哈尔滨市道路系统与城市热岛关系研究
- 格式:pdf
- 大小:490.37 KB
- 文档页数:6
《城市热岛效应成因的研究与分析》篇一一、引言随着城市化进程的加快,城市热岛效应成为环境领域的重要研究课题。
热岛效应是指城市地区的气温普遍高于周边乡村或自然区域的现象。
这一现象不仅对城市居民的生活品质产生直接影响,还对生态环境和气候模式造成深远影响。
本文旨在探讨城市热岛效应的成因,并对其进行深入研究与分析。
二、城市热岛效应的概述城市热岛效应是城市化进程中出现的特殊气候现象。
由于城市建筑密集、人口众多、工业活动频繁,以及大量使用人工建筑材料等,导致城市区域的气温显著高于周边自然区域。
这种温差不仅影响了城市的气候特征,也对城市的能源消耗、环境质量、生态系统等方面产生重要影响。
三、城市热岛效应的成因分析1. 人工建筑材料的影响:现代城市多使用混凝土、沥青等材料作为道路和建筑的主要构成部分,这些材料具有较高的热传导性和吸热性,导致城市区域吸收和储存大量热量。
2. 植被覆盖率的降低:城市中大量的建筑和道路占据了土地资源,导致植被覆盖率降低。
植被具有调节气温、减少热辐射的作用,其减少使得城市的自然调节能力下降。
3. 人口和工业活动的影响:城市人口密集,工业活动频繁,这些活动会产生大量的热量和温室气体排放,进一步加剧了城市的热岛效应。
4. 城市空气流动不畅:由于高楼林立,空气流动受到阻碍,不利于热量的扩散和交换。
此外,城市中的建筑物和道路改变了风的形成和流动路径,使得热量难以有效传递到周边地区。
四、研究方法与数据支持为了深入研究城市热岛效应的成因,我们采用了遥感技术、气象观测数据以及地理信息系统等方法。
通过收集和分析城市的气温数据、土地利用类型、植被覆盖率等数据,我们得出以下结论:1. 遥感技术显示,城市区域的地面温度明显高于周边地区,这种差异在夏季尤为明显。
2. 气象观测数据显示,随着城市化进程的加快,城市的平均气温呈现逐年上升的趋势。
3. 地理信息系统分析表明,人工建筑材料的使用、植被覆盖率的降低以及城市布局等因素是导致热岛效应的主要因素。
城市热岛效应及其应对措施研究随着城市化进程的加快和经济的不断发展,城市热岛效应日益严重,给城市环境、生态系统和人们的健康带来了诸多危害。
本文将从城市热岛效应的概念、成因、危害及其应对措施四个方面进行探讨。
一、城市热岛效应的概念广义上,城市热岛效应是指城市气温高于周围非城市地区的现象。
狭义上,城市热岛效应是指城市中心的气温高于市郊或城市周边的土地。
这是因为城市中心较密集的建筑和道路,以及较少的植被和裸露的土地,使城市中心的热效应更加明显。
二、城市热岛效应的成因城市热岛效应的成因主要是城市建设、土地利用、人类活动以及气候变化等方面的因素。
城市建设中,大量的高楼大厦、城市道路和人口集聚,使城市内部的太阳辐射吸收和热传递量增大,产生热岛效应。
土地利用方面,城市的大面积铺装和建筑物覆盖了大量的裸露土地,从而阻碍了水分的蒸发和土壤的渗透,增加了土壤、建筑和道路的热容量,加强了城市的热效应。
人类活动方面,城市交通、机械设施、空调设备、燃煤发电等活动也会增加热量和能量的释放,加剧热岛效应。
气候变化是在城市热岛彰显出来的重要因素,由于温室气体的排放和全球变暖的影响,使得城市热岛效应在不断加强。
三、城市热岛效应的危害城市热岛效应对城市环境、生态系统和人们的健康都会产生危害。
城市热岛效应加剧了城市空气污染的程度,城市热岛区通常会形成亚热带高压和逆温层,造成大气污染物的滞留和聚集,长期在此地区居住的人们容易患上呼吸系统疾病。
热岛区的高温和高湿也会对人体的身体机能和心理产生影响,导致中暑、心理疾病等。
同时,城市热岛效应还会对城市生态系统产生负面影响,破坏了生态平衡,减少了植被的覆盖面积和生态系统的多样性,促进了水循环难度,加剧了城市洪涝灾害。
四、城市热岛效应的应对措施城市热岛效应的对策主要包括改善城市建设和土地利用、增加绿化覆盖、节能减排和提高公众意识等。
改善城市建设和土地利用,以提升城市绿色基础设施建设和节能减排的方向为主。
㊀第22卷㊀第2期2024年4月中㊀国㊀城㊀市㊀林㊀业JournalofChineseUrbanForestryVol 22㊀No 2Apr 2024缓解城市热岛效应的通风廊道构建研究进展∗徐晨曦㊀张曦文㊀吴玲玲广东工业大学建筑与城市规划学院㊀广州㊀510090㊀收稿日期:2023-06-06∗基金项目:国家自然科学基金(42101273)ꎻ广东省自然科学基金(2024A1515010038)㊀第一作者:徐晨曦(1998-)ꎬ女ꎬ硕士生ꎬ研究方向为城市降温与生态规划ꎮE-mail:xucxchancy@163 com㊀通信作者:张曦文(1993-)ꎬ女ꎬ博士ꎬ讲师ꎬ研究方向:景观生态与土地利用ꎮE-mail:zhangxiwen@gdut edu cn摘要:在全球气候变暖的背景下ꎬ构建通风廊道是缓解城市热岛效应的有效途径ꎬ对改善局地气候环境有重要作用ꎮ文章通过梳理1995 2023年国内外通风廊道相关研究文献ꎬ总结了城市通风廊道对缓解城市热岛效应的作用机制以及构建通风廊道的研究方法ꎬ并对当前缓解热岛效应的通风廊道建设标准㊁多尺度评估㊁协同规划㊁现状研究缺陷和未来发展方向进行探讨ꎬ旨在为城市热环境改善和可持续宜居城市建设提供参考ꎮ关键词:城市ꎻ热岛效应ꎻ通风廊道ꎻ冷却效应DOI:10.12169/zgcsly.2023.06.06.0002ResearchProgressinVentilationCorridorsConstructiontoMitigateUrbanHeatIslandEffectXuChenxi㊀ZhangXiwen㊀WuLingling(SchoolofArchitectureandUrbanPlanningꎬGuangdongUniversityofTechnologyꎬGuangzhou510090ꎬChina)Abstract:Underthebackgroundofglobalwarmingꎬtheconstructionofventilationcorridorsisaneffectivewaytomitigatetheurbanheatislandeffectꎬwhichplaysacrucialroleinimprovinglocalclimatecondition.Byreviewingrelevantliteratureonventilationcorridorsin1995and2023athomeandabroadꎬthispapersummarizestheworkingmechanismsthroughwhichurbanventilationcorridorsalleviatetheurbanheatislandeffectꎬandconcludestheresearchmethodologies.Furthermoreꎬthecurrentstandardsforventilationcorridorconstructionaimingtomitigatetheurbanheatislandeffectꎬalongwithmulti ̄scaleassessmentsꎬcollaborativeplanningꎬexistinglimitationsinresearchandfuturedevelopmentdirectionsꎬhavebeendiscussed.Thestudyisexpectedtoprovidereferencesforimprovingurbanthermalenvironmentsandconstructingsustainableandlivablecities.Keywords:cityꎻheatislandeffectꎻventilationcorridorꎻcoolingeffect㊀㊀城市的快速增长导致城市下垫面结构急剧变化ꎬ这种由自然地表向城市使用土地变化的过程必然会对生态环境带来严重影响[1-3]ꎮ2022年7月和8月ꎬ地表温度是自1880年以来的第六高[4]ꎮ未来城市将会面临更强烈的热岛效应和更频繁的热浪事件ꎬ因此ꎬ有效缓解城市热岛效应成为全球可持续发展的重要挑战ꎮ研究表明ꎬ构建城市通风廊道可有效缓解城市热岛效应[5-8]ꎮ城市通风廊道通过将新鲜空气导入城市内部从而减轻城市热岛效应[9]ꎮ通风廊道在城市规划研究领域不仅影响区域气候㊁风热环境㊁空气质量和建筑能耗ꎬ还对城市生态过程产生间接影响[10]ꎮ许多地区已将通风廊道规划纳入城市规划㊀第2期㊀徐晨曦㊀张曦文㊀吴玲玲:缓解城市热岛效应的通风廊道构建研究进展㊀㊀中ꎬ促进了通风廊道构建㊁环境效应及量化分析等方面的研究[11-13]ꎮ随着可持续发展理念的盛行和气候变化的挑战ꎬ城市通风廊道的研究也在不断深入与优化[14]ꎮ文章通过中国知网(CNKI)㊁WebofScience㊁GoogleScholar数据库检索了1995 2023年通风廊道相关文献ꎬ梳理和总结通风廊道对缓解城市热岛效应的作用机制㊁研究方法和规划实践等内容ꎮ本研究旨在探讨通风廊道在城市热岛缓解中的潜力和可行性ꎬ为我国高质量发展目标下的城市降温规划与设计提供具有针对性的建议ꎬ同时会对城市通风廊道的时空格局优化及 双碳 目标实现等方面产生积极影响ꎮ1㊀通风廊道缓解城市热岛效应的作用机制㊀㊀城市热岛效应(UrbanHeatIslandEffect)是指城市中的空气温度明显高于城市外围郊区的现象[15]ꎮ构建城市通风廊道的主要目的是为城市外到建成区内的空气流动提供一条通道ꎬ改善城市热岛效应[16]ꎮ通风廊道通过创造开放的空间通道ꎬ利用周围风的流动实现自然通风ꎬ排出热岛区域积聚的热空气ꎬ并引入凉爽的外部空气ꎬ从而有效降低城市表面和周围环境的温度ꎮ德国学者Kress[17]根据局地环流运行规律将城市通风系统分为作用空间㊁补偿空间与空气引导通道ꎬ其中ꎬ作用空间是指需要改善风热环境的区域ꎻ补偿空间是指产生冷空气的区域ꎻ空气引导通道则是指为了引导空气流动而设计ꎬ可以将空气从补偿空间引导到作用空间的连接通道ꎬ即通风廊道[18]ꎮ基于此机制ꎬ构建城市通风廊道缓解城市热岛效应的作用主要体现在3个方面:1)打破城市热岛环流ꎬ使城市周边的冷空气向城市建成区内转移ꎬ缓解城市热岛效应ꎻ2)增强城市内部空气的流动性ꎬ有利于防止城市区域出现局部高温的情况ꎻ3)分割大面积的城市空间ꎬ减小热岛的规模效应和叠加效应ꎮ2㊀通风廊道模拟构建的技术方法缓解城市热岛效应的通风廊道构建研究通常从城市和街区尺度展开ꎬ具体研究方法包括边界层风洞实验方法㊁计算机数值模拟法㊁基于GIS技术的形态分析方法(表1)ꎮ表1㊀构建通风廊道的主要研究方法㊀㊀主要研究方法㊀㊀㊀方法概述㊀㊀㊀优点㊀㊀㊀缺点边界层风洞实验结合常规气象资料ꎬ对空气流过研究区域时的详细变化进行客观的观测便于实际操作ꎻ研究结果客观㊁真实ꎻ在方案设计阶段即可进行风环境评估实验所需人力㊁物力成本较高ꎻ模拟范围有限ꎻ对物理模型精度要求严格计算机数值模拟CFD软件对区域空气流动形成的温度场㊁速度场结果进行直观显示ꎮ构建模型进行城市微气候模拟ꎬ评估各类城市热岛效应缓解策略的功效分辨率高ꎻ模拟所需人力㊁物力成本相对较低ꎻ可通过相关参数的设置进行策略验证模拟ꎻ结果直观详细计算复杂及背景信息获取困难ꎻ无法准确进行大尺度模拟ꎻ模型假设和参数设定较为复杂ꎻ无法完全模拟高度复杂的实际情况WRF模型采用物理参数化方案㊁建筑参数化㊁边界条件和后处理评估等方法ꎬ模拟和预测城市和地区的热环境变化ꎮ通过考虑各因素ꎬ提供详细的温度㊁湿度㊁风速和风向等气象参数具有多尺度模拟能力ꎻ可扩展性㊁易于维护㊁操作简单ꎻ能弥补气象站点数据缺失或精度不足等问题需要高性能计算设备ꎻ受空间分辨率限制可能无法完全捕捉城市细小尺度特征基于GIS技术的形态分析最小成本路径模型研究地理空间中最优路径选择的方法ꎬ通过准备数据㊁生成成本表面㊁搜索最小成本路径㊁评估和调整路径ꎬ并进行可视化和结果分析ꎬ实现路径选择的优化和规划综合性强ꎻ足够的空间分析能力ꎻ计算效率高ꎻ结果直观ꎻ可提供可视化和定量分析数据要求高ꎬ前期数据获取和处理工作量大ꎻ对于复杂的现实情况存在一定局限性2 1㊀边界层风洞实验方法边界层风洞实验方法是结合常规气象资料模拟和研究城市通风环境[19-20]ꎮ从1960年代起ꎬ风洞实验就被引入到城市通风环境的研究中ꎬ为城市通风规划提供了技术支撑ꎮ例如ꎬ关吉平等[21]对上海某拟建大楼周边进行了风洞试验ꎬ发现该建筑大部分区域的通风和舒适性都达到了要求ꎬ但一些建筑边缘区需要进行改造ꎮ该方法虽能够对城市通风流场的详细变化进行客观测量ꎬ但会受到高实验成本㊁模拟范围有限和物理模型34㊀㊀㊀㊀中㊀国㊀城㊀市㊀林㊀业㊀第22卷的精度等限制ꎬ大多数研究仅限于街区尺度ꎮ2 2㊀计算机数值模拟法在通风廊道的研究中ꎬ常用的计算机数值模拟方法包括计算流体动力学软件(ComputationalFluidDynamicsꎬCFD)和中观气象模型(WeatherResearchandForecastModelꎬWRF)ꎮCFD软件通过数值模拟直观显示区域空气流动的温度场和速度场ꎬ以验证中小尺度区域的气候效应或单个地块的热岛效应缓解策略的性能[22]ꎮ例如ꎬ尹杰和詹庆明[23]将地理信息系统和CFD的方法相结合ꎬ评估街道的通风潜力ꎬ并综合建筑迎风面积密度提取了武汉市的通风廊道ꎮ然而ꎬ由于计算量大及获取大区域背景信息困难ꎬCFD通常用于小规模㊁高分辨率的流体模拟[24]ꎮ因此ꎬ该方法主要用于中小尺度的风道识别和局部地块的验证评估ꎮ为了弥补CFD软件的不足ꎬ近年来一些学者将中观气象模型WRF和CFD模式结合ꎬ利用WRF模型所提供的大范围环流信息ꎬ以实现更精确的通风廊道构建[25-26]ꎮ此方法是利用土地利用数据以及常规和自动气象站数据在WRF中进行模拟ꎬ通过城市三维数据㊁风向和风速等参数ꎬ评估城市通风潜力并构建通风廊道ꎮ然而ꎬ传统的WRF模拟对城市下垫面的描述较为简化ꎬ未能充分考虑城市下垫面结构的不均匀性以及城市建筑对低层大气的动力㊁热力特征和地面能量平衡的影响[27]ꎮ因此ꎬ一些研究采用城市冠层模型(UrbanCanopyModelꎬUCM)与WRF模式耦合以提升WRF模拟的表现[28]ꎮ2 3㊀基于GIS技术的形态分析方法在气象数值模拟的基础上ꎬ借助地理信息系统GIS技术可以使获取的通风廊道信息更加详实[29]ꎮ其中ꎬ最具代表性的方法是利用最小成本路径(LeastCostPathꎬLCP)模型ꎬ计算下垫面的表面粗糙度来分析城市通风环境[30]ꎮ该方法的实现是基于天空开阔度指数和表面粗糙度指数开发通风阻力系数模型ꎬ结合城市主导风向和最小成本路径(LCP)模型构建城市通风廊道[12]ꎮ这种方法已取得了许多建设性的成果ꎬ并得到了证实[31-33]ꎮ然而ꎬ该方法无法识别通风廊道宽度和评估没有最小成本路径的区域通风条件ꎮ因此ꎬ有研究在此基础上结合电路理论进行通风廊道识别ꎬ能覆盖整个研究区域内的全部栅格点ꎬ从而改善了最小成本路径法的不足[34]ꎮ3㊀通风廊道的规划实践探索3 1㊀通风廊道建设标准研究不同的通风廊道建设标准会产生差异化的空间特征ꎬ进而对城市风热环境和缓解城市热岛效应的效果产生影响ꎮ国内外对城市通风廊道的建设标准进行了大量研究[35-36]ꎬ主要从廊道宽度㊁长度和走向等方面确定(表2)ꎮ较早是德国学者Kress[37]基于城市下垫面气候功能评价ꎬ从廊道宽度㊁长度以及地块控制提出城市通风廊道的建设标准ꎮ在此基础上ꎬ其他国外学者对廊道走向进行了研究[38-39]ꎮ国内相关研究起步较晚ꎬ国内学者梁颢严等[40]借鉴国外经验并结合国内实际ꎬ将廊道宽度㊁廊道走向及地块控制作为控制指标ꎬ提出通风廊道的建设标准ꎮ由于在实际规划中存在已建成的城市环境ꎬ廊道建设标准的落实存在一定困难ꎬ因此ꎬ有关针对已建成的城市环境进行有效且易落实的通风廊道的研究仍需加强ꎮ表2㊀国内外通风廊道建设标准学者廊道宽度/m廊道长度/m廊道走向/(ʎ)㊀㊀地块控制KRESS>30ꎻ50最佳ȡ500ꎻ1000以上最佳障碍物垂直于气流方向的宽度应尽量小于等于通道总宽度的10%ꎬ高度不超过10mꎬ相邻两个障碍物高度与水平间距的比值不应超过0 1(建筑物)与0 2(树木)吉沃尼㊁布朗>100与主导风向夹角ɤ30梁颢严主通风廊道:ȡ150次通风廊道:ȡ80与主导风向夹角ɤ45建设用地比例ɤ25%ꎻ建筑密度ɤ30%ꎻ相邻界面高宽比ɤ1ꎬ开放度ȡ30%党冰主通风廊道:ȡ200次通风廊道:ȡ120城区局部通风廊道:ȡ60主通风廊道:ȡ4000次通风廊道:ȡ2000城区局部通风廊道:ȡ1000与主导风向夹角ɤ30主通风廊道内建设用地比例ɤ20%ꎻ次通风廊道内建设用地比例ɤ25%ꎻ城区局部通风廊道内建设用地比例ɤ30%44㊀第2期㊀徐晨曦㊀张曦文㊀吴玲玲:缓解城市热岛效应的通风廊道构建研究进展㊀㊀3 2㊀多尺度通风廊道效应评估3 2 1㊀城市群尺度评估城市群尺度通风廊道的评估是对宏观层面50~500km范围内通风环境的评估ꎮ该评估是在充分认识区域风热环境的基础上ꎬ将城市群内涉及通风廊道的城市联合起来ꎬ开展 联防 协同 和 共治 ꎮ例如ꎬ张少康等[41]利用WRF模拟探索城市群通风廊道的识别技术与分析方法ꎬ构建珠三角城市群通风廊道体系ꎮ目前ꎬ对于城市群尺度下的通风廊道评估多在引导与控制层面ꎬ或与生态廊道结合ꎬ而系统科学的定性和定量评估及区域协同方面仍有待深入研究ꎮ3 2 2㊀城市尺度评估城市尺度通风廊道的评估是对中观层面1~50km的通风环境状况进行评估ꎮ最早是斯图加特市引入城市尺度通风廊道体系ꎬ成功改善了空气流动状况[42]ꎮ在亚洲地区ꎬ日本率先提出分层管理通风廊道的概念ꎬ建立主要风道系统引入新鲜空气缓解城市热岛[43]ꎮ国内由于近年来受城市化进程速度的影响ꎬ诸多城市相继开展了城市尺度的通风廊道研究[44-46]ꎮ目前的城市尺度评估研究多通过观测和模拟调整规划布局与建筑形态来缓解城市热岛效应ꎮ随着计算机技术和模拟方法的发展ꎬ未来可能会探索其他创新的评估方法ꎬ使通风廊道的构建更具科学性与前瞻性ꎮ3 2 3㊀街区尺度评估街区尺度通风廊道的评估是指针对微观层面10~1000m城市局部通风环境进行评估ꎬ涉及街道宽度㊁建筑立面设计㊁绿化覆盖率和周围建筑物的影响等因素ꎮ周志宇等[47]通过对比不同住区夏季室外温度和风速空间分布ꎬ探讨建筑布局与风热环境的关系ꎮ还有研究对街区的通风指标进行综合分析ꎬ以评价不同城市街区的综合通风效能ꎬ例如ꎬ马童和陈天[48]通过城市规划指标与各通风效能指标及总体通风效能的相关性分析ꎬ研究通风效能与城市街区形态的关系ꎮ3 3㊀通风廊道的协同规划3 3 1㊀通风廊道与城市结构的协同不同的城市结构会产生不同的空间特征ꎬ从而影响通风廊道的有效性ꎮ城市结构中城市形态是重要影响因素之一ꎮ陈日飙等[49]基于城市形态在 双循环 + 多尺度 的风环境评估路线下ꎬ探讨了城市用地属性对局地气候的敏感性差异ꎮ除此之外ꎬ合理的城市空间结构也是通风效应的重要影响因素ꎮ冯娴慧[50]对城市圈层㊁轴带及组团结构对城市通风的影响进行了全面分析ꎬ并提出了针对不同城市结构的策略以改善城市通风情况ꎮ3 3 2㊀通风廊道与蓝绿空间的协同蓝绿空间作为通风网络的重要载体ꎬ通过引风㊁导风和串风等策略发挥作用ꎮ城市边缘地带的多样化蓝绿空间为通风廊道提供新鲜空气来源即引风ꎮ王绍增和李敏[51]建议ꎬ对于作为氧源地的绿地ꎬ应根据不同情况将风玫瑰平均瓣长按一定倍数放大ꎬ以此得到其范围和形状ꎮ导风通常以绿廊或蓝道等形式串联公园和湖泊ꎮ由于城市已建成环境的客观性和城市下垫面复杂性的限制ꎬ要实现通风廊道内部空气的良好流动ꎬ需充分利用蓝绿空间ꎮ例如ꎬ张雅妮等[52]利用ENVI ̄met模拟了河道两侧的城市空间界面ꎬ合理利用开敞空间引导河风进入城市街区ꎬ有效改善了城市的小气候环境ꎮ3 3 3㊀通风廊道与城市路网的协同通风廊道与城市路网的协同是为了在城市规划中充分利用道路系统优化通风廊道的效果ꎮ柏春[53]通过分析不同路网形式的通风特性ꎬ基于路网形式㊁疏密度㊁顺畅度以及方位等提出了城市通风廊道与城市路网的协同规划方案ꎮ此外ꎬ构建通风廊道时ꎬ道路常作为重要通风通道ꎮ例如ꎬ毛蒋兴等[54]在构建南宁市广义降温通道时ꎬ提出了 一轴㊁四廊㊁两道 的城市降温框架ꎬ其中 两道 指的就是沿城市主干道及其沿线林荫道所形成的与主导风向平行的降温通道ꎮ3 4㊀国内城市通风廊道规划实践及其成果在实施生态文明建设战略的背景下ꎬ城市通风廊道规划作为重要举措在城市规划中得到广泛应用ꎮ如北京市在«北京城市总体规划(2016 2035年)»中指出构建多级通风廊道系统ꎬ并在通风廊道的区域内严格控制建设规模ꎮ广州市与世界银行合作开展 中国可持续发展城市降温项目 试点工作ꎬ旨在推动广州 酷城 行动ꎬ探索可持续㊁可负担的城市降温综合解决方案ꎮ在54㊀㊀㊀㊀中㊀国㊀城㊀市㊀林㊀业㊀第22卷«广州市国土空间生态修复规划(2021 2035年)»中结合生态廊道控制构建市域6条通风廊道ꎮ佛山市为治理大气污染工作进行了«佛山市通风廊道专项规划(2018 2035年)»ꎬ通过对城市热环境㊁风环境㊁建成环境以及城市通风潜力进行评估ꎬ确定形成 6主28次风道㊁37处入风口㊁3主5次补偿空间㊁作用空间 的通风系统框架ꎮ综上可知ꎬ通风廊道在实践中通常具有分级确定㊁控制与优化相结合的共性ꎮ随着国家对于城市可持续发展的重视ꎬ相关标准和政策的出台明确了通风廊道规划的重要性和应用要求ꎬ促使我国大多数省级行政单元自主开展通风廊道规划ꎬ为城市可持续发展和生态环境改善提供了重要支持ꎮ4 展望文章系统回顾并总结了缓解城市热岛效应的通风廊道构建的相关研究ꎬ讨论了不同研究对缓解城市热岛效应的重要性ꎬ并梳理了已有研究存在的问题:1)通风廊道的建设标准缺乏针对特定城市环境或不同城市气候的定制化ꎬ重视 风道 而忽视规划实施和系统要素ꎮ建设标准在区域协同层面缺乏定性与定量结合的研究ꎮ2)在不同尺度下构建通风廊道缺乏综合性和系统性ꎮ宏观尺度下的规划难以与微观尺度的实施相协调ꎬ往往会受到周围已建成环境的影响ꎬ导致规划理念难以实施和落地ꎬ最终导致通风廊道缓解热岛效应的效果不如预期ꎮ3)通风廊道建设主要依赖于模拟软件的理论结果ꎬ缺乏实地观测数据的支撑ꎬ对已建设或规划建设的通风廊道缺乏后续实地观测和跟踪ꎻ相关成果主要基于理论分析ꎬ缺乏实践层面的有效验证ꎮ4)通风廊道的作用效果通常只考虑当前的降温效应ꎬ缺乏对其持续降温能力的评估和验证ꎮ因此ꎬ未来的研究重点应集中在以下4个方面:1)增强通风廊道可行性ꎮ增加对不同城市环境与气候背景下城市通风廊道构建的对比研究ꎬ制定具有针对性和系统性的通风廊道建设标准ꎬ注重规划与实践的结合ꎬ加强区域层面的定性与定量研究ꎬ以提升通风廊道的实际效果和适应性ꎮ2)与城市现有功能融合ꎮ综合考虑多个要素之间的相互作用和协同效应ꎬ可借助未来城市功能疏解㊁存量用地更新的契机以及城市低效用地集约利用构建城市通风廊道ꎮ3)通风廊道构建可持续性验证ꎮ建立和完善评价体系以评估通风廊道在缓解城市热岛效应方面的效果ꎬ考虑未来城市的扩张趋势ꎬ适应不同发展阶段的可持续性ꎬ进行通风廊道可持续降温效应的评估ꎬ以确保其长期有效地提供降温和改善环境的功能ꎮ4)通风廊道效应拓展ꎮ未来的通风廊道研究应更加多元化和综合化ꎬ应不再局限于关注通风廊道对缓解城市热岛效应的问题ꎬ还可以拓展至城市通风廊道用于城市安全㊁城市韧性以及城市低碳规划等ꎮ参考文献[1]RUIZ ̄PÁEZRꎬDÍAZJꎬLÓPEZ ̄BUENOJAꎬetal.Doesthemeteorologicaloriginofheatwavesinfluencetheirimpactonhealth?A6 ̄yearmorbidityandmortalitystudyinMadrid(Spain)[J].ScienceoftheTotalEnvironmentꎬ2023ꎬ855:158900.[2]TURNERBLꎬLAMBINEFꎬREENBERGA.Theemergenceoflandchangescienceforglobalenvironmentalchangeandsustainability[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmericaꎬ2007ꎬ104(52):20666-20671.[3]樊柏青ꎬ刘东云ꎬ李丹宁ꎬ等.北京市六环内区域城市绿地对地表温度降温效益的差异性[J].中国城市林业ꎬ2022ꎬ20(4):43-50.[4]NOAANationalCentersforEnvironmentalInformation.MonthlyglobalclimatereportforAnnual2022[R/OL].[2023-06-06].https://www.ncei.noaa.gov/access/monitoring/monthly ̄report/global/202207.[5]LAICCꎬSHIHTPꎬKOWCꎬetal.Severeacuterespiratorysyndromecoronavirus2(SARS ̄CoV ̄2)andcoronavirusdisease ̄2019(COVID ̄19):theepidemicandthechallenges[J].InternationalJournalofAntimicrobialAgentsꎬ2020ꎬ55(3):105924. [6]HEBJꎬDINGLꎬPRASADD.Relationshipsamonglocal ̄scaleurbanmorphologyꎬurbanventilationꎬurbanheatislandandoutdoorthermalcomfortunderseabreezeinfluence[J].SustainableCitiesandSocietyꎬ2020ꎬ60:102289. [7]ANFINRUDPꎬSTADNYTSKYIVꎬBAXCEꎬetal.Visualizingspeech ̄generatedoralfluiddropletswithlaserlightscattering[J].TheNewEnglandJournalofMedicineꎬ2020ꎬ382(21):2061-2063.[8]LUOXꎬYANGJꎬSUNWꎬetal.Suitabilityofhumansettlements64㊀第2期㊀徐晨曦㊀张曦文㊀吴玲玲:缓解城市热岛效应的通风廊道构建研究进展㊀㊀inmountainousareasfromtheperspectiveofventilation:acasestudyofthemainurbanareaofChongqing[J].JournalofCleanerProductionꎬ2021ꎬ310:127467.[9]SHIZPꎬYANGJꎬZHANGYQꎬetal.Urbanventilationcorridorsandspatiotemporaldivergencepatternsofurbanheatislandintensity:alocalclimatezoneperspective[J].EnvironmentalScienceandPollutionResearchInternationalꎬ2022ꎬ29(49):74394-74406.[10]YANGJꎬWANGYCꎬXUEBꎬetal.Contributionofurbanventilationtothethermalenvironmentandurbanenergydemand:differentclimatebackgroundperspectives[J].ScienceoftheTotalEnvironmentꎬ2021ꎬ795:148791.[11]邹哲ꎬ康健ꎬ周志宇ꎬ等.特大城市主城区通风廊道规划控制研究:以天津市为例[J].建筑科学ꎬ2019ꎬ35(6):91-97ꎬ107. [12]FANGYHꎬZHAOLY.Assessingtheenvironmentalbenefitsofurbanventilationcorridors:acasestudyinHefeiꎬChina[J].BuildingandEnvironmentꎬ2022ꎬ212:108810.[13]CHENCXꎬYESPꎬBAIZCꎬetal.Intelligentminingofurbanventilationcorridorsbasedonhigh ̄precisionobliquephotographicimages[J].Sensorsꎬ2021ꎬ21(22):7537. [14]GUKKꎬFANGYHꎬQIANZꎬetal.Spatialplanningforurbanventilationcorridorsbyurbanclimatology[J].EcosystemHealthandSustainabilityꎬ2020ꎬ6(1):1747946.[15]白杨ꎬ王晓云ꎬ姜海梅ꎬ等.城市热岛效应研究进展[J].气象与环境学报ꎬ2013ꎬ29(2):101-106.[16]房小怡ꎬ李磊ꎬ刘宛ꎬ等.我国城市通风廊道研究与实践进展[J].生态学杂志ꎬ2021ꎬ40(12):4088-4098.[17]KRESSR.RegionaleLuftaustauschprozesseundihreBedeutungfürdieräumlichePlanung[M].Dortmund:InstitutforUmweltschutzderUniversitatDortmundꎬ1979.[18]刘姝宇ꎬ沈济黄.基于局地环流的城市通风道规划方法:以德国斯图加特市为例[J].浙江大学学报(工学版)ꎬ2010ꎬ44(10):1985-1991.[19]TSEKTꎬWEERASURIYAAUꎬZHANGXꎬetal.Pedestrian ̄levelwindenvironmentaroundisolatedbuildingsundertheinfluenceoftwistedwindflows[J].JournalofWindEngineeringandIndustrialAerodynamicsꎬ2017ꎬ162:12-23.[20]XIEPꎬYANGJꎬWANGHYꎬetal.ANewmethodofsimulatingurbanventilationcorridorsusingcircuittheory[J].SustainableCitiesandSocietyꎬ2020ꎬ59:102162.[21]关吉平ꎬ任鹏杰ꎬ周成ꎬ等.高层建筑行人高度风环境风洞试验研究[J].山东建筑大学学报ꎬ2010ꎬ25(1):21-25. [22]WANGWWꎬWANGDꎬCHENHꎬetal.Identifyingurbanventilationcorridorsthroughquantitativeanalysisofventilationpotentialandwindcharacteristics[J].BuildingandEnvironmentꎬ2022ꎬ214:108943.[23]尹杰ꎬ詹庆明.基于GIS和CFD的城市街道通风廊道研究:以武汉为例[J].中国园林ꎬ2019ꎬ35(6):84-88.[24]CHANGSZꎬJIANGQGꎬZHAOY.IntegratingCFDandGISintothedevelopmentofurbanventilationcorridors:acasestudyinChangchuncityꎬChina[J].Sustainabilityꎬ2018ꎬ10(6):1814. [25]郑祚芳ꎬ雷小燕ꎬ高华.北京城市通风廊道研究Ⅰ:环境效应模拟[J].地理科学ꎬ2022ꎬ42(4):631-639.[26]成丹ꎬ许杨ꎬ刘静ꎬ等.武汉市东南部通风廊道构建和气象效应研究[J].长江流域资源与环境ꎬ2022ꎬ31(11):2500-2513. [27]莫尚剑ꎬ沈守云ꎬ廖秋林.基于WRF模式的长株潭城市群绿心通风廊道规划策略研究[J].中国园林ꎬ2021ꎬ37(1):80-84.[28]颜廷凯ꎬ金虹.基于WRF/UCM数值模拟的严寒地区城市热岛效应研究[J].建筑科学ꎬ2020ꎬ36(8):107-113. [29]LIUDDꎬZHOUSHꎬWANGLJꎬetal.ResearchontheplanningofanurbanventilationcorridorbasedontheurbanunderlyingsurfacetakingKaifengcityasanexample[J].Landꎬ2022ꎬ11(2):206.[30]QIAOZꎬXUXLꎬWUFꎬetal.Urbanventilationnetworkmodel:acasestudyofthecorezoneofcapitalfunctioninBeijingmetropolitanarea[J].JournalofCleanerProductionꎬ2017ꎬ168:526-535.[31]DANGBꎬLIUYHꎬLYUHLꎬetal.Assessmentofurbanclimateenvironmentandconfigurationofventilationcorridor:arefinedstudyinXi an[J].JournalofMeteorologicalResearchꎬ2022ꎬ36(6):914-930.[32]FANGYHꎬGUKKꎬQIANZꎬetal.Performanceevaluationonmulti ̄scenariourbanventilationcorridorsbasedonleastcostpath[J].JournalofUrbanManagementꎬ2021ꎬ10(1):3-15. [33]LIUXQꎬHUANGBꎬLIRRꎬetal.WindenvironmentassessmentandplanningofurbannaturalventilationcorridorsusingGIS:Shenzhenasacasestudy[J].UrbanClimateꎬ2022ꎬ42:101091. [34]申鑫杰ꎬ赵芮ꎬ何瑞珍ꎬ等.郑州市市区风环境模拟研究[J].地球信息科学学报ꎬ2020ꎬ22(6):1349-1357.[35]杨务发ꎬ余坤勇ꎬ耿建伟ꎬ等.福州市通风廊道选线与优化[J].中国城市林业ꎬ2022ꎬ20(4):123-128.[36]党冰ꎬ房小怡ꎬ吕红亮ꎬ等.基于气象研究的城市通风廊道构建初探:以南京江北新区为例[J].气象ꎬ2017ꎬ43(9):1130-1137.[37]KRESSR.RegionaleLuftaustauschprozesseundihreBedeutungfürdieräumlichePlanung[M].[Bonn ̄]BadGodesberg:BundesministerfürRaumordnungꎬBauwesenundStädtebauꎬ1979[38]布朗GZꎬ马克 德凯.太阳辐射 风 自然光:建筑设计策略[M].常志刚ꎬ刘毅军ꎬ朱宏涛ꎬ译.北京:中国建筑工业出版社ꎬ2008.[39]巴鲁克 吉沃尼.建筑设计和城市设计中的气候因素[M].汪芳ꎬ阚俊杰ꎬ张书海ꎬ译.北京:中国建筑工业出版社ꎬ2011. [40]梁颢严ꎬ李晓晖ꎬ肖荣波.城市通风廊道规划与控制方法研究以«广州市白云新城北部延伸区控制性详细规划»为例[J].74㊀㊀㊀㊀中㊀国㊀城㊀市㊀林㊀业㊀第22卷风景园林ꎬ2014(5):92-96.[41]张少康ꎬ刘沛ꎬ魏冀明.基于风环境分析的珠三角地区城镇空间规划引导[J].规划师ꎬ2016ꎬ32(9):118-122.[42]任超ꎬ吴恩融ꎬ卢茨 卡施纳.城市环境气候信息在德国城市规划中的应用及其启示[J].国际城市规划ꎬ2013ꎬ28(4):91-99.[43]KUSAKAHꎬKIMURAFꎬHIRAKUCHIHꎬetal.Theeffectsofland ̄usealterationontheseabreezeanddaytimeheatislandintheTokyometropolitanarea[J].JournaloftheMeteorologicalSocietyofJapanSerIIꎬ2000ꎬ78(4):405-420.[44]韩旭.基于气候功能评估的城市通风廊道规划建设:以西安市主城区为例[J].建筑与文化ꎬ2021(4):154-155. [45]向艳芬ꎬ郑伯红ꎬ郭睿ꎬ等.基于空间封闭度的城市通风廊道构建:以衡阳县城为例[J].热带地理ꎬ2023ꎬ43(8):1523-1535.[46]刘名瑞ꎬ曾勤ꎬ邓玮ꎬ等.重点地区城市设计的风环境评估及规划管控研究:以广州市为例[J].城市规划学刊ꎬ2021(4):35-42.[47]周志宇ꎬ康健ꎬ舒平ꎬ等.建筑布局对住区风热环境的影响分析与优化策略[J].济南大学学报(自然科学版)ꎬ2023ꎬ37(3):349-361.[48]马童ꎬ陈天.公共健康视角下城市街区综合通风效能与规划响应研究[J].西部人居环境学刊ꎬ2022ꎬ37(2):39-46. [49]陈日飙ꎬ陈竹ꎬ尹名强ꎬ等.通风节能视角中多尺度的风环境评估方法研究:以深圳后海中心区为例[J].南方建筑ꎬ2023(2):77-87.[50]冯娴慧.城市的风环境效应与通风改善的规划途径分析[J].风景园林ꎬ2014(5):97-102.[51]王绍增ꎬ李敏.城市开敞空间规划的生态机理研究(下)[J].中国园林ꎬ2001ꎬ17(5):32-36.[52]张雅妮ꎬ殷实ꎬ肖毅强.气候适应性视角下的河道空间城市设计评价和策略研究:以广州市荔枝湾涌改造一期工程为例[J].西部人居环境学刊ꎬ2018ꎬ33(3):73-79.[53]柏春.城市路网规划中的气候问题[J].西安建筑科技大学学报(自然科学版)ꎬ2011ꎬ43(4):557-562.[54]毛蒋兴ꎬ古艳ꎬ蒙金华ꎬ等.基于热岛效应的城市广义降温通道构建[J].规划师ꎬ2015ꎬ31(12):65-71.84。
城市热岛效应研究城市热岛效应是指城市内部温度比周边农村地区更高的现象。
随着城市化进程的不断加速,城市热岛效应对城市环境和人类健康产生了重要影响,因此引起了广泛的研究。
一、城市热岛效应的原因及机制城市热岛效应的形成原因复杂多样,主要包括城市建设活动、人类活动、城市地面和气象条件等多个因素的综合影响。
首先,城市建设活动改变了城市热量平衡,导致城市的热量吸收、储存和释放过程发生改变。
城市地表由原来的土地、植被等转变为建筑、道路等,这些大量的硬质和黑色表面能够吸收和储存大量的太阳辐射能量,进而引发城市气温的升高。
其次,人类活动也是城市热岛效应的重要原因之一。
城市内的人类活动释放了大量的废热,例如工业排放的废气、交通工具的尾气等。
这些废热无法有效散发,进一步加剧了城市的热量积累,形成了城市热岛效应。
再次,城市地表和气象条件对城市热岛效应的形成也起到重要作用。
城市地表的多样性给城市热岛效应带来了复杂性,不同材料的热导率和反射率不同,使城市地表的热量分布非均匀。
此外,城市内部的人口密集、建筑高度、地形等因素也会影响城市内部的气流运动,阻碍了热量的散发和流通,进而加剧了城市热岛效应。
二、城市热岛效应对城市环境的影响城市热岛效应对城市环境产生了广泛的影响,主要表现在以下几个方面。
首先,城市热岛效应导致城市内部气温上升,加剧了城市的热浪现象和热害。
高温天气对人体健康造成了很大的威胁,容易引发中暑、心脑血管疾病等。
同时,高温也会给城市生态系统带来负面影响,导致水资源的浪费和植被的破坏。
其次,城市热岛效应对城市空气质量造成一定影响。
由于城市内部的气温较高,大气中的污染物更容易产生光化学反应,形成臭氧等有害物质。
此外,城市内的建筑和道路等硬质表面会发出挥发性有机物,进一步加剧了大气污染的程度。
再次,城市热岛效应还对城市水资源的供给和管理产生了影响。
热岛效应导致城市内部蒸发量增加,水资源的需求也随之增加。
城市内的混凝土和建筑物也会阻碍雨水的渗透,增加了城市的洪涝风险。
分析城市绿化对热岛效应的缓解效果分析城市绿化对热岛效应的缓解效果一、城市热岛效应概述1.1 城市热岛效应的定义与表现城市热岛效应是指城市中的气温明显升高,相较于周边郊区形成一个高温区域的现象。
在城市区域,尤其是中心城区,温度常常比郊区高出数摄氏度。
这一现象在气象数据中有着明显的体现,例如在夏季高温时段,城市中心的气温监测站点记录的温度常常高于郊区气象站。
城市热岛效应不仅仅表现为气温的升高,还会对城市的气候、环境和居民生活产生一系列影响。
它会改变城市的局部气候,如增加降雨频率但减少降雨量,影响风向和风速;在环境方面,会加重空气污染的聚集,因为高温不利于污染物的扩散;对居民生活而言,会增加居民夏季的制冷能源消耗,降低生活舒适度,同时可能影响居民的健康,如增加中暑、心血管疾病等的发病风险。
1.2 城市热岛效应产生的原因城市热岛效应的产生是多种因素共同作用的结果。
其中,城市下垫面的改变是一个关键因素。
城市中大量的建筑物、道路等以水泥、沥青等材料为主,这些材料的比热容较小,在太阳辐射下升温速度快。
相比之下,郊区的自然植被和土壤比热容较大,升温较为缓慢。
例如,在白天阳光照射下,城市的水泥路面和建筑物表面温度迅速上升,而郊区的草地和森林温度上升幅度相对较小。
人类活动也是导致热岛效应的重要原因。
城市中的工业生产、交通运输、居民生活等活动都会释放大量的人为热。
工业生产过程中的各种能源消耗,如工厂的锅炉燃烧、机器运转等会产生大量的废热排放到大气中;交通运输中的汽车、公交车、地铁等交通工具燃烧燃油或电能转化过程中也会释放热量;居民生活中的空调使用、烹饪等活动同样是热量的来源。
据统计,在一些大城市,人为热排放已经成为城市热量收支的重要组成部分,对城市气温的升高起到了显著的推动作用。
此外,城市的大气污染状况也对热岛效应有影响。
城市中的工厂排放、机动车尾气、建筑工地扬尘等污染物会在城市上空形成一层气溶胶层。
这层气溶胶一方面会吸收太阳辐射,另一方面会减少地面热量向大气的散失,从而加剧城市的升温。
《城市热岛效应成因的研究与分析》篇一一、引言随着城市化进程的加速,城市热岛效应逐渐成为全球关注的焦点。
城市热岛效应是指城市地区的气温高于周边农村或自然地区的气温的现象。
这一现象不仅对城市居民的生活质量产生影响,还对城市生态环境和气候产生深远影响。
本文旨在研究城市热岛效应的成因,分析其影响因素,并探讨相应的应对策略。
二、城市热岛效应的成因1. 建筑结构与布局城市中的高楼大厦、道路广场等建筑结构,以及不透水地面的大量使用,导致地表热量难以有效散发。
此外,建筑物的布局往往密集,缺乏通风和散热的空间,使得热空气难以迅速流通,进一步加剧了城市内部的温度升高。
2. 人为热源的排放城市人口密集,大量的人为活动如工业生产、交通运输等都会产生大量的热能排放。
这些热能排放到大气中,使得城市地区的温度进一步升高。
3. 植被覆盖率的降低城市中的绿地、植被等具有吸收热量、调节气温的作用。
然而,随着城市化的推进,大量绿地被建筑物和道路所取代,导致城市植被覆盖率降低,降低了城市的自然降温能力。
4. 城市气候特点城市气候特点也会对热岛效应的产生起到重要作用。
例如,城市地区的云层较薄,对地面的保温作用减弱;同时,城市地区的风速往往较低,不利于热量的散发。
三、影响因素分析1. 经济发展水平与产业结构经济发展水平和产业结构是影响城市热岛效应的重要因素。
经济发展水平越高,人为热源的排放量往往越大;而重工业、交通运输等产业的结构也会对热岛效应产生重要影响。
2. 城市规划与建设城市规划和建设对热岛效应的产生有着直接的影响。
合理的规划布局、绿地布局和通风设计等可以有效地降低热岛效应的程度。
3. 气候条件与环境因素气候条件和环境因素也会对热岛效应产生影响。
例如,夏季高温、湿度大、风速低等气候条件会加剧热岛效应的程度;而环境因素如大气污染、雾霾等也会对热岛效应产生一定的影响。
四、应对策略与建议1. 优化城市规划与建设在城市建设过程中,应注重合理规划布局,增加绿地和公共空间的面积,降低建筑密度,提高通风和散热的效果。
城市绿地系统对城市热岛效应的影响城市热岛效应是指城市内部温度明显高于周围农村地区的现象。
由于城市中的建筑物和人口密度高,排放的废气和热量无法有效散发,导致城市温度升高。
然而,城市绿地系统作为城市中的天然气调节器,具有显著影响城市热岛效应的潜力。
首先,城市绿地系统通过蒸腾作用提供了自然的降温效果。
植被覆盖的土地表面温度通常比裸露的建筑物和道路表面温度更低,因为植被吸收了太阳辐射能量。
绿地中的植物通过蒸腾作用将大量水分转化为气体形式释放到空气中,从而吸收了大量的热量,减少了周围环境的温度。
其次,城市绿地系统能够降低城市的能量消耗。
在炎热的城市夏天,许多人会打开空调以获得舒适的室内温度。
然而,空调的使用会导致额外的能源消耗和高额的电费支出。
城市绿地系统可以担任被动冷却的角色,利用植物和水体来调节室内和室外的温度,减少人们对空调的依赖,从而降低城市的能源消耗。
第三,城市绿地系统提供了更好的空气质量。
城市中的空气污染问题日益严重,对人类健康造成了不可忽视的影响。
这些污染物不仅包括汽车尾气和工业废气,还包括挥发性有机物和悬浮颗粒物。
城市绿地系统通过吸收和固定二氧化碳、吸收有害气体和尘埃、释放氧气等方式,有效净化了城市的空气,并提供了更加健康的生活环境。
此外,城市绿地系统还提供了一个休闲和社交的空间。
人们可以在公园和花园中散步、跑步、举办野餐,并在自然环境中放松身心。
这种活动不仅能够减轻压力,还有助于增强社区凝聚力和增进邻里之间的互动。
城市绿地系统为城市居民提供了与自然环境互动的机会,让城市更加宜居。
最后,城市绿地系统对城市水循环具有重要作用。
在城市化进程中,大量的土地被铺设了柏油和混凝土,导致大量的降水无法渗入地下,而是形成洪水导致城市内涝。
城市绿地系统通过广泛的绿地和湿地,可以吸收和保留降水,并通过蒸腾和地下水循环将其中一部分返回到大气中,通过植物的根系过滤和净化水质,提供了水资源的可持续利用。
综上所述,城市绿地系统对城市热岛效应具有显著的影响。
城市化进程中天气与城市热岛效应关联性随着城市化进程的加快,城市内的天气和城市热岛效应之间的关系日益受到关注。
天气与城市热岛效应关联性的研究,不仅可以帮助我们更好地理解城市内的气象变化,还有助于城市规划和建设的可持续发展。
一、城市化进程中天气的变化城市化的快速发展改变了很多城市的气候特征。
城市中的建筑和道路密集,水体和绿地面积减少,大量的人口、交通和工业活动产生大量的热量和污染物。
这些影响导致城市内的气温、湿度、降水等天气参数发生了显著变化。
首先,城市中的建筑和道路使得城市比郊区更热。
由于建筑和道路的热容量较大,并且吸收太阳辐射的能力较强,城市地表的温度往往比郊区高5-10℃。
城市内的高温不仅对人们的生活和工作带来不适,还会导致能源消耗增加,电力负荷加大。
其次,城市化过程中,破坏了大量的植被和湿地,减少了蒸发,导致城市内的湿度水平下降。
这将会影响到城市内的降水量和云量,使得城市更加干燥,降雨频率减少。
此外,城市周围的山脉和湖泊等地形也会对城市的气象特征产生重要影响。
山脉可以导致空气上升,形成对流,增加降水量;湖泊则有助于调节城市附近的气温和湿度,对城市的气候有稳定的影响。
二、城市化进程中城市热岛效应的形成城市热岛效应是指城市相对郊区来说,气温显著升高的现象。
城市化进程中,城市内的热岛效应变得越来越明显。
首先,城市中的人工热源是城市热岛效应形成的主要原因。
城市内大量的建筑、交通、工业活动等产生大量的热量,使得城市的气温升高。
其次,城市中的建筑和道路影响了城市热岛效应的强度。
建筑和道路的材质和颜色使得它们更容易吸收太阳辐射,形成热岛效应。
此外,城市中的大气污染也是城市热岛效应加剧的因素之一。
大气污染物中的颗粒物和气体可以吸收和散射太阳辐射,增加地表温度。
而且,空气中的污染物也会影响到云的形成和降水的发生,进一步加剧城市的热岛效应。
三、天气与城市热岛效应的关联性天气与城市热岛效应之间存在着密切的关联。
城市的气候特征直接影响到城市热岛效应的形成和发展。