材料科学基础 第3章 扩散
- 格式:pptx
- 大小:2.37 MB
- 文档页数:66
稳定扩散 若扩散物质在扩散层dx 内各处的浓度不随时间而变化,即dc/dt=0。
这种扩散称稳定扩散不稳定扩散 扩散物质在扩散层dx 内的浓度随时间而变化,即dc/dt≠0。
这种扩散称为不稳定扩散菲克第一定律在扩散体系中,参与扩散质点满足xC-DJ ∂∂=,即菲克第一定律 菲克第二定律 在扩散体系中,参与扩散质点满足xC D t C22∂=∂∂∂,即菲克第二定律 本征扩散 扩散系统仅受热运动的影响形成的扩散称之为本征扩散非本征扩散 因扩散受固溶引入的杂质离子的电价和浓度等外界因素所控制,故称之为非本征扩散。
相应的D 则称为非本征扩散系数自扩散 一种原子或离子通过由该种原子或离子所构成的晶体中的扩散 互扩散 两种或两种以上的原子或离子同时参与的扩散 扩散系数 扩散系统中,单位浓度梯度下的通量扩散通量 扩散系统中,单位时间内通过垂直于x 轴的单位平面的原子数量上坡扩散 溶质原子从浓度地处向浓度高处迁移的现象称为上坡扩散;产生的原因是扩散的推动力是化学位梯度,而不是浓度梯度扩散激活能原子在晶体结构中由一个平衡位置跳向相邻的平衡位置时,通常要越过一个自由能垒,该能垒高度称为扩散激活自由能,它是原子扩散的阻力。
扩散激活自由能的内能部分称为扩散激活能柯肯达尔效应 对于置换型固溶体中溶质原子的扩散,由于溶质与溶剂原子的半径相差不大,原子扩散必须与相邻原子间做置换,能观察到这种结果的实验现象称为柯肯达尔效应反应扩散 伴随有化学反应或相变的扩散过程称之为反应扩散或相变扩散,反应扩散速度主要受化学反应和扩散速度控制短路扩散 固态金属中原子沿表面,晶界,位错等途径的扩散1.扩散机构总结扩散机构扩散方向 扩散激活能 扩散系数迁移方式 空位扩散机构(主要)空位扩散方向的逆方向空位形成能和迁移能之和和空位形成能和迁移能之扩散激活能,大小等于:)22exp()(exp *00Q RTQ D HHD Df+∆-=-=质点从结点位置上迁移到相邻的空位中间隙扩散机构(主要)间隙原子迁移能 )(exp 0RT Q D D -=间隙质点穿过晶格迁移到另一个间隙位置 亚间隙机构间隙质点从间隙位置迁移结点位置,并将结点位置上的质点撞离结点位置而成为新的间隙质点 易位扩散机构两个相邻结点位置上的质点直接交换位置进行迁移环易位机构几个结点位置上的质点以封闭的环形依次交换位置进行迁移1.空位机构和间隙机构是金属体系和离子化合物体系中质点扩散的主要形式2.空位机构比间隙机构的扩散激活能大,但是扩散系数小3.固态金属中扩散方向是化学位梯度降低方向 2.扩散中常用公式)(exp 0RT Q D D -=δ261D Γ=(频率,自由程)xC -D J ∂∂=(适用于稳定扩散和非稳定扩散)x C D t C 22∂=∂∂∂(不稳定扩散) dxdc -DA JA dt dm == Dt K x =(实验测得的浓度已知) DtA t x x4),(lnI 2-=(A :图像的截距,Dt41-为斜率;)3.扩散的结果都是使不均匀体系均匀化,不平衡逐渐达到平衡4.非稳定扩散类型①扩散质在晶体表面浓度恒定情况:)2(),(C 0Dtx erfc t x C =②定量扩散质由晶体表面向内部扩散(示踪扩散法原理):)4exp(2),(C 221)(DtM t x xDt -=π5.本征扩散一般处于高温处,非本征扩散一般处于低温处;由杂质扩散转变为本征扩散,其T1-ln D r 曲线上会出现转折点;置换型固溶体扩散一般只能在高温进行;杂质浓度升高,转折点升高6.扩散系数测定一般使用示踪扩散方法7.扩散动力学方程式(能斯特-爱因斯坦方程))ln ln 1)((D 211221~γγ∂∂++=D N D N①(γγ21ln ln 1∂∂+)>0:扩散系数大于0,正常扩散,高浓度向低浓度迁移,溶质趋于均匀②(γγ21ln ln 1∂∂+)<0:扩散系数小于0,反常扩散,低浓度向高浓度迁移,溶质偏聚或分相8.影响扩散系数因素①温度:影响扩散激活能和改变物质结构 ②杂质 ③气氛 ④固溶体类型:间隙性固溶体比置换型固溶体更容易扩散;在置换型固溶体中,原子间尺寸差别越小,电负性越大,亲和力越强,扩散越困难 ⑤扩散物质性质和结构 ⑥化学键类型和强度 ⑦扩散介质结构:体心立方结构大于面心立方结构的扩散系数 ⑧结构缺陷:结构缺陷活化能小,容易扩散 9.激活能越大,扩散速率对温度的敏感性越大 10.反应扩散对扩散层深度的影响过程实际上反应扩散起初由于新相层较浅,原子扩散不是主要矛盾,过程由表面扩散所支配,新相层的增加服从直线关系;随新相层深度增加,原子扩散逐步称为主要矛盾,新相层的增加服从抛物线规律。
材料科学基础复习提纲第一章晶体结构概念:简单三斜点阵、简单单斜点阵、底心单斜点阵、简单正交点阵、底心正交点阵、体心正交点阵、面心正交点阵、六方点阵、菱方点阵、简单正方点阵、体心正方点阵空间点阵、晶体结构、晶胞、多晶型性(同素异构性)、晶带、晶带轴、晶带定律、配位数、致密度、原子面密度、八面体间隙、四面体间隙、晶向族、晶面族晶体的对称要素、宏观对称要素、微观对成称要素置换固溶体、间隙固溶体、无限固溶体、有限固溶体、无序固溶体、有序固溶体、正常价化合物、电子浓度化合物、间隙相、间隙化合物简答及论述:简述晶体结构与空间点阵的区别。
画出面心立方晶体中(111)面上的[112]晶向.已知两个不平行的晶面(h1k1l1)和(h2k2l2),则求出其所属的晶带轴。
已知二晶向[u1v1w1]和[u2v2 w2],求出由此二晶向所决定的晶面指数。
已知三个晶面(h1k1l1)、(h2k2 l2)和(h3k3l3),问此三个晶面是否在同一个晶带?已知三个晶轴[u1v1w1]、[u2v2w2]和[u3v3w3],问此三个晶轴是否在同一个晶面上?判断(110)、(132)和(311)晶面是否属于同一晶带。
计算面心立方晶体的八面体间隙尺寸。
计算体心立方晶体的八面体间隙尺寸。
分别画出面心立方、体心立方、密排六方晶胞,并分别计算面心立方、体心立方、密排六方晶体的致密度;分别计算面心立方晶体{111}晶面和体心立方晶体{110}晶面原子面密度。
试证明理想密排六方结构的轴比c/a=1.633。
Ni的晶体结构为面心立方结构,其原子半径为r=0.1243nm,试求Ni的晶格常数和致密度。
Mo的晶体结构为体心立方结构,其晶格常数a=0.31468nm,试求Mo的原子半径r。
比较固溶体与金属间化合物在成分、结构和性能等方面的区别。
简述决定组元形成固溶体与中间相的因素。
简述影响置换固溶体溶解度的因素。
1.晶体结构2,原子尺寸因素,大量实验表明,在其他条件相近的情况下,原子半径差小于15%时,有利于形成溶解度较大的固溶体,而当半径差≥15%时,△r越大则溶解度越小。
4 材料科学基础习题库-第4章-扩散4材料科学基础习题库-第4章-扩散4材料科学基础习题库-第4章-扩散第四章--蔓延1.在恒定源条件下820℃时,钢经1小时的渗碳,可得到一定厚度的表面渗碳层,若在同样条件下.要得到两倍厚度的渗碳层需要几个小时?2.在不能平衡蔓延条件之下800℃时,在钢中渗碳100分钟可以获得最合适厚度的渗碳层,若在1000℃时必须获得同样厚度的渗碳层,须要多少时间(d0=2.4×10m/sec:d1000℃=3×10m/sec)?4.在制造硅半导体器体中,常使硼扩散到硅单品中,若在1600k温度下.保持硼在硅单品表面的浓度恒定(恒定源半无限扩散),要求距表面10-3cm深度处硼的浓度是表面浓度的一半,问需要多长时间(已知d1600℃=8×10cm/sec;当-122-122-112erfcx2dt=0.5x时,2dt≈0.5)?5.zn2+在zns中扩散时,563℃时的扩散系数为3×10-14cm2/sec;450℃时的扩散系数为1.0×10-14cm2/sec,求:1)蔓延的活化能和d0;2)750℃时的扩散系数。
6.实验册的相同温度下碳在钛中的扩散系数分别为2×10-9cm2/s(736℃)、5×10-9cm2/s(782℃)、1.3×10-8cm2/s(838℃)。
a)恳请推论该实验结果与否合乎d=d0exp(-∆g)rt,b)请计算扩散活化能(j/mol℃),并求出在500℃时的扩散系数。
7.在某种材料中,某种粒子的晶界扩散系数与体积扩散系数分别为dgb=2.00×10-10exp(-19100/t)和dv=1.00×10-4exp(-38200/t),就是求晶界扩散系数和温度扩散系数分别在什么温度范围内占优势?8.若想说道蔓延定律实际上只要一个,而不是两个?9.要想在800℃下使通过α-fe箔的氢气通气量为2×10-8mol/(m2·s),铁箔两侧氢浓度分别为3×10-6mol/m3和8×10-8mol/m3,若d=2.2×10-6m2/s,试确定:(1)所须要浓度梯度;(2)所需铁箔厚度。
材料科学基础A第三章固态扩散习题一、名词解释。
(每个2分)固态扩散扩散第一定律(菲克第一定律)扩散第二定律(菲克第二定律)原子扩散反应扩散上坡扩散下坡扩散扩散激活能间隙扩散空位扩散柯肯达尔效应自扩散(本征扩散)互扩散(异扩散)体扩散短路扩散二、判断题。
(每小题1分)1、扩散一律说明扩散通量与浓度梯度呈正比,因此存在浓度梯度是扩散的必要条件。
()2、在影响扩散的诸因素中,最主要的并且可以控制的因素是温度。
( )3、固溶体的扩散总是受浓度梯度的控制,溶质原子总是自浓度高处向低处扩散。
()4、对扩散系数影响最强烈的因素是晶体结构因素。
()5、碳在α-Fe中扩散系数大于碳在γ-Fe中的扩散系数,所以,钢的渗碳常在铁素体中进行。
()6、在不同晶粒度纯铁中扩散时,C原子在细晶粒中的扩散速度小于在粗晶粒中的扩散速度。
()三、填空题。
(每空1分)1、扩散第一定律的适用于恒温常扩散系数下的态扩散,在扩散中合金各处的浓度(C)及浓度梯度(dc/dx)不随改变。
2、低碳钢进行工业渗碳时,渗层厚度与渗碳时间呈规律,增加一倍扩散深度则要延长倍的扩散时间。
3、原子的迁移导致扩散,扩散的驱动力是。
4、在二元合金系扩散层组织中不能出现相区,如果出现将使消失,则扩散停止。
5、对于一定材料而言,温度越高扩散系数D越,越易于扩散;扩散激活能约,越易于扩散。
6、纯金属组元A和B(熔点较低)构成的扩散偶,焊缝处加上W丝,加热至高温长时间扩散,发现W丝向一侧飘移。
7、纯金属的形核和长大需要原子的扩散完成,扩散的驱动力是。
四、选择题。
(每小题2分)1、当温度相同时,溶质原子在置换固溶体中的主要扩散机制是()。
A、直接换位B、环形换位C、空位扩散D、间隙扩散2、纯金属的形核和长大需要原子的扩散完成,这种扩散称为本征扩散,其扩散驱动力是()。
A、浓度梯度B、化学位梯度C、表面能的降低3、含碳量为0.8%的碳钢,在900℃的脱碳气氛中保温,此时与气氛相平衡的表面碳浓度为0.2%, 已知在保温2小时后,脱碳层厚度为0.2 mm ,若脱碳层的厚度为0.4 mm ,则还需要继续保温( )小时。
材料科学基础扩散题库及答案1、 简要说明影响溶质原子在晶体中扩散的因素。
答: 影响扩散的因素主要有温度,温度越高,扩散越快;晶体缺陷如界面、晶界位错容易扩散;不同致密度的晶体结构溶质原子扩散速度不一样,低致密度的晶体中溶质原子扩散快,各向异性也影响溶质原子扩散;在间隙固溶体中溶质原子扩散容易;扩散原子性质与基体金属性质差别越大,扩散越容易;一般溶质原子浓度越高,扩散越快;加入其它组元与溶质原子形成化合物阻碍其扩散。
2、Ni 板与Ta 板中有0.05mm 厚MgO 板作为阻挡层,1400℃时Ni +通过MgO 向Ta 中扩散,此时Ni +在MgO 中的扩散系数为D=9×10-12cm 2/s ,Ni 的点阵常数为3.6×10-8cm 。
问每秒钟通过MgO 阻挡层在2×2cm 2的面积上扩散的Ni +数目,并求出要扩散走1mm 厚的Ni 层需要的时间。
答:Ni 为fcc 结构,一个晶胞中的原子个数为4,依题意有:在Ni/MgO 界面镍板一侧的Ni 的浓度C Ni 为100%,每cm 3中Ni 原子个数为: N Ni/MgO =(4原子/晶胞)/(3.6×10-8cm 3)=8.57×1022原子/cm 3,在Ta/MgO 界面Ta 板一侧的Ni 的浓度0%,这种扩散属于稳态扩散,可以利用菲克第一定律求解。
故浓度梯度为dc/dx =(0-8.57×1022原子/cm 3)/(0.05cm )=-1.71×1024原子/(cm 3.cm ), 则Ni 原子通过MgO 层的扩散通量: J =-D (dc/dx )=-9×10-12cm 2/s ×(-1.71×1024原子/(cm 3.cm ))=1.54×1013Ni 原子/(cm 2.s)每秒钟在2×2cm 2的面积上通过MgO 层扩散的Ni 原子总数N 为 N =J ×面积=[1.54×1013Ni 原子/(cm 2.s)]×4cm 2=6.16×1013Ni 原子/s 。
《材料结构》习题:固体中原子及分子的运动1. 已知Zn在Cu中扩散时D0=2.1×10-5m2/s,Q=171×103J/mol。
试求815℃时Zn在Cu中的扩散系数。
2. 已知C在γ铁中扩散时D0=2.0×10-5m2/s,Q=140×103J/mol; γ铁中Fe自扩散时D0=1.8×10-5m2/s,Q=270×103J/mol。
试分别求出927℃时奥氏体铁中Fe的自扩散系数和碳的扩散系数。
若已知1%Cr可使碳在奥氏体铁中的扩散激活能增加为Q=143×103J/mol,试求其扩散系数的变化和对比分析以上计算结果。
3. 若将铁棒置于一端渗碳的介质中,其表面碳浓度达到相应温度下奥氏体的平衡浓度C S。
试求(1)结合铁-碳相图,试分别示意绘出930℃和800℃经不同保温时间(t1<t2<t3)碳浓度沿试棒纵向的分布曲线;(2)若渗碳温度低于727℃,试分析能否达到渗碳目的。
4. 含碳0.2%的低碳钢进行870℃渗碳较930℃渗碳具有晶粒细小的优点,则(1)试计算以上两种温度下碳在γ-Fe中的扩散系数;(2)试计算870℃渗碳需多少时间可达到930℃渗碳10小时的渗层厚度(忽略C在γ-Fe 中的溶解度差异);(3)若渗层厚度测至含碳量0.4%处,计算870℃渗碳10小时后的渗层厚度及其与930℃同样时间渗层厚度的比值。
(表面碳浓度取1.2)FeDγCDγCDγ习题4答案:1.解:根据扩散激活能公式得3-5132017110e x p () 2.110e x p 1.2610m /s8.314(815273)-⎛⎫⨯=-=⨯⨯-=⨯ ⎪⨯+⎝⎭CuZn Q D D RT 2.解:根据扩散激活能公式得3γ-5172027010e x p () 1.810e x p 3.1810m /s 8.314(927273)-⎛⎫⨯=-=⨯⨯-=⨯ ⎪⨯+⎝⎭Fe Q D D RT 3γ-5112014010e x p () 2.010e x p 1.6110m /s 8.314(927273)-⎛⎫⨯=-=⨯⨯-=⨯ ⎪⨯+⎝⎭C Q D D RT 已知1%Cr 可使碳在奥氏体铁中的扩散激活能增加为Q =143×103J/mol , 所以,3γ-51120143.310exp() 2.010exp 1.1610m /s 8.314(927273)-⎛⎫⨯'=-=⨯⨯-=⨯ ⎪⨯+⎝⎭CQ D D RT 由此可见,1%Cr 使碳在奥氏体铁中的扩散系数下降,因为Cr 是形成碳化物的元素,与碳的亲和力较大,具有降低碳原子的活度和阻碍碳原子的扩散的作用。
第三章 固体中的扩散物质中的原子随时进行着热振动,温度越高,振动频率越快。
当某些原子具有足够高的能量时,便会离开原来的位置,跳向邻近的位置,这种由于物质中原子(或者其他微观粒子)的微观热运动所引起的宏观迁移现象称为扩散。
在气态和液态物质中,原子迁移可以通过对流和扩散两种方式进行,与扩散相比,对流要快得多。
然而,在固态物质中,扩散是原子迁移的唯一方式。
固态物质中的扩散与温度有很强的依赖关系,温度越高,原子扩散越快。
实验证实,物质在高温下的许多物理及化学过程均与扩散有关,因此研究物质中的扩散无论在理论上还是在应用上都具有重要意义。
物质中的原子在不同的情况下可以按不同的方式扩散,扩散速度可能存在明显的差异,可以分为以下几种类型。
① 化学扩散和自扩散:扩散系统中存在浓度梯度的扩散称为化学扩散,没有浓度梯度的扩散称为自扩散,后者是指纯金属的自扩散。
② 上坡扩散和下坡扩散:扩散系统中原子由浓度高处向浓度低处的扩散称为下坡扩散,由浓度低处向浓度高处的扩散称为上坡扩散。
③ 短路扩散:原子在晶格内部的扩散称为体扩散或称晶格扩散,沿晶体中缺陷进行的扩散称为短路扩散,后者主要包括表面扩散、晶界扩散、位错扩散等。
短路扩散比体扩散快得多。
④ 相变扩散:原子在扩散过程中由于固溶体过饱和而生成新相的扩散称为相变扩散或称反应扩散。
本章主要讨论扩散的宏观规律、微观机制和影响扩散的因素。
3.1 扩散定律及其应用3.1.1 扩散第一定律在纯金属中,原子的跳动是随机的,形成不了宏观的扩散流;在合金中,虽然单个原子的跳动也是随机的,但是在有浓度梯度的情况下,就会产生宏观的扩散流。
例如,具有严重晶内偏析的固溶体合金在高温扩散退火过程中,原子不断从高浓度向低浓度方向扩散,最终合金的浓度逐渐趋于均匀。
菲克(A. Fick )于1855年参考导热方程,通过实验确立了扩散物质量与其浓度梯度之间的宏观规律,即单位时间内通过垂直于扩散方向的单位截面积的物质量(扩散通量)与该物质在该面积处的浓度梯度成正比,数学表达式为x CD J ∂∂-= (3.1)上式称为菲克第一定律或称扩散第一定律。
材料科学基础 from headder3.5 作业3.5.1设体积扩散与晶界扩散活化能间关系为Q gb =Q v /2(Q gb 、Q v 分别为晶界扩散与体积扩散活化能),试画出lnD ~l/T 曲线,并分析在哪个温度范围内,晶界扩散超过体积扩散?3.5.2 在某种材料中,某种粒子的晶界扩散系数与晶格扩散系数分别为D b =2.00×10-10exp (-19100/T )和D l =1.00×10-4exp (-38200/T ),是求晶界扩散系数和晶格扩散系数分别在什么温度范围内占优势?3.5.3假设大小一样的A 、B 原子组成的置换式固溶体。
该固溶体具有简单立方的晶体结构,点阵常数a=3Å,且A 原子在固溶体中分布成直线变化,0.12 mm 距离内由0.15%增至0.63%(原子数目)。
又设A 原子频率Γ=10-6(sec -1),试求每秒内通过单位截面A 的原子数。
提示:必须考虑和菲克第一定律,关键是简单立方的p 值。
附加题(自选)3.5.4根据ZnS 的烧结数据,在563°C 时,测得扩散系数为3x10-4cm 2/sec ;在450°C 时,扩散系数为1x10-4cm 2/sec 。
1、试确定扩散活化能D E 和系数D 0;2、ZnS 与MgO 的性质相似,有类似的缺陷反应。
试求扩散系数D 与硫分压的关系。
3.5.5 在NaCl 单晶中添加10-4 mol%的ZnCl 2,已知NaCl 的Schottky 缺陷形成能为2.3 eV ,试分析在高温和低温时分别是由本征和非本征扩散机制的哪一种控制的?并求出转变温度。
(k=8.616x10-5 eV/K)3.5.6 在KCl 晶体中掺入10-5mo1%CaCl 2,低温时KCl 中的K +离子扩散以非本征扩散为主,试回答在多高温度以上,K +离子扩散以热缺陷控制的本征扩散为主?(KCl 的肖特基缺陷形成能∆H s =251kJ/mol ,R=8.314J/mo1·K )3.5.7 (1)贫铁的Fe 3O 4,结构式可写成Fe 1-x O ,相当于FeO 体系中氧增加,且有铁的空位形成。