【配套课件】《创新设计·高考一轮总复习》数学 浙江专用(理)第十四篇 系列4选讲(IB部分)第4讲
- 格式:ppt
- 大小:1.24 MB
- 文档页数:43
第4讲 平面向量的应用基础巩固题组(建议用时:40分钟)一、选择题1.在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( )A. 5 B .2 5 C .5D .10解析 ∵AC →·BD →=0,∴AC →⊥BD →,∴四边形ABCD 的面积S =12|AC →|·|BD →|=12×5×25=5. 答案 C2.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形解析 由(BC →+BA →)·AC →=|AC →|2, 得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,2AC →·BA →=0, ∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|, 故△ABC 一定是直角三角形. 答案 C3.(2014·温州调研)在△ABC 中,AB =AC =2,BC =23,则AB →·AC →=( )A .2 3B .2C .-2 3D .-2解析 由余弦定理得 cos A =AB 2+AC 2-BC 22AB ·AC=22+22-(23)22×2×2=-12,所以AB →·AC →=|AB →|·|AC →|cos A =2×2×⎝ ⎛⎭⎪⎫-12=-2,故选D.答案 D4.已知|a |=2|b |,|b |≠0,且关于x 的方程x 2+|a |x -a ·b =0有两相等实根,则向量a 与b 的夹角是( )A .-π6B .-π3 C.π3D.2π3 解析 由已知可得Δ=|a |2+4a ·b =0, 即4|b |2+4×2|b |2cos θ=0, ∴cos θ=-12, 又∵0≤θ≤π,∴θ=2π3. 答案 D5.(2015·杭州质量检测)设O 是△ABC 的外心(三角形外接圆的圆心).若AO →=13AB →+13AC →,则∠BAC 的度数等于( )A .30°B .45°C .60°D .90°解析 取BC 的中点D ,连接AD ,则AB →+AC →=2 AD →.由题意得3AO →=2AD →,∴AD 为BC 的中线且O 为重心.又O 为外心,∴△ABC 为正三角形,∴∠BAC =60°,故选C. 答案 C 二、填空题6.(2015·广州综合测试)在△ABC 中,若A B →·A C →=A B →·CB →=2,则边AB 的长等于________.解析 由题意知AB →·AC →+AB →·CB →=4,即AB →·(AC →+CB →)=4,即AB →·A B →=4,∴|AB →|=2. 答案 27.(2014·天津十二区县重点中学联考)在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EC →·EM →的最大值为________.解析 以点A 为坐标原点,AB ,AD 所在直线为x ,y 轴建立平面直角坐标系,则C (1,1),M ⎝ ⎛⎭⎪⎫1,12,设E (x,0),x ∈[0,1],则EC →·EM →=(1-x,1)·⎝ ⎛⎭⎪⎫1-x ,12=(1-x )2+12,x ∈[0,1]单调递减,当x =0时,EC →·EM →取得最大值32. 答案 328.(2015·太原模拟)已知向量a =(cos θ,sin θ),向量b =(3,-1),则|2a -b |的最大值与最小值的和为________.解析 由题意可得a ·b =3cos θ-sin θ=2cos ⎝ ⎛⎭⎪⎫θ+π6,则|2a -b |=(2a -b )2=4|a |2+|b |2-4a ·b =8-8cos ⎝ ⎛⎭⎪⎫θ+π6∈[0,4],所以|2a -b |的最大值与最小值的和为4. 答案 4 三、解答题9.(2015·杭州第二中学模拟)已知向量a =⎝ ⎛⎭⎪⎫sin x ,32,b =(cos x ,-1). (1)当a ∥b 时,求tan 2x 的值;(2)求函数f (x )=(a +b )·b 在⎣⎢⎡⎦⎥⎤-π2,0上的值域.解 (1)∵a ∥b ,∴sin x ·(-1)-32·cos x =0,即sin x +32cos x =0,tan x =-32,∴tan 2x =2tan x 1-tan 2x =125.(2)f (x )=(a +b )·b =a ·b +b 2 =sin x cos x -32+cos 2x +1 =12sin 2x -32+12cos 2x +12+1 =22sin ⎝ ⎛⎭⎪⎫2x +π4. ∵-π2≤x ≤0,∴-π≤2x ≤0,-3π4≤2x +π4≤π4, ∴-22≤22sin ⎝ ⎛⎭⎪⎫2x +π4≤12,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-22,12.10.(2014·陕西卷)在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上. (1)若P A →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值. 解 (1)法一 ∵P A →+PB →+PC →=0,又P A →+PB →+PC →=(1-x,1-y )+(2-x,3-y )+(3-x,2-y )=(6-3x,6-3y ), ∴⎩⎨⎧ 6-3x =0,6-3y =0,解得⎩⎨⎧x =2,y =2, 即OP →=(2,2),故|OP →|=2 2. 法二 ∵P A →+PB →+PC →=0,则(OA →-OP →)+(OB →-OP →)+(OC →-OP →)=0, ∴OP →=13(OA →+OB →+OC →)=(2,2), ∴|OP →|=2 2.(2)∵OP →=mAB →+nAC →, ∴(x ,y )=(m +2n,2m +n ), ∴⎩⎨⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.能力提升题组 (建议用时:35分钟)11.若函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示,M ,N 分别是这段图象的最高点和最低点,且OM →·ON →=0(O 为坐标原点),则A 等于( )A.π6B.712πC.76πD.73π 解析 由题意知M ⎝ ⎛⎭⎪⎫π12,A ,N ⎝ ⎛⎭⎪⎫712π,-A ,又OM →·ON →=π12×712π-A 2=0,∴A =712π. 答案 B12.(2015·舟山联考)已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________.解析 OP →=(x ,y ),OM →=(1,1),ON →=(0,1), ∴OP →·OM →=x +y ,OP →·ON →=y ,即在⎩⎪⎨⎪⎧0≤x +y ≤1,0≤y ≤1条件下,求z =2x +3y 的最大值,由线性规划知识,当x =0,y=1时,z max =3. 答案 313.在△ABC 中,A =90°,AB =1,AC =2,设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ=________. 解析 ∵BQ →=AQ →-AB →=(1-λ)AC →-AB →, CP →=AP →-AC →=λAB →-AC →,∴BQ →·CP →=-2⇒[(1-λ)AC →-AB →]·[λAB →-AC →]=-2,化简得(1-λ)λAC →·AB →-(1-λ)AC →2-λAB →2+AB →·AC →=-2,又因为AC →·AB →=0,AC →2=4,AB →2=1,所以解得λ=23. 答案 2314.(2015·绍兴五校联考)已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝ ⎛⎭⎪⎫cos x 4,cos 2x 4.(1)若m ·n =1,求cos ⎝ ⎛⎭⎪⎫2π3-x 的值;(2)记f (x )=m ·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围. 解 m ·n =3sin x 4cos x 4+cos 2x4 =32sin x 2+12×cos x 2+12 =sin ⎝ ⎛⎭⎪⎫x 2+π6+12.(1)∵m ·n =1,∴sin ⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12, cos ⎝ ⎛⎭⎪⎫2π3-x =-cos ⎝ ⎛⎭⎪⎫x +π3=-12. (2)∵(2a -c )cos B =b cos C ,由正弦定理得 (2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B =sin C cos B +sin B cos C , ∴2sin A cos B =sin(B +C ).∵A +B +C =π,∴sin(B +C )=sin A ,且sin A ≠0, ∴cos B =12,B =π3.∴0<A <2π3. ∴π6<A 2+π6<π2, 12<sin ⎝ ⎛⎭⎪⎫A 2+π6<1.又∵f (x )=m ·n =sin ⎝ ⎛⎭⎪⎫x 2+π6+12,∴f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12,故1<f (A )<32.故函数f (A )的取值范围是⎝ ⎛⎭⎪⎫1,32.15.如图所示,已知点F (1,0),直线l :x =-1,P 为平面上的一动点,过P 作直线l 的垂线,垂足为点Q ,且QP →·QF →=FP →·FQ →.(1)求动点P 的轨迹C 的方程;(2)过点F 的直线交轨迹C 于A 、B 两点,交直线l 于点M .已知MA →=λ1AF →,MB →=λ2BF →,求λ1+λ2的值.解 (1)设点P (x ,y ),则Q (-1,y ),由QP →·QF →=FP →·FQ →,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得P 的轨迹C 的方程为y 2=4x . (2)设直线AB 的方程为x =my +1(m ≠0). 设A (x 1,y 1),B (x 2,y 2),又M ⎝ ⎛⎭⎪⎫-1,-2m ,联立方程⎩⎨⎧y 2=4x ,x =my +1,消去x ,得y 2-4my -4=0,Δ=(-4m )2+16>0, 故⎩⎨⎧y 1+y 2=4m ,y 1y 2=-4. 由MA →=λ1AF →,MB →=λ2BF →,得y 1+2m =-λ1y 1,y 2+2m =-λ2y 2,整理,得 λ1=-1-2my 1,λ2=-1-2my 2,所以λ1+λ2=-2-2m ⎝ ⎛⎭⎪⎫1y 1+1y 2=-2-2m ·y 1+y 2y 1y 2=-2-2m ·4m-4=0.。
(建议用时:60分钟) 一、选择题1.若向量a =(k +2,1)与向量b =(-b ,1)共线,则直线y =kx +b 必经过定点( ) A.(1,-2) B.(1,2) C.(-1,2)D.(-1,-2)解析 由于向量a =(k +2,1)与向量b =(-b ,1)共线,则k +2=-b ,即b =-2-k ,于是直线方程化为y =kx -k -2,即y +2=k (x -1),故直线必过定点(1,-2),选A. 答案 A2.过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( ) A.⎝⎛⎦⎥⎤0,π6B.⎝⎛⎦⎥⎤0,π3C.⎣⎢⎡⎦⎥⎤0,π6D.⎣⎢⎡⎦⎥⎤0,π3解析 由题意知过点P 的直线斜率存在,设过点P 的直线方程为y =k (x +3)-1,则由直线和圆有公共点知|3k -1|1+k 2≤1.解得0≤k ≤ 3.故直线l 的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π3.答案 D3.过点M (1,2)的直线l 与圆C :(x -2)2+y 2=9交于A 、B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为( ) A.x =1B.y =1C.x -y +1=0D.x -2y +3=0解析 当CM ⊥l ,即弦长最短时,∠ACB 最小,k CM =-2, ∴k l ·k CM =-1,∴k l =12,∴l 的方程为:x -2y +3=0. 答案 D4.在圆x 2+y 2=4上与直线l :4x +3y -12=0的距离最小的点的坐标是( ) A.⎝ ⎛⎭⎪⎫85,65 B.⎝ ⎛⎭⎪⎫85,-65 C.⎝ ⎛⎭⎪⎫-85,65 D.⎝ ⎛⎭⎪⎫-85,-65 解析过圆(0,0)与直线l 垂直的直线方程为3x -4y =0,由⎩⎪⎨⎪⎧3x -4y =0,x 2+y 2=4,解得⎩⎪⎨⎪⎧x =85,y =65或⎩⎪⎨⎪⎧x =-85,y =-65.结合图形可知所求点的坐标为⎝ ⎛⎭⎪⎫85,65. 答案 A5.(2022·东阳中学模拟)已知两点A (-1,0),B (0,2),点P 是圆(x -1)2+y 2=1上任意一点,则△P AB 面积的最大值与最小值分别是( ) A.2,12(4-5) B.12(4+5),12(4-5) C.5,4- 5D.12(5+2),12(5-2)解析 如图,圆心(1,0)到直线AB : 2x -y +2=0的距离为d =45, 故圆上的点P 到直线AB 的距离的最大值是45+1, 最小值是45-1,又|AB |=5, 故△P AB 面积的最大值和最小值分别是2+52,2-52. 答案 B6.(2022·阜阳一模)设曲线C 的方程为(x -2)2+(y +1)2=9,直线l 的方程为x -3y +2=0,则曲线上的点到直线l 的距离为71010的点的个数为( ) A.1B.2C.3D.4解析 由(x -2)2+(y +1)2=9, 得圆心坐标为(2,-1),半径r =3, 圆心到直线l 的距离d =|2+3+2|1+(-3)2=710=71010. 要使曲线上的点到直线l 的距离为71010, 此时对应的点在直径上,故有两个点.答案 B二、填空题7.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________.解析 设平面上任一点M ,由于|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 为所求.又k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.① 又k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.② 由①②得⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =2,y =4,∴M (2,4).答案 (2,4)8.直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=______.解析 由题意知,直线l 1截圆所得的劣弧长为π2,则圆心到直线l 1的距离为22,即|a |2=22,则a 2=1.同理可得b 2=1,则a 2+b 2=2. 答案 29.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2,即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43. 故k 的最大值是43. 答案 43 三、解答题10.已知实数x ,y 满足方程(x -3)2+(y -3)2=6,求x +y 的最大值和最小值. 解 设x +y =t ,则直线y =-x +t 与圆(x -3)2+(y -3)2=6有公共点. ∴|3+3-t |2≤6,∴6-23≤t ≤6+2 3. 故x +y 的最小值为6-23,最大值为6+2 3.11.已知矩形ABCD 的对角线交于点P (2,0),边AB 所在直线的方程为x -3y -6=0,点(-1,1)在边AD 所在的直线上.(1)求矩形ABCD 的外接圆的方程;(2)已知直线l :(1-2k )x +(1+k )y -5+4k =0(k ∈R ),求证:直线l 与矩形ABCD 的外接圆恒相交,并求出相交的弦长最短时的直线l 的方程. (1)解 ∵l AB :x -3y -6=0且AD ⊥AB , 点(-1,1)在边AD 所在的直线上, ∴AD 所在直线的方程是y -1=-3(x +1), 即3x +y +2=0.由⎩⎨⎧x -3y -6=0,3x +y +2=0,得A (0,-2).∴|AP |=4+4=22, ∴矩形ABCD 的外接圆的方程是(x -2)2+y 2=8.(2)证明 直线l 的方程可化为k (-2x +y +4)+x +y -5=0,l 可看作是过直线-2x +y +4=0和x +y -5=0的交点(3,2)的直线系,即l 恒过定点Q (3,2),由(3-2)2+22=5<8知点Q 在圆P 内, 所以l 与圆P 恒相交.设l 与圆P 的交点为M ,N ,则|MN |=28-d 2(d 为P 到l 的距离), 设PQ 与l 的夹角为θ,则d =|PQ |·sin θ=5sin θ,当θ=90°时,d 最大,|MN |最短.此时l 的斜率为PQ 的斜率的负倒数,即-12, 故l 的方程为y -2=-12(x -3),x +2y -7=0.12.(2022·陕西卷)已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0). (1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.解 (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得a =2,b =3,c =1,∴椭圆的方程为x 24+y 23=1.(2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1, ∴圆心到直线l 的距离d =2|m |5,由d <1,得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 23=1,得x 2-mx +m 2-3=0,由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-122[m 2-4(m 2-3)] =1524-m 2. 由|AB ||CD |=534,得4-m 25-4m 2=1,解得m =±33,满足(*).∴直线l 的方程为y =-12x +33或y =-12x -33.。
第2讲排列与组合分层A级基础达标演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.(2012·全国)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有().A.12种B.18种C.24种D.36种解析先排第一列,因为每列的字母互不相同,因此共有A33种不同的排法.再排第二列,其中第二列第一行的字母共有A12种不同的排法,第二列第二、三行的字母只有1种排法.因此共有A33·A12·1=12(种)不同的排列方法.答案 A2.A、B、C、D、E五人并排站成一排,如果B必须站在A的右边(A、B可以不相邻),那么不同的排法共有().A.24种B.60种C.90种D.120种解析可先排C、D、E三人,共A35种排法,剩余A、B两人只有一种排法,由分步计数原理满足条件的排法共A35=60(种).答案 B3.如果n是正偶数,则C0n+C2n+…+C n-2+C n n=().nA.2n B.2n-1C.2n-2D.(n-1)2n-1解析(特例法)当n=2时,代入得C02+C22=2,排除答案A、C;当n=4时,代入得C04+C24+C44=8,排除答案D.故选B.答案 B4.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为().A.42 B.30C.20 D.12解析可分为两类:两个节目相邻或两个节目不相邻,若两个节目相邻,则有A22A16=12种排法;若两个节目不相邻,则有A26=30种排法.由分类计数原理共有12+30=42种排法(或A27=42).答案 A二、填空题(每小题5分,共10分)5.(2013·汕头调研)如图,电路中共有7个电阻与一个电灯A,若灯A不亮,因电阻断路的可能性共有________种情况.解析每个电阻都有断路与通路两种状态,图中从上到下的三条支线路,分别记为支线a、b、c,支线a,b中至少有一个电阻断路情况都有22-1=3种;支线c中至少有一个电阻断路的情况有23-1=7种,每条支线至少有一个电阻断路,灯A就不亮,因此灯A不亮的情况共有3×3×7=63种情况.答案636.(2013·郑州模拟)从-3,-2,-1,0,1,2,3,4八个数字中任取3个不同的数字作为二次函数y=ax2+bx+c的系数a,b,c的取值,问共能组成________个不同的二次函数.解析a,b,c中不含0时,有A37个;a,b,c中含有0时,有2A27个.故共有A37+2A27=294个不同的二次函数.答案294三、解答题(共25分)7.(12分)7名男生5名女生中选取5人,分别求符合下列条件的选法总数有多少种.(1)A,B必须当选;(2)A,B必不当选;(3)A,B不全当选;(4)至少有2名女生当选;(5)选取3名男生和2名女生分别担任班长、体育委员等5种不同的工作,但体育委员必须由男生担任,班长必须由女生担任.解(1)由于A,B必须当选,那么从剩下的10人中选取3人即可,故有C310=120种选法.(2)从除去的A,B两人的10人中选5人即可,故有C510=252种选法.(3)全部选法有C512种,A,B全当选有C310种,故A,B不全当选有C512-C310=672种选法.(4)注意到“至少有2名女生”的反面是只有一名女生或没有女生,故可用间接法进行.所以有C512-C15·C47-C57=596种选法.(5)分三步进行;第1步,选1男1女分别担任两个职务有C17·C15种选法.第2步,选2男1女补足5人有C26·C14种选法.第3步,为这3人安排工作有A33方法.由分步乘法计数原理,共有C17C15·C26C14·A33=12 600种选法.8.(13分)直线x=1,y=x,将圆x2+y2=4分成A,B,C,D四个区域,如图用五种不同的颜色给他们涂色,要求共边的两区域颜色互异,每个区域只涂一种颜色,共有多少种不同的涂色方法?解法一第1步,涂A区域有C15种方法;第2步,涂B区域有C14种方法;第3步,涂C区域和D区域:若C区域涂A区域已填过颜色,则D区域有4种涂法;若C区域涂A、B剩余3种颜色之一,即有C13种涂法,则D区域有C13种涂法.故共有C15·C14·(4+C13·C13)=260种不同的涂色方法.法二共可分为三类:第1类,用五色中两种色,共有C25A22种涂法;第2类,用五色中三种色,共有C35C13C12A22种涂法;第3类,用五色中四种色,共有C45A44种涂法.由分类加法计数原理,共有C25A22+C35C13C12A22+C45A44=260种不同的涂色方法.分层B级创新能力提升1.在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列方式共有().A.576种B.720种C.864种D.1 152种解析由题意,先排1,3,5,7,有A44种排法;再排6,由于6不能和3相邻,故6有3种排法;最后排2和4,在不与6相邻的4个空中排上2和4,有A24种排法,所以共有A44×3×A24=864种排法.答案 C2.(2012·山东)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为().A.232 B.252C.472 D.484解析若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有C14×C14×C14=64种,若2张同色,则有C23×C12×C24×C14=144种;若红色卡片有1张,剩余2张不同色,则有C14×C23×C14×C14=192种,乘余2张同色,则有C14×C13×C24=72种,所以共有64+144+192+72=472种不同的取法.故选C.答案 C3.(2013·深圳模拟)某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人不同的出牌方法共有________种.解析出牌的方法可分为以下几类:(1)5张牌全部分开出,有A55种方法;(2)2张2一起出,3张A一起出,有A25种方法;(3)2张2一起出,3张A分3次出,有A45种方法;(4)2张2一起出,3张A分两次出,有C23A35种方法;(5)2张2分开出,3张A一起出,有A35种方法;(6)2张2分开出,3张A分两次出,有C23A45种方法.因此,共有不同的出牌方法A55+A25+A45+C23A35+A35+C23A45=860(种).答案8604.小王在练习电脑编程,其中有一道程序题的要求如下:它由A,B,C,D,E,F六个子程序构成,且程序B必须在程序A之后,程序C必须在程序B之后,执行程序C后须立即执行程序D,按此要求,小王的编程方法有__________种.解析对于位置有特殊要求的元素可采用插空法排列,把CD看成整体,A,B,C,D产生四个空,所以E有4种不同编程方法,然后四个程序又产生5个空,所以F 有5种不同编程方法,所以小王有20种不同编程方法. 答案 205.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中:(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?解 (1)只需从其他18人中选3人即可,共有C 318=816(种);(2)只需从其他18人中选5人即可,共有C 518=8 568(种);(3)分两类:甲、乙中有一人参加,甲、乙都参加,共有C 12C 418+C 318=6 936(种);(4)法一 (直接法):至少有一名内科医生和一名外科医生的选法可分四类:一内四外;二内三外;三内二外;四内一外,所以共有C 112C 48+C 212C 38+C 312C 28+C 412C 18=14 656(种).法二 (间接法):由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C 520-(C 512+C 58)=14 656(种).6.在m (m ≥2)个不同数的排列p 1p 2…p m 中,若1≤i <j ≤m 时p i >p j (即前面某数大于后面某数),则称p i 与p j 构成一个逆序,一个排列的全部逆序的总数称为该排列的逆序数.记排列(n +1)n (n -1)…321的逆序数为a n .如排列21的逆序数a 1=1,排列321的逆序数a 2=3,排列4 321的逆序数a 3=6.(1)求a 4、a 5,并写出a n 的表达式;(2)令b n =a n a n +1+a n +1a n,证明:2n <b 1+b 2+…+b n <2n +3,n =1,2,…. (1)解 由已知条件a 4=C 25=10,a 5=C 26=15,则a n =C 2n +1=n (n +1)2.(2)证明 b n =a n a n +1+a n +1a n =n n +2+n +2n =2+2⎝ ⎛⎭⎪⎫1n -1n +2 ∴b 1+b 2+…+b n=2n +2⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1-1n +1+1n -1n +2 =2n +2⎝ ⎛⎭⎪⎫32-1n +1-1n +2, ∴2n <b 1+b 2+…+b n <2n +3.。