最小二乘问题可以表示为2min n x R b Ax ∈−. (3.1.1) 若A 是列满秩的, 且考虑到二次凸函数的稳定点即为最小值点, 可以直接得到x 的求解公式, 即()1T T x A A A b −=. (3.1.2) 而对于复数域上的线性最小二乘问题n 2min x C b Ax ∈−, 也可以直接得到x 的求解公式, 即为()-1T x A A A b =, (3.1.3) 其中, T A 表示A 的共轭转置.§3.2 Tikhonov 正则化在使用最小二乘方法进行参数估计的时候, 由于A 不一定是列满秩的, 故T A A 不一定是可逆的, 此时就不能够用上面所推得的公式进行直接的求解了. 为了克服这个困难,考虑Tikhonov 正则化[]3方法, 即给目标函数加上一个正则项(即一个邻近项)2k k x x λ−.此时, 最小二乘问题转化为n 221min +k k k x C x b Ax x x λ+∈=−−.其中k x 是第k 步迭代得到的解, k λ可以选为一个常数或一个单调下降趋于0的数列. 迭代的终止准则为1k k x x ε+−≤,其中ε是一个给定的误差上界.考虑到二次凸函数的稳定点即为最小值点, 这时问题22min n k k x C b Ax x x λ∈−+− 是可以直接求解的, 给出x 的求解公式为()()1T k k k x A A I A b x λλ−=++.显然, 此时即使A 非列满秩, 问题也是可以求解的.四、问题分析问题一题中已给出了某功放无记忆效应的复输入输出测试数据, 现需要建立此功放的非线性特性数学模型, 拟合出功放的特性函数()G⋅. 根据函数逼近理论, 功放的特性函数可以用多项式来表示, 也可以用空间中的一由正交函数基来表示. 然后采用最小二乘法或正则化后的最小二乘法, 将这些情况都进行求解, 得出功放的特性函数()G⋅. 并在最后用参数NMSE(归一化均方误差)来评价所建模型的准确度.接着, 在前面所建模型的基础上, 选择一个计算量适当, 且准确度较好的()G⋅的一个拟合模型. 然后根据线性化原则以及“输出幅度限制”和“功率最大化”约束, 建立预失真模型, 使得整体模型线性化后放大倍数尽可能的大. 通过对优化模型的分析可知, 对预失真特性函数()F⋅的求解可以转化为对1Gg−⎛⎞⎜⎟⎝⎠的求解, 且预失真模型的表达式与功放模型的表达式是类似的. 在求解1Gg−⎛⎞⎜⎟⎝⎠时, 可以对求解所用模型的次数进行不同的选取,分别得出整体模型的g和NMSE、EVM的值, 用来评价预失真补偿的结果.问题二题中已给出了某功放有记忆效应的复输入输出测试数据, 现需要建立此功放的非线性特性数学模型, 拟合出功放的特性函数()G⋅. 根据函数逼近理论, 本文直接将功放的输入输出与题目中所提的“和记忆多项式”模型来进行拟合, 在使用最小二乘方法求解时, 我们对目标函数加了一个正则项, 以保证求解的可实现性.预失真处理器模型的建立与问题一类似, 且给出了以框图的方式建立的预失真处理的模型实现示意图.问题三问题二中所给的输入输出数据是离散的、有限的, 在这种情况下计算功率谱参度的函数可以用自相关函数法或对随机过程{}()x t的样本函数作傅立叶变换得到, 文中采取第二种方法来求解.五、模型建立与求解§5.1 问题一的模型与求解§5.1.1 无记忆功放的特性函数()G⋅模型建立文章中已给出某功放无记忆效应的复输入输出测试数据, 这些数据是对功放输入)(tx/输出)(t z进行离散采样后得到的, 它们的值为分别为()x n/()z n(采样过程符合Nyquist采样定理要求).对于问题一, 根据文章中所给的某功放无记忆效应的复输入输出测试数据, 首先需要建立此功放的非线性特性数学模型, 拟合出功放的特性函数()G⋅. 根据函数逼近理论,可以采用1、多项式的形式2、多项式的变形的形式3、空间中的一由正交函数基的线性由合来表示4、正则化下, 空间中的一由正交函数基的线性由合来表示下面将这些情况都进行建模, 来拟合功放的特性函数()G ⋅, 并在最后进行比较选择优者.所求得的模型的数值计算结果业界常用NMSE 、EVM 等参数评价其准确度, NMSE 的具体定义如下. 采用归一化均方误差 (Normalized Mean Square Error, NMSE) 来表征计算精度, 其表达式为211021ˆ|()()|NMSE 10log |()|N n N n z n z n z n ==−=∑∑ . (5.1.1) 如果用z 表示实际信号值, ˆz表示通过模型计算的信号值, NMSE 就反映了模型与实际模块的接近程度. 显然NMSE 的值越小, 模型的数值计算结果就越准确.误差矢量幅度 (Error Vector Magnitude, EVM)定义为误差矢量信号平均功率的均方根和参照信号平均功率的均方根的比值, 以百分数形式表示. 如果用X 表示理想的信号输出值, e 表示理想输出与整体模型输出信号的误差, 可用EVM 衡量整体模型对信号的幅度失真程度:EVM 100%= . (5.1.2)模型一 多项式的形式首先根据函数逼近的Weierstrass 定理, 对解析函数采用简单的多项式来表示, 可表示为∑==Kk k k t x h t z 1)()(. (5.1.3)因为此时是要将观测数据与形式已经固定的函数(5.1.3)进行拟合, 而目的是求解该函数的各项系数, 所以该问题其实就是最简单的线性最小二乘问题.模型建立()n 211min ()N K k k h C n k z n h x n ∈==−∑∑, (5.1.4) 其中, ()x n 和()z n 为文章中所给的输入和输出测试数据, 这些数据是对功放输入()x t 、输出()z t 进行离散采样后得到的(采样过程符合Nyquist 采样定理要求),N 为功放输入输出数据的总个数.将问题(5.1.4)与( 3.1.1)进行对应, 由( 3.1.3)可以直接得到系数的表达式为()-1T h A A A z = 其中232323 (1) (1) (1) (1) (2) (2) (2) (2) () () () ()K K K x x x x x x x x A x N x N x N x N ⎡⎤…⎢⎥…⎢⎥=⎢⎥⎢⎥⎢…⎥⎣⎦, ()12,,,TK h h h h =…, ()()()()1,2,,Tz z z z N =….结果当3K =时, (见附录2.1.1)该表达式中的系数为123 2.908532278399690.060653883258900.213775998314930.43417026083854 0.198185637666730.27826757408010h ih i h i=−=−=+.根据模型一以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE 13.4414169873254 3k =−=.当5k =时, (见附录2.1.2 )表达式中的系数为12345 2.908037719327826 - 0.063527494375989i0.343519806629302 - 0.388942747664566i0.541211413428411 - 0.144422960285135i -0.399744749427209 - 0.558463329513045i-0.271952185146638 + 0.1205591h h h h h =====40060622i根据模型一以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE -21.544782705381238 5k ==.模型二 多项式的变形同时我们也考虑了多项式变形[]4的情形来对其进行表示, 其表示式为-11()()()K k k k z t h x t x t ==∑. (5.1.5)因为此时是要将观测数据与形式已经固定的函数(5.1.5)进行拟合, 而目的是求解该函数的各项系数, 所以该问题其实就是最简单的线性最小二乘问题.模型建立()n 2-111min ()()N K k k h C n k z n h x n x n ∈==−∑∑ (5.1.6)其中N 为所给功放输入输出数据的总个数, K 为表达式的次数. 将问题(5.1.6)与(3.1.1)进行对应, 由(3.1.3)可以直接得到系数的表达式为()-1T h A A A z = 其中212121(1) (1)(1) (1)(1) (1)(1)(2) (2)(2) (2)(2) (2)(2) () ()() ()() ()()K K K x x x x x x x x x x x x x x A x N x N x N x N x N x N x N −−−⎡⎤…⎢⎥⎢⎥…=⎢⎥⎢⎥⎢⎥…⎢⎥⎣⎦,()123,,,,TK h h h h h =…, ()()()()()1,2,3,,Tz z z z z N =…. 分别考虑当3k =, 5k =时, 该表达式的具体形式(即确定表达式的系数).结果当3k =时, (见附录2.1.3 )表达式中的系数为123 3.051183005392040.00000000000001 0.006071903393980.00000000000005 1.170159412626470.00000000000004h ih i h i=−=+=−−.根据上面所建立的模型以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE 29.7446547565428 3k =−=.当5k =时, (见附录2.1.4 )表达式中的系数为12345 2.967983597251020.00000000000080 0.309931644197600.00000000000873 0.153664636905190.00000000002804 3.424500445954250.00000000003458 2.208212395486470.00000000001446h ih ih i h ih i=−=+=−−=−+=−.根据上面所建立的模型以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE 45.379717608769994 5k =−=模型三 空间中的一由正交函数基的线性由合最后根据函数逼近理论, 可采用空间中的一由正交函数基[]4的线性由合来表示该特性函数(参考文献3中的方法), 其表达式为()z t h =Ψ, (5.1.7)其中正交矩阵12[() () ()]k x x x ψψψΨ= ,11()!()(1)(1)!(1)!()!kl l k k l k l x x x l l k l ψ−+=+=−−+−∑. 因为此时是要将观测数据与形式已经固定的函数(5.1.7)进行拟合, 而目的是求解该函数的各项系数, 所以该问题其实就是最简单的线性最小二乘问题.模型建立 n 2min h C z h ∈−Ψ (5.1.8) 其中()123,,,,TK h h h h h =…, ()()()()()1,2,3,,T z z z z z N =…, ()()()12[() ()()]k x n x n x n ψψψΨ= ,()()()11()!()(1)(1)!(1)!()!k l l kk l k l x n x n x n l l k l ψ−+=+=−−+−∑, N 为功放的输入输出数据的总个数. 将问题(5.1.8)与(3.1.1)进行对应, 由(3.1.3)可以直接得到系数的表达式为 ()-1T T h z =ΨΨΨ. 由于计算量较大, 我们选取7=k 来进行拟合, 得出表达式中的系数.结果(见附录2.1.5)当7=k 时, 表达式中的系数为12345 3.287412936081622-7.322701472967097-015-0.091488124421954-2.16460963736731-015-0.066219774105875 5.035305939565804-0160.038056322596937 2.726632938529483-0160.01014165858755-1.2h e ih e ih e ih e i h ===+=+=6758894247527231-016-0.005283612035716-2.653720342429833-016-0.001265433154276-1.923256069376669-016e ih e ih e i==.根据上面所建立的模型以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE -60.5675309366592 7k ==模型四 模型三正则化模型建立对于模型三, 由于所给的数据较多, 很难避免本文3.2节中所提到的T ΨΨ奇异的情况, 故对(5.1.8)再进行一个Tikhonov 正则化. 即对(5.1.8)加一个正则项2k k h h λ−.问题转变为()1221min K M k k k h C h z h h h λ⋅×+∈=−Ψ+−. (5.1.9) 其中k h 是第k 步迭代得到的解(计算机运行求解时是要给其赋一个初始值的), 而k λ可以选为一个常数或一个单调下降趋于0的数列. 而迭代的终止准则为1k k h h ε+−≤,其中ε是一个给定的误差上界.考虑到二次凸函数的稳定点即为最小值点, 问题(5.1.9)是可以直接求解的, 得到h 的求解公式为()()()1T Tk k k h I z n h λλ−=ΨΨ+Ψ+. (5.1.10)此处, 我们仍选取7=k 来进行拟合, 其中一些参数选取为800111, 1, 0.8, 10k k h i λλλε−+=+===.则可得出表达式(5.1.7)中的系数.结果(见附录2.1.6)123456 3.2873994140515280.000008426827987-0.0914922453118830.000002568107767-0.066218825186175-0.000000591359660.038056824724197-0.0000003129219510.010141412616440.000000153287355-0h ih ih ih i h ih =+=+===+=7.0052839775157310.000000227764411-0.0012655686759970.000000084456122ih i+=+根据上面所建立的模型以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE -68.6293523598994 7k ==模型一~模型四的总评价对四种模型下参数NMSE 的大小进行比较发现, 当选用一由正交函数基, 并运用正则化后的最小二乘方法来对功放特性函数进行拟合时(即模型四), NMSE 的值是最小的. 也就是说2121ˆ|()()||()|Nn Nn z n zn z n ==−∑∑在模型四下是最靠近0的, 故模型四是逼近效果最好的.但模型四的计算复杂度是很大, 由所得的NMSE 参数可发现模型二的计算精度也是不错的, 但其计算的复杂度比模型四要小很多, 故选择模型二来求解功放特性函数. 且在下面的无记忆功放模型的预失真处理建模中, 功放特性函数是由模型二得出的.§5.1.2四种模型的输入输出幅度比较图与评价下面将实际的与拟合的复输入输出幅度值进行作图, 以便更直观的看出模型的逼近效果.图5.1 模型一k=3实际与拟合功放输入/输出幅度散点图 图5.1模型一k=5实际与拟合功放输入/输出幅度散点图图5.3模型二k=3实际与拟合功放输入/输出幅度散点图 图5.4 模型二k=5实际与拟合功放输入/输出幅度散点图图5.5 模型三实际与拟合的功放输入/输出幅度散点图图5.6模型四实际与拟合的功放输入/输出幅度散点图根据观察比较发现, 当用正交的函数基或对其实行一个正则化(即模型三和模型四), 来对功放特性函数进行拟合的时候, 拟合情形的输入输出幅度散点图与实际的输入输出幅度散点图的逼近效果是最佳的.k=时, 其散点图的逼近效果也是很好的.同时可观察到但模型二中的次数5§5.1.3 预失真处理模型建立选定-11():()()()Kk k k G z n b x n x n =⋅=∑的阶数5K =, 通过上面的算法可以得到当F 取不同阶数的情况下, g, NMSE, EVM 的结果及图像表5.1 F 取不同阶数情况下g, NMSE, EVM 的结果F 的阶数Kg NMSE EVM 4 1.86932497973065-32.5819077399852 2.34911681195961% 5 1.84730161996524-37.1398119663279 1.38998272147897% 7 1.83264461869445-46.06241433950440.497598752653887%由表5.1的结果可以看出当F 的阶数越高时, 得到的g 的值越小(说明线性化后的幅度放大倍数越小), NMSE 、EVM 的值越小(说明模型的计算精度越高, 整体模型对信号的幅度失真程度越小).图5.7理想信号与所建模型得到的输出信号对比(K=4) 图5.8理想信号与所建模型得到的输出信号对比(K=5)图5.9理想信号与所建模型得到的输出信号对比(K=7)根据观察发现, 当K 的取值越大时, 所建模型的输入输出幅度散点图与理想的输入输出幅度散点图的逼近效果越好.§5.2 问题二的模型与求解§5.2.1 有记忆功放的特性函数()G ⋅模型建立对于问题二, 根据文章中所给的某功放有记忆效应的复输入输出测试数据, 首先需要建立此功放的非线性特性数学模型, 拟合出功放的特性函数()G ⋅. 此时功放不仅与此时刻输入有关, 而且与此前某一时间段的输入有关, 其可以由为101111022220212()()()(1)()()(1)()K Mk km M k m M z n h x n m h x n h x n h x n M h x n h x n h x n M ===−=+−++−++−++−+∑∑ 01 ()(1)()K K K K K KM h x n h x n h x n M ++−++− , 0,1,2,,n N = .式中M 表示记忆深度, km h 为系数. 具有记忆效应的功放模型也可以用更一般的V olterra级数[][]56表示, 由于V olterra 级数太复杂, 简化模型有Wiener 、Hammersteint 等[][]47. 由于常用复值输入-输出信号, 上式也可表示为便于计算的“和记忆多项式”模型-110()(-)|(-)|K Mk km k m z n h x n m x n m ===∑∑ 0,1,2,,n N = (5.2.1)模型建立本文采用“和记忆多项式”模型(5.2.1)式来进行拟合. 我们用最小二乘法来求解, 由于本问中所给的输入输出的数据个数非常大, 故现在选取其中的一部分来进行拟合, 求得功放过程的模型. 我们选取输入输出数据的次数n 为1M +的倍数的数据来进行拟合, 最小二乘公式即为()()12-1(1)|10min (-)|(-)|K M K Mk km h CM nk m n Nz n h x n m x n m ××∈+==≤−∑∑∑ (5.2.2) 其中N 是指所有的功放的输入数据总个数, K 表示所选模型的最高次数, M 表示记忆深度(本文在求解模型时是事先给定的), ()x n 是第n 个复输入值, ()z n 是第n 个复输出值, km h 为系数, ()102001222212,,,,,,,, ,,,,TK K M M KM h h h h h h h h h h =…………….由于所给的数据较多, 即便是选取了部分数据进行拟合,但仍很难避免3.2节中所提到的A A 奇异的情况, 故对(5.2.2)再进行一个Tikhonov 正则化. 即对(5.2.2)加一个正则项2k k h h λ−,则问题转变为()()122-11(1)|10min (-)|(-)|K M K Mk k km k k h CM nk m n Nh z n h x n m x n m h h λ××+∈+==≤=−+−∑∑∑ (5.2.3) 其中k h 是第k 步迭代得到的解, 而k λ可以选为一个常数或一个单调下降趋于0的数列. 而迭代的终止准则为1k k h h ε+−≤,其中ε是一个给定的误差上界.当给定一个记忆深度M 后, 我们可以将问题(5.2.3)化成如下形式的问题, 即()22min nk k h Cz n Ah h h λ∈−+− (5.2.4) 其中A 是一个()()()()/11N M K M +×⋅+的复矩阵, 即1111(1) (1)(1) (1)(1) (1) (1)(1) (22) (22)(22) (22)(22) (2) (1)(1) K K K K x M x M x M x M x M x x x x M x M x M x M x M x M x x A −−−−+++++++++++=……………… ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦而()102001121112,,,,,,,, ,,,,TK K M M KM h h h h h h h h h h =…………….考虑到二次凸函数的稳定点即为最小值点, 问题(5.2.4)是可以直接求解的, h 的求解公式为()()()1Tk kk h A A I A z n h λλ−=++. (5.2.5)本题中已给出有记忆功放输入输出数据的总个数为73920N =, 并分别取 87, 5, 10M K ε−===和 83, 5, 10M K ε−===这两种情况. 这样就可以根据(5.2.5)求得h .结果(见附录2.2.1、2.2.2)当7,5M K ==时, 由于系数共有40个, 即h 是一个401×的大向量, 故将该结果放到附录中. 再根据上面所建立的模型及(5.1.1)式, 求出该模型的NMSE 值如下:NMSE -45.839408840847 7,5M K ===.当3,5M K ==时, 由于系数共有20个, 即h 是一个201×的大向量, 故将该结果放到附录中. 再根据上面所建立的模型及(5.1.1)式, 求出该模型的NMSE 值如下:NMSE 44.5315001961471 3,5M K =−==.§5.2.2有记忆功放模型的输入输出幅度图下面将实际与拟合的复输入输出幅度进行作图, 以便更直观的看出模型的逼近效果.图5.10 M=7实际与拟合功放输入/输出幅度散点图 图5.11 M=3实际与拟合功放输入/输出幅度散点图总评价根据观察比较发现, 尽管在用“和记忆多项式”模型进行拟合时, 我们只选取了一部分输入输出测量数据进行模型的建构. 但通过对上面两图的观察, 当对所有的输入测量数据进行作图时, 可发现拟合得到的输入输出幅度散点图与实际的输入输出幅度散点图的逼近效果还是很好的.§5.2.3 预失真处理模型建立上面已求得功放特性函数()G ⋅的模型, 采用“和记忆多项式”模型-110()(-)|(-)|K Mk kmk m z n hx n m x n m ===∑∑建立的功放模型. 下面建模的总体原则是使预失真和功放的联合模型呈线性后误差最小. 在此模型中, 有两个约束需要考虑:(1)输出幅度限制:即模型中的预失真处理的输出幅度不大于给出的功放输入幅度最大值.(2)功率最大化:即模型的建立必需考虑尽可能使功放的信号平均输出功率最大, 因此预失真处理后的输出幅度需尽可能提高.0≤下面我们将给出解决该优化问题的算法: 给定判断容限step1选定-110(): ()(-)|(-)|KMk km k m G z n h x n m x n m ==⋅=∑∑的阶数为5K =. 因数据量很大且算法较复杂, 本文对F 进行多次计算, 发现当阶数为5K =的时候与更高阶相比, 效果就已经很好了, 故下面只给出阶数为5K =时g, NMSE, EVM 的结果.本文取定记忆深度为 3M =, 现根据算法5.2可求得9.490829228013789g =,由于系数一共有20个, 即h 是一个201×的向量, 故将此结果放到附录中.根据上面所建模型以及(5.1.1)、(5.1.2)式, 可求出该模型的NMSE 、EVM 值如下:.NMSE -37.836849855461956EVM 0.012827957346961== 3,5M K ==由所得数据, 可以发现在该算法下, 得到的g 的值比较大(说明线性化后的幅度放大倍数大), NMSE 、EVM 的值较小(说明模型的计算精度越高, 整体模型对信号的幅度失真程度越小).图5.13 M=3, K=5实际与拟合功放输入/输出幅度散点图观察图5.13发现, 该情况下所建模型的输入输出幅度散点图与理想的输入输出幅度散点图逼近效果还是较好的. 故该模型是可行的.§5.3 问题三的模型与求解 §5.3.1背景知识功率谱的概念是针对功率有限信号的, 所表现的是单位频带内信号功率随频率的变化情况. 保留了频谱的幅度信息, 但是丢掉了相位信息, 所以频谱不同的信号其功率谱是可能相同的. 功率谱是随机过程的统计平均概念, 平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier 变换, 对于一个随机过程而言, 频谱也是一个“随机过程”(随机的频域序列).功率谱参度(PSD), 它定义了信号或者时间序列的功率如何随频率分布. 这里功率可能是实际物理上的功率, 或者更经常便于表示抽象的信号, 被定义为信号数值的平方, 也就是当信号的负载为1欧姆(ohm)时的实际功率.由于平均值不为零的信号不是平方可积的, 所以在这种情况下就没有傅立叶变换. 维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法. 如果信号可以看作是平稳随机过程, 那么功率谱参度就是信号自相关函数的傅立叶变换. 信号的功率谱参度当且仅当信号是广义的平稳过程的时候才存在; 如果信号不是平稳过程, 那么自相关函数一定是两个变量的函数, 这样就不存在功率谱参度, 但是可以使用类似的技术估计时变谱参度. 随机信号是时域无限信号, 不具备可积分条件, 因此不能直接进行傅氏变换. 一般用具有统计特性的功率谱来作为谱分析的依据. 功率谱与自相关函数是一个傅氏变换对.一般的功率谱参度都是针对平稳随机过程的, 由于平稳随机过程的样本函数一般不是绝对可积的, 因此不能直接对它进行傅立叶分析. 可以有三种办法来重新定义谱参度,来克服上述困难.1. 用相关函数的傅立叶变换来定义谱参度;2. 用随机过程的有限时间傅立叶变换来定义谱参度;3. 用平稳随机过程的谱分解来定义谱参度.§5.3.2 模型建立计算功率谱参度函数通常有两种方法[]8. 一种叫做标准的自相关函数法, 其表达式为:(1)0()4()cos 2d x x G f R f τπττ∞=∫ (5.3.1)其中()x R τ表示某个各态历经的随机过程{}()x t 的自相关函数;另一种叫做直接法, 即是直接对随机过程{}()x t 的样本函数作傅立叶变换得到功率谱参度函数, 其表达式为:2(2)202()lim ()d T j ftx T G f x t e t Tπ−→∞=∫ (5.3.2)在计算机上计算功率谱参度函数时, 要求输入的数据必须是离散数值, 所以要对连续观测的数据记录必须做离散化处理. 这叫做数据采样. 离散化的数据值叫做采样数据. 实际计算时, 要求参加运算的采样数据的个数是有限的(即是说, 在有限的时间区段0-T 上进行计算). 在记录是离散的、有限的情况下, 计算功率谱参度函数的公式可以分别近似地表示为:1(1)01()22cos 2cos 2M x r M r G f t R R fr t R fM t ππ−=⎡⎤=Δ+Δ+Δ⎢⎥⎣⎦∑ (5.3.3)和21(2)202()N j fi t x i i G f t x e N t π−−Δ==ΔΔ∑ (5.3.4)这里, 将(5.3.4)式整理为()()21P f X f N=(5.3.5) 其中()X f 是()x n 的傅里叶变换, 在计算过程中可以直接调用FFT 函数.另外由题意可设出, per F 表示每个点上的频率, 其表达式为sper F F N=. M 表示每个信道所含的点的个数, 其表达式为0perF M F =.其中0F 表示每个传输信道上的频率. 故传输信道就只包含M 个点, 相邻信道也只包含M 个点.由于非线性效应产生的新频率分量由对邻道信号有一定的影响, 现用相邻信道功率比(Adjacent Channel Power Ratio, ACPR)表示信道的带外失真的参数, 衡量由于非线性效应所产生的新频率分量对邻道信号的影响程度. 其定义为。
2013高教社杯全国大学生数学建模竞赛B题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
本题要求对数据提取合适的特征、建立合理有效的碎纸片拼接复原模型。
可以考虑的特征有邻边灰度向量的匹配、按行或按列对灰度求和、行距等。
关于算法模型,必须有具体的算法过程(如流程图、算法描述、伪代码等)及设计原理。
虽然正确的复原结果是唯一的,但不能仅从学生提供的复原效果来评定学生解答的好坏,而应根据所建的数学模型、求解方法和计算结果(如复原率)三方面的内容做出评判。
另一方面,评判中还需要考虑人工干预的多少和干预时间节点的合理性。
问题1. 仅有纵切文本的复原问题由于“仅有纵切”,碎纸片较大,所以信息特征较明显。
一种比较直观的建模方法是:按照某种特征定义两条碎片间的(非对称)距离,采用最优Hamilton路或最优Hamilton圈(即TSP)的思想建立优化模型。
关于TSP的求解方法有很多,学生在求解过程中需要注意到非对称距离矩阵或者是有向图等特点。
还可能有种种优化模型与算法,只要模型合理,复原效果好,都应当认可。
本问题相对简单,复原过程可以不需要人工干预,复原率可以接近或达到100%。
问题2. 有横、纵切文本的复原问题一种较直观的建模方法是:首先利用文本文件的行信息特征,建立同一行碎片的聚类模型。
在得到行聚类结果后,再利用类似于问题1中的方法完成每行碎片的排序工作。
最后对排序后的行,再作纵向排序。
本问题的解法也是多种多样的,应视模型和方法的合理性、创新性及有效性进行评分。
例如,考虑四邻近距离图,碎片逐步增长,也是一种较为自然的想法。
问题3. 正反两面文本的复原问题这个问题是问题2的继续,基本解决方法与问题2方法相同。
但不同的是:这里需要充分利用双面文本的特征信息。
该特征信息利用得好,可以提升复原率。
在阅卷过程中,可以考虑学生对问题的扩展。
例如,在模型的检验中,如果学生能够自行构造碎片,用以检验与评价本队提出的拼接复原模型的复原效果,可考虑适当加分。
2013全国大学生数学建模比赛B题_答案在2013年全国大学生数学建模比赛中,B题的答案涉及了复杂的数学问题和模型建立。
本文将对B题的答案进行详细解析,包括问题的分析、数学模型的建立和结果的分析。
一、问题分析B题要求解答电气设备故障诊断问题。
在现代电气系统中,电气设备的故障可能导致整个系统的崩溃,因此及时准确地诊断故障是非常重要的。
本题给出了一组电气设备的故障数据,要求通过建立数学模型,诊断出可能的故障原因。
二、数学模型的建立1. 数据预处理首先,我们需要对给出的故障数据进行预处理,以便更好地分析和建立模型。
预处理包括数据清洗、异常值检测和数据归一化等步骤。
2. 特征选择在建立数学模型之前,我们需要选择合适的特征来描述电气设备的故障情况。
特征选择的原则是能够最大程度地包含有用的信息,同时减少冗余和噪声。
常用的特征选择方法包括相关系数分析、主成分分析和信息增益等。
3. 模型建立根据问题的要求,可以采用多种数学模型进行建立,如贝叶斯网络、支持向量机和神经网络等。
不同的模型有着不同的优劣势,在实际应用中需要根据具体情况选择合适的模型。
4. 模型训练和优化在建立好数学模型之后,需要使用给出的故障数据进行模型的训练和优化。
训练的目标是根据已知的故障数据,提高模型的准确性和泛化能力。
优化的过程包括参数调整和模型选择等。
三、结果分析经过模型的训练和优化,我们得到了电气设备故障的诊断结果。
在结果的分析中,我们需要评估模型的精度和可靠性,同时根据实际情况提出相应的改进策略。
四、小结通过对2013全国大学生数学建模比赛B题的答案进行详细解析,我们了解了电气设备故障诊断的数学建模过程。
建立数学模型涉及到数据预处理、特征选择、模型建立和结果分析等步骤。
这些步骤的正确和合理运用,对于解决实际问题具有重要意义。
注:本文仅为示例,实际的答案可能涉及更多细节和公式推导。
请根据具体题目要求进行解答。
2013年全国数学建模B题1、首先运用MATLAB的imread语句将图片转化为参数,每一张图片都得到一个1980*72的矩阵,抽取每个矩阵的第1列和第72列,共得到38列数据,并对其进行编号排序,运用MATLAB进行分布聚类分析,分为18类,得到各自的搭配图形,最后进行人工编排和绘图。
程序如下:(1)clc;clear allclose allI=imread('D:\B\附件1\010.bmp');I_gray=double(I);[m,n] = size(I);a=0.3;A=0;T1=0;S=0;for i=1:mfor j=1:nA=A+I_gray(i,j)endendA=A*0.9;while(S<A)T1=T1+1;for i=1:mfor j=1:nif(I_gray(i,j)==T1)S=S+I_gray(i,j);endendendendT2=zeros(m,n);T3=zeros(m,n);M=3;N=3;for i=M+1:m-Mfor j=N+1:n-Nmax=1;min=255;for k=i-M:i+Mfor l=j-N:j+Nif I_gray(k,l)>maxmax=I_gray(k,l);endif I_gray(k,l)<minmin=I_gray(k,l);endendendT2(i,j)=(max+min)/2;T3(i,j)=max-min;endendT4=medfilt2(T2,[M,N]);T5=(T1+T4)/2;I_bw=zeros(m,n);for i=1:mfor j=1:nif I_gray(i,j)>(1+a)*T1I_bw(i,j)=255;endif I_gray(i,j)<(1-a)*T1I_bw(i,j)=0;endif (1-a)*T1<=I_gray(i,j)<=(1-a)*T1 if T3(i,j)>a*T1if I_gray(i,j)>=T4(i,j)I_bw(i,j)=255;elseI_bw(i,j)=0;endelse if I_gray(i,j)>=T5(i,j)I_bw(i,j)=255;elseI_bw(i,j)=0;endendendendendsubplot(1,2,1),imshow(I)subplot(1,2,2),imshow(I_bw)(2)julei=data';julei2=zscore(julei);y=pdist(julei2);z=linkage(y);dendrogram(z,'average')[x,cmap]=imread('000.bmp '); %读取图像的数据阵和色图阵image(x);colormap(cmap);axis image off %保持宽高比并取消坐标轴2、。
车道被占用对城市道路通行能力的影响摘要车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。
由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。
如处理不当,甚至出现区域性拥堵。
对于问题一,由于实际通行能力是建立在基本通行能力和可能通行能力之上的,所以在求解实际通行能力之前,需要算出基本通行能力和可能通行能力,针对问题一创建了一张流程图,从中可以清晰地看到这一递进过程,并且基本通行能力是理想状态下的,相当于是表示了最大的车流量,可能通行量是与修正关系有关的,对实际通行能力这一因素进行计算,创建一系列的算式模型,得出实际通行能力的变化过程,根据GREENSHIELD K-V线性算法得出道路越堵,车速越慢,则实际通行能力就越差,反之就会较好。
对于问题二,因为所占的车道不同,并且给的条件中有说明左转车流比例和右转车流比例不同,那只需验证两者是否存在显著性差异,运用配对样本t检验的方法就是要先满足这一方法的两个前提条件,首先必须验证是否满足正态分布,经过SPSS软件的验证可以得出符合正态分布。
然后再进行配对,从配对的结果中可以看出存在显著性差异,再结合左右转的车流量比例,更加可以看出存在显著性差异。
对于问题三,主要是对所推出来的回归方程的判断和分析因变量和各因子之间的关系,在本问中要先求出排队长度,排队长度是根据堵塞密度,进出车辆数之间的差值来求解,再根据最小二乘法来判断所假设的这一模型是否符合多元线性回归关系,本问中得出符合多元线性回归关系。
再在排队长度和最小二乘法的基础之上,运用SPSS软件,在进行结果分析时得出实际通行能力对于排队长度没有影响,所以可以剔除,而事故持续时间和上游车流量对排队长度都有明显的影响,然后得出他们的相关系数,求出最后的相关方程式。
对于问题四,题目中给出了事故发生点到上游路口的距离为140米,并且上游车流量为1500pcu/h,结合视频1中多次出现的120米这一个顶点,推算出120米内大概最大的堵塞车流量,然后按比例分配推算出140米的最大堵塞车流量,视频1中的可以通过加权平均来求出平均的实际通行能力,则事故持续时间就是要靠140米的最大堵塞车流量和平均实际通行能力来计算,最后得出事故持续时间为2.37min。
碎纸片的拼接复原【摘要】破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。
本文主要解决碎纸机切割后的碎纸片拼接复原问题。
针对第一问,附件1、2分别为沿纵向切割后的19张中英文碎纸片,本文在考虑破碎纸片携带信息量较大的基础上,利用MATLAB对附件1、2的碎纸片图像分别读入,以数字矩阵的方式进行存储。
利用数字矩阵中包含图像边缘灰度这一特征,本文采用贪心算法的思想,在首先确定原文件左右边界的基础上,以Manhattan距离来度量两两碎纸片边界差异度,利用计算机搜索依次从左往右搜寻最匹配的碎纸片进行横向配对并达成排序目的。
最终,本文在没有进行人工干预,成功地将附件1、2碎纸片分别拼接复原,得到复原图片见附录2.1、2.2,纵切中文及英文结果表分别如下:为先对本文3、第4行及第9Spearman拼接复原1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。
如果复原过程需要人工干预,请写出干预方式及干预的时间节点。
复原结果以图片形式及表格形式表达。
2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。
如果复原过程需要人工干预,请写出干预方式及干预的时间节点。
复原结果表达要求同上。
3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。
附件5给出的是一页英文印刷文字双面打印文件的碎片数据。
请尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果,结果表达要求同上。
二、模型假设1. 假设原题附件给出的破碎纸片图像是完好无损的。
2. 假设原题附件给出的破碎纸片仅包含纯文字内容(中英文),不含表格线等。
3. 假设原题附件给出的破碎纸片在切割时无油墨损失。
4. 假设原题附件给出的破碎纸片文字方向与切割方向均为水平或垂直。
5. 假设原题附件给出的破碎纸片文字均为水平正向,无旋转。
三、符号说明255所有碎片构成碎片集S 。
4.2.2边界差异度模型对于一个给定的碎片,找到可以与之拼接的另一碎片的最重要的特征是其边界的列向量。
图片上连续的部分具有类似的结构,则相邻的列向量就具有类似的特征。
对碎片集S 中的碎片n ,其左右边界的灰度向量分别为,n R g 与,n L g ,寻找这个向量右侧最匹配的下一个碎片n +1,等价于在剩下的碎片中寻找到向量k ,满足边界差异度(,)(,1)n k n n δδ=+ (4.1)但是由于并不知道下一个碎片具体是哪一个碎片,所以实际上(,1)n n δ+的值是未知的。
然而可以假定两个匹配的碎片的边界差异度(,1)n n δ+的值是所有的边界差异度(,)n k δ中最小的。
则问题转化为在碎片集S 中寻找满足的碎片k 。
(,)min (,),n k n i i S δδ=∈ (4.2)对于边界差异度δ,可以用多种方法来定义,这个论题将在问题2作更加详细的阐述。
将边界向量g 视为一个180维空间中的一点,则二者的差异度可以用两点之间的“距离”来描述。
此处取Manhattan 距离,,(,)n R k Ln k g g δ=-∑ (4.3)4.3计算流程图1:问题一算法流程说明图问题一的拼接过程使用贪心算法,首先确定出最左侧的碎片1,然后从剩下的样本中寻找与碎片1的边界差异度最小的碎片作为下一个碎片,再寻找与第2个碎片配对的第3个碎片,以此类推。
碎片1判别为碎片左侧留白最宽者。
4.4问题一的结果4.55.15.25.2.1文字打印在纸张上时,是沿着一条直线的基准线排列的。
由于本文所研究的所有碎片均没有旋转,所有可以用比较简单的方法来搜索基准线。
在本文中,基准线是特征线中有特殊意义的一条。
确定特征线和基准线的目的有二:一是从碎片集S 中将属于同一高度的碎片聚类到第n 行碎片子集n S 中,二是通过特征线可以确定行碎片子集n S 的顺序,即各个行碎片子集n S 在纵向的排列,这个内容将在5.2.2详细阐述。
a )汉字的特征线(针对附件3)汉字的特性决定了汉字每一行中每个字的高度大致是相同的。
尽管可能出现如“一”等高度差异很大的汉字,但是这种情况非常少。
所以对于汉字,可以用上下两条特征线来描述汉字的位置,并且只需要少量的样本就能够确定出两条特征线。
图3:汉字的特征线对一行汉字的两条特征线,作如图的命名。
图4:汉字的特征线上边线(基准线)位置1L 与下边线位置2L 之差满足12c L L h -= (5.1)式中c h 为字高。
在计算中取44c h =。
碎片上第n 行的基准线位置1,n L 与下一行基准线位置1,1n L +之间的差异为1个行距H ,即1,1,1n n L L H +-= (5.2)行高 (5.3)式(b 3。
拉丁字 (5.4) 式中:m h 5.2.21,1,n k (5.5)5.2.3扩展的边界差异度模型由于本题中碎片的更小,碎片的边界向量信息有限,4.2.2中的模型不能满足要求,因此本文拓展了几种计算边界差异度δ的方法。
a )差分的Manhattan 距离比较边界向量的差分来确定差异度的目的在于消除数据序列的自相关,使得从有限的边界样本中提取的特征信息受到更少的干扰。
此处的边界差异度定义为,,(,)n R k Ln k g g δ=∆-∆∑ (5.6)上边线(基准线) 下边线b )广义Jaccard 系数Jaccard 系数又叫做Jaccard 相似性系数,用来比较样本集中的相似性和分散性的一个概率。
定义集合M 与N 的相似度函数计算公式如下:122111(,)pi ii pppiii ii i i m nsim M N m n m n=====+-∑∑∑∑ (5.7)式中,此处样本M ,N 为破碎纸片边缘各个像素点灰度的集合,p 为样本的维数,在本文中为破碎纸片边缘像素点分布的行数,i 为边缘上该像素点在边界上的行数。
,i i m n 分别为破碎纸片M 和N 在第i 行边缘上的像素点对应的灰度。
(,)sim M N 用于刻画M 与N 的边缘匹配度。
该系数的值越大,代表匹配性越好。
则差异度δ定义为其相反数(5.8)c )s r ,又称等(1的秩次。
若(2 (5.9) (3相关系数 (5.10)5.35.3.1a )汉字图9:汉字标定特征线算法示意图b )拉丁字母拉丁字母的特征线模式要复杂得多,本文将之按字母跨越的区域数量分为3种模式予以判别。
模式1 模式2a 模式2b 模式3图10:拉丁字母特征线模式模式1只跨越了标高区域,模式2跨越了标高区域和一个余高区域,而模式3跨越了整个字高区域。
标定拉丁字母的特征线需要多次搜索。
图11:拉丁文标定特征线算法示意图5.3.2根据特征线将碎片聚类到各行得到各个碎片的特征线之后,根据特征线的位置,可以将各个碎片分类到各行。
尽管聚类的目标是各行,但是因为各行的特征线是未知的,所以采用以下的方法:Step1.将第1个碎片定为第1个标准,放入标准库;Step2.对比下一个碎片的特征线与当前标准库中所有标准对比;Step3.若与某个标准的差异小于阈值,则当前碎片聚类到该行;若与所有标准的特征线差异都大于阈值,则该碎片定为下一个标准,放入标准库;Step4.循环步骤2到步骤3,直到所有碎片都已被聚类到某一行。
虽然问题中已知总的碎片行数是11,但是因为标定特征线时可能有误差,所以标准的典型性不一定高,有可能导致同一碎片行中差异较大的样本被分为两行,此时碎片行数大于11,需要进行人工干预,将某些碎片行合并。
5.3.3碎片的排序a)未人工干预时情况(同一行内各碎片排序)我们分别基于四种方法对问附件3(中文)通过行聚类后得到的11组破碎纸片分别进行拼接,综合起来得到7个正确左右拼接的碎纸片行,剩余3个5.4中聚类出的行在左右拼接时出现了一些错误,需要我们进行人工适当的干预。
下图组号并非该行在原文件的真实位置,此处仅作为其暂时的代号。
注:下表√代表该组在该方法下正确左右拼接,×代表该组在这方法下正确左右拼接。
表3:不同判断方法中文拼接正确数量统计表11行中共3行需要人工干预,人工干预率为27.2%b)人工干预过程(同一行内各碎片排序)1.计算机排序效果如图12:人工干预后效果如图13:2.3.图17:第十组人工干预排序图c)纵向拼接(同一页各行的排序)附表3的破碎纸片原文件应为11行*19列,经过本文5.4中的聚类分析先将209个碎纸片分为了11组,当然,此时的每组的碎片应该归属于同一行,但他们在同一行的位置却未能确定。
之后我们分别采用4种方法利用各自的特征值对每组碎纸片进行左右拼接,最后我们综合4种方法的结果加上适当的人工干预得出了原文件的11行,但此时这11行纵向相对的位置是不确定的,我们需要对聚类好的各行进行纵向拼接之后得到原文件。
我们由基准网格模型经过纵向拼接,得出了本问原文件的图片及碎片位置见附录1.3、2.3。
5.4.2附件4(英文)的拼接a )未人工干预时情况(同一行内各碎片排序)我们分别基于四种方法对问附件3(中文)通过行聚类后得到的11组破碎纸片分别进行左右拼接,综合起来得到7个正确左右拼接的碎纸片行,剩余3个5.4中聚类出的行在左右拼接时出现了一些错误,需要我们进行人工适当的干预。
下图组号并非该行在原文件的真实位置,此处仅作为其暂时的代号。
注:下表中√代表该组在该方法下正确左右拼接,×代表该组在这方法下正确左右拼接。
表4:不同判断方法英文拼接正确数量统计表2.第四组:计算机排序为:计算机排序效果如图20:图20:英文第四组计算机排序图人工干预:39,67,147作为整体移动到65后面。
下表为干预后顺序表: 人工干预后效果如图21: 图21:英文第四组人工干预排序图3.第五组: 计算机排序为:计算机排序效果如图22:图22:英文第五组计算机排序图人工干预:112与197对调。
下表为干预后顺序表: 人工干预后效果如图23:图23:英文第五组人工干预排序图4.第七组:计算机排序为: 计算机排序效果如图24:图24:英文第七组计算机排序图人工干预:将109和90,185整体对调。
下表为干预后顺序表: 人工干预后效果如图25:5.计算机排序效果如图26:人工干预后效果如图27:6.计算机排序效果如图28: 图28:英文第十人工干预后效果如图29: 图29:英文第十c 但此时这11行纵向相对的位置是不确定的,我们需要对聚类好的各行进行纵向拼接之后得到原文件。
我们由基准网格模型经过纵向拼接,得出了本问原文件的图片及碎片位置见附录1.4、2.4。