函数奇偶性学案
- 格式:doc
- 大小:49.00 KB
- 文档页数:2
函数的奇偶性教案一、教学目标1. 知识与技能:(1)理解函数奇偶性的概念;(2)学会判断函数的奇偶性;(3)能够运用函数的奇偶性解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳,探索函数的奇偶性;(2)利用函数的奇偶性进行函数图像的变换。
3. 情感态度与价值观:(1)培养学生的逻辑思维能力;(2)激发学生对数学的兴趣,提高学习积极性。
二、教学重点与难点1. 教学重点:(1)函数奇偶性的概念及其判断方法;(2)函数奇偶性在实际问题中的应用。
2. 教学难点:(1)函数奇偶性的判断方法;(2)函数奇偶性在实际问题中的应用。
三、教学过程1. 导入新课:(1)复习已学过的函数性质,如单调性、周期性等;(2)提问:同学们,你们知道函数还有其他的性质吗?2. 探究新知:(1)介绍函数奇偶性的概念;(2)通过示例,让学生观察、分析、归纳函数的奇偶性;(3)引导学生掌握判断函数奇偶性的方法。
3. 典例分析:(1)分析函数f(x)=x^3的奇偶性;(2)分析函数f(x)=|x|的奇偶性;(3)分析函数f(x)=sinx的奇偶性。
4. 练习巩固:(2)运用函数的奇偶性解决实际问题。
四、课堂小结本节课,我们学习了函数的奇偶性,掌握了判断函数奇偶性的方法,并能够在实际问题中运用。
希望大家能够继续努力学习,不断提高自己的数学能力。
五、课后作业2. 运用函数的奇偶性解决实际问题:已知函数f(x)=x^2+1的图像关于y轴对称,求函数f(x)在x=-1时的值;3. 探究函数的奇偶性与单调性的关系。
六、教学活动设计1. 小组讨论:让学生分组讨论函数奇偶性的性质,以及如何判断一个函数的奇偶性。
2. 案例分析:通过具体的函数例子,让学生理解并掌握函数奇偶性的判断方法。
3. 互动提问:教师提出问题,引导学生思考并回答,以检查学生对函数奇偶性的理解和掌握程度。
七、教学评价1. 课堂问答:通过提问学生,检查他们对函数奇偶性的概念和判断方法的理解。
函数奇偶性的教案一、教学目标1. 理解函数奇偶性的概念。
2. 学会判断函数的奇偶性。
3. 能够运用函数奇偶性解决实际问题。
二、教学重点与难点1. 教学重点:函数奇偶性的定义及其判断方法。
2. 教学难点:函数奇偶性的运用。
三、教学方法1. 采用讲授法讲解函数奇偶性的概念及判断方法。
2. 利用例题演示函数奇偶性的运用。
3. 引导学生通过小组讨论,探讨函数奇偶性的性质。
四、教学准备1. 教学课件。
2. 练习题。
五、教学过程1. 引入新课:讲解函数奇偶性的概念。
讲解函数奇偶性的定义:若对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x),则称f(x)为奇函数;若对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),则称f(x)为偶函数。
2. 讲解判断方法:讲解如何判断函数的奇偶性:对于定义域内的任意一个x,若f(-x)=-f(x),则f(x)为奇函数;若f(-x)=f(x),则f(x)为偶函数。
3. 例题演示:出示例题,讲解如何运用函数奇偶性解决问题。
例题1:已知f(x)=x^3-3x,判断f(x)的奇偶性。
解答:根据奇偶性的定义,对于定义域内的任意一个x,有f(-x)=(-x)^3-3(-x)=-(x^3-3x)=-f(x),f(x)为奇函数。
4. 练习与讨论:出示练习题,让学生独立完成。
练习题1:已知f(x)=x^2+2x+1,判断f(x)的奇偶性。
学生在完成后,组织小组讨论,探讨函数奇偶性的性质。
5. 总结与拓展:总结本节课的主要内容,强调函数奇偶性的判断方法及运用。
出示拓展问题,激发学生的学习兴趣。
拓展问题1:已知f(x)为奇函数,求f(-x)。
拓展问题2:已知f(x)为偶函数,求f(-x)。
六、教学拓展1. 讲解奇偶性在实际问题中的应用:讲解函数奇偶性在物理学、工程学等领域的应用,如电路中的电流、电压的奇偶性分析。
2. 出示拓展案例,让学生思考如何运用函数奇偶性解决问题:拓展案例1:已知一个电路中的电流I与电压V的关系为I=kV/R,其中k为常数,R为电阻。
§1.3.2 函数的奇偶性学案【学习目标】1. 理解函数的奇偶性及其几何意义;2. 学会判断函数的奇偶性;3. 学会运用函数图象理解和研究函数的性质. 【学习过程】一、课前准备 (预习教材P 33~ P 36,找出疑惑之处)二、新课导学探究任务:奇函数、偶函数的概念思考:在同一坐标系分别作出两组函数的图象:(1)()f x x =、1()f x x=、3()f x x =; (2)2()f x x =、()||f x x =.观察各组图象有什么共同特征?)(x f -与)(x f 有什么关系?新知:一般地,对于函数()f x 定义域内的 都有 ,那么函数()f x 叫偶函数.试试:仿照偶函数的定义给出奇函数的定义.试试:已知函数21()f x x=在y 轴左边的图象如图所示, 画出它右边的图象.例1 判别下列函数的奇偶性:(1)()f x (2)()f x(3)42()35f x x x =-+;(4)31()f x x =.例2 已知f(x)是奇函数,且在),0(+∞上是减函数,判断f(x)在)0,(-∞单调性,并给出证明.练习:若3()5f x ax bx =++,且(7)17f -=,求(7)f .三、课堂检测1. 对于定义域是R 的任意奇函数()f x 有( ).0)()(.=--x f x f A B .()()0f x f x +-=0)()(.=-∙x f x f C D .(0)0f ≠2. 已知()f x 是定义(,)-∞+∞上的奇函数,且()f x 在[)0,+∞上是减函数. 下列关系式中正确的是( )A. (5)(5)f f >-B.(4)(3)f f >C. (2)(2)f f ->D.(8)(8)f f -=3. 下列说法错误的是( ). A. 1()f x x x=+是奇函数 B. ()|2|f x x =-是偶函数 C. ()0,[6,6]f x x =∈-既是奇函数,又是偶函数 D.32()1x x f x x -=-既不是奇函数,又不是偶函数4. 函数()|2||2|f x x x =-++的奇偶性是 .5. 已知f (x )是奇函数,且在[3,7]是增函数且最大值为4,那么f (x )在[-7,-3]上是 函数,且最 值为 .四、课堂小结1. 奇函数、偶函数的定义及图象特征;2. 判断函数奇偶性的步骤:3. 判断函数奇偶性的方法:图象法、定义法.4.定义在R 上的奇函数的图象一定经过原点. 由图象对称性可以得到,奇函数在关于原点对称区间上单调性一致,偶函数在关于原点对称区间上的单调性相反.§1.3函数的奇偶性练案1. 函数f (x )=x 1-x 的图象关于( ). A .y 轴对称 B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称 2. 已知f (x )在R 上是奇函数,f (x +4)=f (x ),当x ∈(0,2)时,f(x)=2x 2,则f(7)=( ).A .-2B .2C .-98D .98 3.定义在区间(-∞,+∞)上的奇函数f (x )为增函数;偶函数g (x )在区间[0,+∞)上的图象与f (x )的图象重合.设a >b >0,给出下列不等式:①f (b )-f (-a )>g (a )-g (-b );②f (b )-f (-a )<g (a )-g (-b );③f (a )-f (-b )>g (b )-g (-a );④f (a )-f (-b )<g (b )-g (-a ).其中成立的是( ).A .①与④B .②与③C .①与③D .②与④4.设f(x)是R 上的奇函数,且当x ∈[0,+∞)时,f(x)=x (1+x 3),那么当x ∈(-∞,0]时,f(x)= .5.已知5)(35-++=bx ax x x f ,且3)5(=-f ,求)5(f 的值.6.已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x .7. 设()f x 在R 上是奇函数,当x >0时,()(1)f x x x =-, 试问:当x <0时,()f x 的表达式是什么?8 已知)(x f 是偶函数,且在],[b a 上是减函数,试判断)(x f 在],[a b --上的单调性,并给出证明。
函数奇偶性教案教学目标:1. 理解奇函数和偶函数的概念。
2. 学会判断函数的奇偶性。
3. 能够运用函数的奇偶性解决实际问题。
教学内容:一、奇函数和偶函数的定义1. 引入奇函数和偶函数的概念。
2. 讲解奇函数和偶函数的定义。
3. 通过例题让学生理解奇函数和偶函数的概念。
二、判断函数的奇偶性1. 介绍判断函数奇偶性的方法。
2. 讲解如何判断一个函数是奇函数还是偶函数。
3. 通过练习题让学生掌握判断函数奇偶性的方法。
三、函数奇偶性的性质1. 介绍函数奇偶性的性质。
2. 讲解奇函数和偶函数的性质。
3. 通过例题让学生理解函数奇偶性的性质。
四、函数奇偶性的应用1. 介绍函数奇偶性在实际问题中的应用。
2. 讲解如何运用函数奇偶性解决实际问题。
3. 通过练习题让学生学会运用函数奇偶性解决实际问题。
2. 让学生评价自己的学习效果。
3. 布置作业,巩固所学知识。
教学方法:1. 采用讲授法,讲解奇函数和偶函数的定义及性质。
2. 采用案例分析法,让学生通过例题理解奇函数和偶函数的概念。
3. 采用练习法,让学生通过练习题掌握判断函数奇偶性的方法。
4. 采用实际应用法,让学生学会运用函数奇偶性解决实际问题。
教学评价:1. 课堂讲解的清晰度和连贯性。
2. 学生练习题的完成情况。
3. 学生运用函数奇偶性解决实际问题的能力。
六、奇偶性在图像上的表现1. 介绍奇偶性在函数图像上的表现。
2. 讲解奇函数和偶函数图像的特点。
3. 通过示例让学生观察并分析奇偶性在函数图像上的表现。
七、函数奇偶性与坐标系的关系1. 介绍函数奇偶性与坐标系的关系。
2. 讲解奇函数和偶函数在不同坐标系中的表现。
3. 通过练习题让学生掌握函数奇偶性与坐标系的关系。
八、函数奇偶性与变换1. 介绍函数奇偶性与变换的关系。
2. 讲解奇函数和偶函数在坐标变换中的性质。
3. 通过例题让学生理解函数奇偶性与变换的关系。
九、实际问题中的函数奇偶性1. 介绍函数奇偶性在实际问题中的应用。
函数的奇偶性教案第一篇:函数的奇偶性教案目标:1. 了解函数的奇偶性的定义和性质。
2. 判断函数的奇偶性。
3. 通过练习题加深对函数的奇偶性的理解。
预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以用一个简单的问题引入话题,例如:你知道什么是函数的奇偶性吗?为什么需要关注函数的奇偶性?学生可以自由发言,激发学生们的兴趣。
步骤二:讲解奇偶性的概念(10分钟)教师简要讲解函数的奇偶性的概念,可以借助一些例子来说明。
奇函数和偶函数是对称的关系,奇函数关于y轴对称,而偶函数关于原点对称。
步骤三:奇偶性的判断方法(15分钟)教师讲解奇偶性的判断方法。
一般来说,对于一元函数,可以通过以下两种方法判断函数的奇偶性。
方法1:使用函数的定义式。
对于奇函数,f(-x)=-f(x)成立;对于偶函数,f(-x)=f(x)成立。
方法2:使用函数的图象。
对于奇函数,其图象关于原点对称;对于偶函数,其图象关于y轴对称。
步骤四:练习题(15分钟)教师提供一些练习题,让学生在纸上完成,然后进行讲解和讨论。
例如:1. 判断函数f(x)=x^3+3x^2-5x是否为奇函数。
2. 判断函数g(x)=2x^2-4是否为偶函数。
3. 利用函数的奇偶性,简化函数h(x)=5x^3-x^2+2x-1的图象。
步骤五:总结(10分钟)教师对本节课内容进行总结,并强调函数的奇偶性的重要性和应用。
第二篇:函数的奇偶性教案(续)目标:1. 掌握奇函数和偶函数的一些常见函数的性质。
2. 进一步加深对函数的奇偶性的理解。
3. 练习函数的奇偶性的判断和应用。
预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以复习上节课的内容,然后提问学生,你还记得什么是奇函数和偶函数吗?奇函数和偶函数有哪些性质?步骤二:常见函数的性质(15分钟)教师讲解一些常见函数的性质,例如:1. 幂函数:对于非负整数n,当n为奇数时,函数f(x)=x^n是奇函数;当n为偶数时,函数f(x)=x^n是偶函数。
1.3.2函数的奇偶性学案(第一课时)【学习目标】:1.理解函数奇偶性的概念,掌握奇偶函数的图象特征.2.掌握判断函数的奇偶性的方法.3.逐步掌握数形结合的方法. 【学习内容】: 一、课前预习:预习课本P33~P35,结合函数图象及函数值对应表了解体会偶函数和奇函数的定义 二、新课学习:(一)函数奇偶性的概念 1、偶函数的概念(1)偶函数的概念:一般地,对于函数f(x)的定义域内个x ,都有 ,那么f(x)就叫做偶函数. (2)偶函数的函数图像关于 对称. 2、奇函数的概念(1)奇函数的概念:一般地,对于函数f(x)的定义域内个x ,都有 ,那么f(x)就叫做奇函数.例1、判断下列函数的奇偶性(1)]2,2[,)(2-∈=x x x f 32x )()2(-+=x x f(三)课堂练习判断下列函数的奇偶性:1.)(x f =x x 53+ 2.5)(=x f3. x x x f 2)(2-=4.xx f -=11)((四)方法总结1.判断函数奇偶性的方法:2.用定义判断函数奇偶性的步骤:(五)学习反馈1、已经知道f(x)是偶函数,g(x)是奇函数,试将下图补充完整:2、判断函数xx x f 1)(+= 与 x x f =)(的奇偶性三、课堂小结1、知识:2、方法: 四、作业布置1、课本36页练习1、22、【探究题】:(1) 判断5432,,,,x y x y x y x y x y =====的奇偶性,从中你有什么发现?结论:(2)若函数f(x) 和g (x )分别是定义域为R 的奇函数和偶函数, 试判断F (x )=f (x )+g (x )的奇偶性并证明。
1X。
函数的奇偶性学案【课前我能行——未闻先知】【学习目标】1、掌握函数奇偶性的定义及其图象的基本特点。
2、学会根据图象判断函数的奇偶性及其根据函数的奇偶性定义论证函数的奇偶性。
3、理解函数的奇偶性是对函数的内部的对称性的研究,要注意将它和两个不同函数之间的对称性相区别。
4、通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,从特殊到一般的概括能力,渗透数形结合的数学思想方法。
【基础知识】函数的奇偶性1. 如果对于函数)(x f 的定义域内 一个x ,都有 ,函数)(x f 就叫偶函数。
偶函数的图象关于 对称。
2. 如果对于函数)(x f 的定义域内 一个x ,都有 ,函数)(x f 就叫奇函数。
奇函数的图象关于 对称。
3.由奇、偶函数的定义可知,奇、偶函数的定义域在数轴上表示的区间关于 对称。
若奇函数的定义域中有零,其图象必过 ,即0)0(=f .4.在公共定义域内,(1)奇函数与奇函数之积是 。
(2)奇函数与偶函数之积是 。
(3)偶函数与偶函数之积是 。
答案提示:1、2见课本,3.原点,原点4.(1)偶函数(2)奇函数(3)偶函数课堂讲练:例1:求证:函数2432)(x x x f -=是偶函数。
证明:函数2432)(x x x f -=的定义域为R. =---=-2432)()()(x x x f 2432x x -=)(x f ,所以,)(x f 为R 上的偶函数。
例2:求证:函数5)(x x f =是奇函数。
证明:函数5)(x x f =的定义域为R.()x f x x x f -=-=-=-55)()(,所以f(x)为R 上的奇函数。
点评:1、奇函数和偶函数的几何意义:关于原点中心对称的函数是奇函数,反之,奇函数的图象关于原点对称; 关于y 轴对称的函数是偶函数,反之,偶函数的图象关于y 轴对称。
2、 证明函数奇偶性的一般步骤?(1)先判断函数的定义域,观察是否关于原点对称;(2)若关于原点对称,在判断f(-x)和f(x)的关系,相等就是偶函数,相反就是奇函数。
函数奇偶性的教案第一章:函数奇偶性的概念引入教学目标:1. 理解函数奇偶性的基本概念;2. 学会判断函数的奇偶性;3. 理解奇偶性在数学中的应用。
教学内容:1. 引入函数的概念;2. 介绍奇偶性的定义;3. 举例说明奇偶性的判断方法。
教学活动:1. 引导学生回顾函数的定义,强调函数的输入输出关系;2. 引入奇偶性的概念,解释奇偶性的含义;3. 通过具体例子,让学生学会判断函数的奇偶性;4. 练习判断一些简单函数的奇偶性;5. 引导学生思考奇偶性在数学中的应用,如物理中的对称性等。
教学评价:1. 检查学生对函数奇偶性概念的理解;2. 评估学生判断函数奇偶性的能力;3. 考察学生对奇偶性应用的理解。
第二章:偶函数的性质教学目标:1. 理解偶函数的定义及其性质;2. 学会运用偶函数的性质解决问题;3. 掌握偶函数图像的特点。
教学内容:1. 偶函数的定义及其性质;2. 偶函数图像的特点;3. 偶函数在实际问题中的应用。
教学活动:1. 引导学生回顾上一章所学的内容,强调奇偶性的概念;2. 引入偶函数的定义,解释偶函数的含义;3. 通过具体例子,让学生学会运用偶函数的性质解决问题;4. 练习运用偶函数性质解决一些实际问题;5. 引导学生思考偶函数图像的特点,分析偶函数在实际问题中的应用。
教学评价:1. 检查学生对偶函数定义及其性质的理解;2. 评估学生运用偶函数性质解决问题的能力;3. 考察学生对偶函数图像特点的认识。
第三章:奇函数的性质教学目标:1. 理解奇函数的定义及其性质;2. 学会运用奇函数的性质解决问题;3. 掌握奇函数图像的特点。
教学内容:1. 奇函数的定义及其性质;2. 奇函数图像的特点;3. 奇函数在实际问题中的应用。
教学活动:1. 引导学生回顾前两章所学的内容,强调奇偶性的概念;2. 引入奇函数的定义,解释奇函数的含义;3. 通过具体例子,让学生学会运用奇函数的性质解决问题;4. 练习运用奇函数性质解决一些实际问题;5. 引导学生思考奇函数图像的特点,分析奇函数在实际问题中的应用。
高中数学教案《函数的奇偶性》章节一:函数奇偶性的概念引入教学目标:1. 理解函数奇偶性的概念;2. 学会判断函数的奇偶性;3. 掌握函数奇偶性的性质。
教学内容:1. 引入奇偶性的概念;2. 举例说明奇偶性的判断方法;3. 总结奇偶性的性质。
教学步骤:1. 引入奇偶性的概念,让学生思考日常生活中遇到的奇偶性例子;2. 给出函数奇偶性的定义,解释奇偶性的判断方法;3. 通过具体例子,让学生学会判断函数的奇偶性;4. 引导学生总结奇偶性的性质。
教学评估:1. 课堂提问,了解学生对奇偶性概念的理解程度;2. 布置练习题,让学生运用奇偶性的判断方法。
章节二:奇函数和偶函数的性质教学目标:1. 理解奇函数和偶函数的性质;2. 学会运用奇偶性解决实际问题。
教学内容:1. 介绍奇函数和偶函数的性质;2. 举例说明奇偶性在实际问题中的应用。
教学步骤:1. 回顾奇偶性的概念,引导学生理解奇函数和偶函数的性质;2. 通过具体例子,让学生学会运用奇偶性解决实际问题;3. 总结奇偶性在实际问题中的应用。
教学评估:1. 课堂提问,了解学生对奇偶性性质的理解程度;2. 布置练习题,让学生运用奇偶性解决实际问题。
章节三:函数奇偶性的判定定理教学目标:1. 理解函数奇偶性的判定定理;2. 学会运用判定定理判断函数的奇偶性。
教学内容:1. 介绍函数奇偶性的判定定理;2. 举例说明判定定理的运用方法。
教学步骤:1. 引导学生理解函数奇偶性的判定定理;2. 通过具体例子,让学生学会运用判定定理判断函数的奇偶性;3. 总结判定定理的运用方法。
教学评估:1. 课堂提问,了解学生对判定定理的理解程度;2. 布置练习题,让学生运用判定定理判断函数的奇偶性。
章节四:函数奇偶性在实际问题中的应用教学目标:1. 理解函数奇偶性在实际问题中的应用;2. 学会运用奇偶性解决实际问题。
教学内容:1. 介绍函数奇偶性在实际问题中的应用;2. 举例说明奇偶性在实际问题中的解决方法。
3.1.3第1课时函数的奇偶性学习目标核心素养1.理解奇函数、偶函数的定义.2.了解奇函数、偶函数图像的特征.3.掌握判断函数奇偶性的方法.1.借助奇(偶)函数的特征,培养直观想象素养.2.借助函数奇、偶的判断方法,培养逻辑推理素养.新知初探函数的奇偶性奇偶性偶函数奇函数条件设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D 结论f(-x)=f(x)f(-x)=-f(x)图像特点关于对称关于对称思考:具有奇偶性的函数,其定义域有何特点?提示:定义域关于原点对称.小试身手1.下列函数是偶函数的是()A.y=x B.y=2x2-3C.y=1xD.y=x2,x∈[0,1]2.下列图像表示的函数具有奇偶性的是()A B C D3.函数y=f(x),x∈[-1,a](a>-1)是奇函数,则a等于() A.-1B.0 C.1D.无法确定4.若f(x)为R上的偶函数,且f(2)=3,则f(-2)=________.题型探究题型一函数奇偶性的判断【例1】判断下列函数的奇偶性:(1)f(x)=x3+x;(2)f(x)=1-x2+x2-1;(3)f(x)=2x2+2x x+1;(4)f (x )=⎩⎪⎨⎪⎧x -1,x <0,0,x =0,x +1,x >0.规律方法判断函数奇偶性的两种方法 (1)定义法:(2)图像法:跟踪训练1.下列函数中,是偶函数的有________.(填序号) ①f (x )=x 3;②f (x )=|x |+1;③f (x )=1x 2;④f (x )=x +1x ;⑤f (x )=x 2,x ∈[-1,2].题型二 奇偶函数的图像问题【例2】 已知奇函数f (x )的定义域为[-5,5],且在区间[0,5]上的图像如图所示.(1)画出在区间[-5,0]上的图像; (2)写出使f (x )<0的x 的取值集合.(变条件)将本例中的“奇函数”改为“偶函数”,再求解上述问题.规律方法巧用奇、偶函数的图像求解问题(1)依据:奇函数⇔图像关于原点对称,偶函数⇔图像关于y轴对称.(2)求解:根据奇、偶函数图像的对称性可以解决诸如求函数值或画出奇偶函数图像的问题.跟踪训练2.如图是函数f(x)=1x2+1在区间[0,+∞)上的图像,请据此在该坐标系中补全函数f(x)在定义域内的图像,并说明你的作图依据.题型三利用函数的奇偶性求值[探究问题]1.对于定义域内的任意x,若f(-x)+f(x)=0,则函数f(x)是否具有奇偶性?若f(-x)-f(x)=0呢?2.若f(x)是奇函数且在x=0处有定义,则f(0)的值可求吗?若f(x)为偶函数呢?【例3】(1)若函数f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________;(2)已知f(x)=x7-ax5+bx3+cx+2,若f(-3)=-3,则f(3)=________.[思路点拨]规律方法利用奇偶性求参数的常见类型及策略(1)定义域含参数:奇、偶函数f(x)的定义域为[a,b],根据定义域关于原点对称,利用a+b =0求参数.(2)解析式含参数:根据f(-x)=-f(x)或f(-x)=f(x)列式,比较系数即可求解.跟踪训练3.若f(x)=(x+a)(x-4)为偶函数,则实数a=________.课堂小结1.奇偶性是函数“整体”性质,只有对函数f(x)定义域内的每一个值x,都有f(-x)=-f(x)(或f(-x)=f(x)),才能说f(x)是奇函数(或偶函数).2.函数的奇偶性是其相应图像特殊对称性的反映,也体现了在关于原点对称的定义域的两个区间上函数值及其性质的相互转化,这是对称思想的应用.当堂检测1.思考辨析(1)函数f(x)=x2,x∈[0,+∞)是偶函数.()(2)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.()(3)不存在既是奇函数,又是偶函数的函数.()(4)若函数的定义域关于原点对称,则这个函数不是奇函数就是偶函数.()2.函数f(x)=|x|+1是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数3.已知函数f(x)=ax2+2x是奇函数,则实数a=______.4.已知函数y=f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图像,如图所示.(1)请补充完整函数y=f(x)的图像;(2)根据图像写出函数y=f(x)的增区间;(3)根据图像写出使f(x)<0的x的取值集合.参考答案新知初探y 轴 原点思考:提示:定义域关于原点对称.小试身手1.B 【解析】选项C 、D 中函数的定义域不关于原点对称,选项A 中的函数是奇函数,故选B.2.B 【解析】B 选项的图像关于y 轴对称,是偶函数,其余选项中的图像都不具有奇偶性. 3.C 【解析】∵奇函数的定义域关于原点对称,∴a -1=0,即a =1. 4. 3 【解析】∵f (x )为R 上的偶函数,∴f (-2)=f (2)=3.题型探究【例1】 解:(1)函数的定义域为R ,关于原点对称. 又f (-x )=(-x )3+(-x )=-(x 3+x )=-f (x ), 因此函数f (x )是奇函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0得x 2=1,即x =±1.因此函数的定义域为{-1,1},关于原点对称.又f (1)=f (-1)=-f (-1)=0,所以f (x )既是奇函数又是偶函数. (3)函数f (x )的定义域是(-∞,-1)∪(-1,+∞), 不关于原点对称,所以f (x )既不是奇函数也不是偶函数. (4)函数f (x )的定义域为R ,关于原点对称. f (-x )=⎩⎪⎨⎪⎧-x -1,-x <0,0,-x =0,-x +1,-x >0,即f (-x )=⎩⎪⎨⎪⎧-(x +1),x >0,0,x =0,-(x -1),x <0.于是有f (-x )=-f (x ).所以f (x )为奇函数. 跟踪训练1.②③ 【解析】对于①,f (-x )=-x 3=-f (x ),则为奇函数; 对于②,f (-x )=|-x |+1=|x |+1,则为偶函数;对于③,定义域为{x |x ≠0},关于原点对称,f (-x )=1(-x )2=1x 2=f (x ),则为偶函数;对于④,定义域为{x |x ≠0},关于原点对称,f (-x )=-x -1x =-f (x ),则为奇函数;对于⑤,定义域为[-1,2],不关于原点对称,不具有奇偶性,则为非奇非偶函数.【例2】 解:(1)因为函数f (x )是奇函数,所以y =f (x )在[-5,5]上的图像关于原点对称.由y =f (x )在[0,5]上的图像,可知它在[-5,0]上的图像,如图所示. (2)由图像知,使函数值y <0的x 的取值集合为(-2,0)∪(2,5).1. 解: (1)如图所示(2)由(1)可知,使函数值y <0的x 的取值集合为(-5,-2)∪(2,5). 跟踪训练2.解: 因为f (x )=1x 2+1,所以f (x )的定义域为R .又对任意x ∈R ,都有f (-x )=1(-x )2+1=1x 2+1=f (x ),所以f (x )为偶函数.所以f (x )的图像关于y 轴对称,其图像如图所示.[探究问题]1.提示:由f (-x )+f (x )=0得f (-x )=-f (x ), ∴f (x )为奇函数.由f (-x )-f (x )=0得f (-x )=f (x ),∴f (x )为偶函数.2.提示:若f (x )为奇函数,则f (0)=0;若f (x )为偶函数,无法求出f (0)的值.【例3】 (1)13 0 (2)7 【解析】(1)因为偶函数的定义域关于原点对称,所以a -1=-2a ,解得a =13.又函数f (x )=13x 2+bx +b +1为二次函数,结合偶函数图像的特点,易得b =0.(2)令g (x )=x 7-ax 5+bx 3+cx ,则g (x )是奇函数, ∴f (-3)=g (-3)+2=-g (3)+2,又f (-3)=-3,∴g(3)=5.又f(3)=g(3)+2,所以f(3)=5+2=7.跟踪训练3.4【解析】法一:f(x)=(x+a)(x-4)=x2+(a-4)x-4a,f(-x)=(-x+a)(-x-4)=x2-(a-4)x-4a,两式恒相等,则a-4=0,即a=4.法二:f(x)=(x+a)(x-4)=x2+(a-4)x-4a,要使函数为偶函数,只需多项式的奇次项系数为0,即a-4=0,则a=4.法三:根据二次函数的奇偶性可知,形如f(x)=ax2+c的都是偶函数,因而本题只需将解析式看成是平方差公式,则a=4.当堂检测1.(1)×(2)×(3)×(4)×2.B【解析】∵f(-x)=|-x|+1=|x|+1=f(x),∴f(x)为偶函数.3.0【解析】∵f(x)为奇函数,∴f(-x)+f(x)=0,∴2ax2=0对任意x∈R恒成立,所以a=0.4.解:(1)由题意作出函数图像如图:(2)据图可知,单调增区间为(-1,0),(1,+∞).(3)据图可知,使f(x)<0的x的取值集合为(-2,0)∪(0,2).。
函数奇偶性学案
一、学什么
1.结合具体函数,了解函数奇偶性的含义。
2.运用函数的图象理解和研究函数的奇偶性。
3.运用函数的奇偶性的性质,解决相关的问题。
二、怎么学
1.提高认识,函数的奇偶性是高考考查的热点.
2.函数奇偶性的判断、利用奇偶函数图象特点解决相关问题、利用函数奇偶性求函数值及求参数值等问题是重点,也是难点.
3.题型以选择题和填空题为主,还可与函数单调性等其他知识点交汇命题.
三、奇、偶函数的有关性质
(1)奇、偶函数的定义域关于对称;
(2)奇函数的图象关于对称,偶函数的图象关于对称;反之亦然;
(3)若奇函数f(x)在x=0处有定义,则f(0)=;
(4)利用奇函数的图象关于原点对称可知,奇函数在原点两侧的对称区间上的单调性;利用偶函数
的图象关于y轴对称可知,偶函数在原点两侧的对称区间上的单调性.
四、自我总结
利用定义判断函数奇偶性的方法
(1)首先确定函数的定义域,定义域关于原点对称是函数为奇函数或偶函数的.
(2)如果函数的定义域关于原点对称,可进一步判断f(-x)=-f(x),或f(-x)=f(x)是否对定义域内的每一个x恒成立(恒成立要给予证明,否则要举出反例).
注意:分段函数判断奇偶性应分段分别证明f(-x)与f(x)的关系,只有当对称的两段上都满足相同的关系时,才能判断其奇偶性.
五、课后反思
1、函数奇偶性的定义是什么?
2、怎样跟据函数的图像判断函数的奇偶性?
3、怎样跟据函数的表达式判断函数的奇偶性?
4、判断函数奇偶性时要注意哪些问题?
5、函数的奇偶性怎么应用?
6、不是所有的函数都具备奇偶性,有的是非奇非偶函数、有的是既奇又偶函数.(课外探究)
习题集
试判断下列函数的奇偶性:
1、y=X
2、y=X 2
3、y= 1x 2
4、y= 1x
5、y=|x|-1
6、y=x 3
1、函数f (x )=1x
-x 的图象关于 ( ) A .y 轴对称 B .直线y =-x 对称 C .坐标原点对称 D .直线y =x 对称
2、已知f(x)=ax 2+bx 是定义在[a -1,2a]上的偶函数,那么a+b 的值是 ( )
A .-13 B. 13 C. 12 D .-12
3、下列函数中,所有奇函数的序号是________.
(1)f (x )=2x 4+3x 2; (2)f (x )=x 3
-2x ; (3)f (x )=x 2+1x ; (4)f (x )=x 3+1. [例1] 设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是 ( )
A .|f (x )|-g (x )是奇函数
B .|f (x )|+g (x )是偶函数
C .f (x )-|g (x )|是奇函数
D .f (x )+|g (x )|是偶函数
4、(2011·北京西城一模)下列给出的函数中,既不是奇函数也不是偶函数的是
( ) A .y =2|x | B .y =x 2-x C .y =2x
D .y =x 3 5、(2012·青岛模拟)若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则
( ) A .f (x )与g (x )均为偶函数 B .f (x )为偶函数,g (x )为奇函数
C .f (x )与g (x )均为奇函数
D .f (x )为奇函数,g (x )为偶函数
6.(2011·广东高考)设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.
[例2] (2011·安徽高考)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)= ( )
A .-3
B .-1
C .1
D .3
7、(2012·徐州模拟)已知函数f (x )=⎩⎪⎨⎪⎧
x 2+2x ,x ≤0,ax 2+bx ,x >0为奇函数,则a +b =________. 8、(2011·湖北高考)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )= ( )
A .e x -e -x B.12(e x +e -x ) C 。
.12(e -x -e x ) D.12
(e x -e -x ) 课后反思:。