材料科学基础11章扩散
- 格式:ppt
- 大小:474.50 KB
- 文档页数:25
稳定扩散 若扩散物质在扩散层dx 内各处的浓度不随时间而变化,即dc/dt=0。
这种扩散称稳定扩散不稳定扩散 扩散物质在扩散层dx 内的浓度随时间而变化,即dc/dt≠0。
这种扩散称为不稳定扩散菲克第一定律在扩散体系中,参与扩散质点满足xC-DJ ∂∂=,即菲克第一定律 菲克第二定律 在扩散体系中,参与扩散质点满足xC D t C22∂=∂∂∂,即菲克第二定律 本征扩散 扩散系统仅受热运动的影响形成的扩散称之为本征扩散非本征扩散 因扩散受固溶引入的杂质离子的电价和浓度等外界因素所控制,故称之为非本征扩散。
相应的D 则称为非本征扩散系数自扩散 一种原子或离子通过由该种原子或离子所构成的晶体中的扩散 互扩散 两种或两种以上的原子或离子同时参与的扩散 扩散系数 扩散系统中,单位浓度梯度下的通量扩散通量 扩散系统中,单位时间内通过垂直于x 轴的单位平面的原子数量上坡扩散 溶质原子从浓度地处向浓度高处迁移的现象称为上坡扩散;产生的原因是扩散的推动力是化学位梯度,而不是浓度梯度扩散激活能原子在晶体结构中由一个平衡位置跳向相邻的平衡位置时,通常要越过一个自由能垒,该能垒高度称为扩散激活自由能,它是原子扩散的阻力。
扩散激活自由能的内能部分称为扩散激活能柯肯达尔效应 对于置换型固溶体中溶质原子的扩散,由于溶质与溶剂原子的半径相差不大,原子扩散必须与相邻原子间做置换,能观察到这种结果的实验现象称为柯肯达尔效应反应扩散 伴随有化学反应或相变的扩散过程称之为反应扩散或相变扩散,反应扩散速度主要受化学反应和扩散速度控制短路扩散 固态金属中原子沿表面,晶界,位错等途径的扩散1.扩散机构总结扩散机构扩散方向 扩散激活能 扩散系数迁移方式 空位扩散机构(主要)空位扩散方向的逆方向空位形成能和迁移能之和和空位形成能和迁移能之扩散激活能,大小等于:)22exp()(exp *00Q RTQ D HHD Df+∆-=-=质点从结点位置上迁移到相邻的空位中间隙扩散机构(主要)间隙原子迁移能 )(exp 0RT Q D D -=间隙质点穿过晶格迁移到另一个间隙位置 亚间隙机构间隙质点从间隙位置迁移结点位置,并将结点位置上的质点撞离结点位置而成为新的间隙质点 易位扩散机构两个相邻结点位置上的质点直接交换位置进行迁移环易位机构几个结点位置上的质点以封闭的环形依次交换位置进行迁移1.空位机构和间隙机构是金属体系和离子化合物体系中质点扩散的主要形式2.空位机构比间隙机构的扩散激活能大,但是扩散系数小3.固态金属中扩散方向是化学位梯度降低方向 2.扩散中常用公式)(exp 0RT Q D D -=δ261D Γ=(频率,自由程)xC -D J ∂∂=(适用于稳定扩散和非稳定扩散)x C D t C 22∂=∂∂∂(不稳定扩散) dxdc -DA JA dt dm == Dt K x =(实验测得的浓度已知) DtA t x x4),(lnI 2-=(A :图像的截距,Dt41-为斜率;)3.扩散的结果都是使不均匀体系均匀化,不平衡逐渐达到平衡4.非稳定扩散类型①扩散质在晶体表面浓度恒定情况:)2(),(C 0Dtx erfc t x C =②定量扩散质由晶体表面向内部扩散(示踪扩散法原理):)4exp(2),(C 221)(DtM t x xDt -=π5.本征扩散一般处于高温处,非本征扩散一般处于低温处;由杂质扩散转变为本征扩散,其T1-ln D r 曲线上会出现转折点;置换型固溶体扩散一般只能在高温进行;杂质浓度升高,转折点升高6.扩散系数测定一般使用示踪扩散方法7.扩散动力学方程式(能斯特-爱因斯坦方程))ln ln 1)((D 211221~γγ∂∂++=D N D N①(γγ21ln ln 1∂∂+)>0:扩散系数大于0,正常扩散,高浓度向低浓度迁移,溶质趋于均匀②(γγ21ln ln 1∂∂+)<0:扩散系数小于0,反常扩散,低浓度向高浓度迁移,溶质偏聚或分相8.影响扩散系数因素①温度:影响扩散激活能和改变物质结构 ②杂质 ③气氛 ④固溶体类型:间隙性固溶体比置换型固溶体更容易扩散;在置换型固溶体中,原子间尺寸差别越小,电负性越大,亲和力越强,扩散越困难 ⑤扩散物质性质和结构 ⑥化学键类型和强度 ⑦扩散介质结构:体心立方结构大于面心立方结构的扩散系数 ⑧结构缺陷:结构缺陷活化能小,容易扩散 9.激活能越大,扩散速率对温度的敏感性越大 10.反应扩散对扩散层深度的影响过程实际上反应扩散起初由于新相层较浅,原子扩散不是主要矛盾,过程由表面扩散所支配,新相层的增加服从直线关系;随新相层深度增加,原子扩散逐步称为主要矛盾,新相层的增加服从抛物线规律。
第11章 固态相变(Ⅰ)——扩散型相变一、判断题有序-无序转变是指晶体与非晶体之间的转变。
()[南京工业大学2003研]【答案】×【解析】有序-无序转变狭义是指存在于某些晶体内部的两种结构状态。
无序是指在某一临界温度以上,晶体结构中的两种或多种不同质点(原子或离子以至空位)都随机地分布于一种或几种结构位置上相互间排布没有一定的规律性的结构状态;有序是指此改办温度以下,这些不同的质点可以各自有选择地分占这些结构位置中的不同位置,相互间作有规则的排列的结构状态,相应的晶体结构称为超结构或超点阵。
有序-无序转变从物质结构上可分为三种主要类型:①位置有序;②取向有序;③与电子自旋状态有关的有序。
二、名词解释1.铝合金的时效[西南交通大学2009研]答:铝合金的时效是指铝合金在经过高温固溶处理后,迅速冷却形成过饱和固溶体,并在随后的加热保温过程中析出亚稳相的过程。
2.一级相变[南京工业大学2008、西南交通大学2009、北京工业大学2009研]答:相变时两相的化学势相等,但化学势的一阶偏微商不相等,发生一级相变时有相变潜热和体积的变化。
3.调幅分解[北京工业大学2009研]答:调幅分解是指固溶体通过上坡扩散分解成结构均与母相相同、成分不同的两种固溶体的转变。
三、简答题1.已知727℃时,平衡态铁碳合金中铁素体的最大碳含量为W c =0.0218%,而奥氏体的碳含量为Wc =0.77%。
试问:(1)碳原子分别位于铁素体和奥氏体晶体中的什么位置?(2)解释为什么两者的碳含量差别如此之大。
[西安交通大学2006研]答:(1)碳原子位于铁素体晶体中的扁八面体间隙中心位置,位于奥氏体晶体中的正八面体间隙中心位置。
(2)因为铁素体晶体中的扁八面体间隙半径比奥氏体晶体中的正八面体间隙半径小得多。
2.根据如图11-1所示共析碳钢的过冷奥氏体转变C 曲线(TTT 曲线),请写出经过图中所示6种不同工艺处理后材料的组织名称以及硬度排列(从高到低)。
1 材料引言玻璃——玻璃是由熔体过冷所制得的非晶态材料。
水泥——水泥是指加入适量水后可成塑性浆体,既能在空气中硬化又能在水中硬化,并能够将砂,石等材料牢固地胶结在一起的细粉状水硬性材料。
耐火材料——耐火材料是指耐火度不低于1580 摄氏度的无机非金属材料。
硅质耐火材料,镁质耐火材料,熔铸耐火材料,轻质耐火材料,不定形耐火材料。
高聚物——高聚物是由一种或几种简单低分子化合物经聚合而组成的分子量很大的化合物。
胶粘剂——胶粘剂是指在常温下处于粘流态,当受到外力作用时,会产生永久变形,外力撤去后又不能恢复原状的高聚物。
合金——合金是由两种或两种以上的金属元素,或金属元素与非金属元素形成的具有金属特性的新物质固溶体——当合金的晶体结构保持溶质组元的晶体结构时,这种合金成为一次固溶体或端际固溶体,简称固溶体。
电子化合物——电子化合物是指具有一定〔或近似一定〕的电子浓度值,且结构相同或密切相关的相。
间隙化合物——由原子半径较大的过渡金属元素〔Fe,Cr,Mn,Mo,W,V 等〕和原子半径较小的非〔准〕金属元素〔H,B,C,N,Si,等〕形成的金属间化合物。
传统无机非金属材料——主要是指由SiO2 及其硅酸盐化合物为主要成分制成的材料,包括陶瓷,玻璃,水泥和耐火材料等。
新型无机非金属材料——是用氧化物,氮化物,碳化物,硼化物,硫化物,硅化物以及各种无机非金属化合物经特殊的先进工艺制成的材料。
2 晶体结构晶体——晶体是离子,原子或分子按一定的空间结构排列所组成的固体,其质点在空间的分布具有周期性和对称性,因而,晶体具有规则的外形。
晶胞——晶胞是从晶体结构中取出来的反应晶体周期性和对称性的重复单元。
晶体结构——晶体结构是指晶体中原子或分子的排列情况,由空间点阵+结构基元而构成,晶体结构的形式是无限多的。
空间点阵——空间点阵是把晶体结构中原子或分子等结构基元抽象为周围环境相同的阵点之后,描述晶体结构的周期性和对称性的图像。
金属学与热处理总结上坡扩散;溶质原子从低浓度向高浓度处扩散的过程称为上坡扩散。
表明扩散的驱动力是化学位梯度而非浓度梯度。
金属键:自由电子与原子核之间静电作用产生的键合力。
滑移系:晶体中一个滑移面及该面上一个滑移方向的组合称一个滑移系。
形核率:单位时间、单位体积液体中形成的晶核数量。
用N表示。
过冷度:液体材料的理论结晶温度(Tm) 与其实际温度之差反应扩散:伴随有化学反应而形成新相的扩散称为反应扩散。
相:材料中结构相同、成分和性能均一的组成部分。
(如单相、两相、多相合金。
过冷度:理论结晶温度与实际结晶温度的差称为过冷度。
细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。
塑性变形的方式:以滑移和孪晶为主。
滑移:晶体的一部分沿着一定的晶面和晶向相对另一部分作相对的滑动。
滑移的本质是位错的移动。
体心结构的滑移系个数为12,滑移面:{110},方向<111>。
面心结构的滑移系个数为12,滑移面:{111},方向<110>。
金属塑性变形后的组织与性能:显微组织出现纤维组织,杂质沿变形方向拉长为细带状或粉碎成链状,光学显微镜分辨不清晶粒和杂质。
亚结构细化,出现形变织构。
性能:材料的强度、硬度升高,塑性、韧性下降;比电阻增加,导电系数和电阻温度系数下降,抗腐蚀能力降低等。
七、金属及合金的回复与再结晶影响再结晶的主要因素:①再结晶退火温度:退火温度越高(保温时间一定时),再结晶后的晶粒越粗大;②冷变形量:一般冷变形量越大,完成再结晶的温度越低,变形量达到一定程度后,完成再结晶的温度趋于恒定;③原始晶粒尺寸:原始晶粒越细,再结晶晶粒也越细;④微量溶质与杂质原子,一般均起细化晶粒的作用;⑤第二相粒子,粗大的第二相粒子有利于再结晶,弥散分布的细小的第二相粒子不利于再结晶;⑥形变温度,形变温度越高,再结晶温度越高,晶粒粗化;⑦加热速度,加热速度过快或过慢,都可能使再结晶温度升高。
性影响扩散的因素:①温度:温度越高,扩散速度越大;②晶体结构:体心结构的扩散系数大于面心结构的扩散系数;③固溶体类型:间隙原子的扩散速度大于置换原子的扩散速度;④晶体缺陷:晶体缺陷越多,原子的扩散速度越快;⑤化学成分:有些元素可以加快原子的扩散速度,有些可以减慢扩散速度。
《材料结构》习题:固体中原子及分子的运动1. 已知Zn在Cu中扩散时D0=2.1×10-5m2/s,Q=171×103J/mol。
试求815℃时Zn在Cu中的扩散系数。
2. 已知C在γ铁中扩散时D0=2.0×10-5m2/s,Q=140×103J/mol; γ铁中Fe自扩散时D0=1.8×10-5m2/s,Q=270×103J/mol。
试分别求出927℃时奥氏体铁中Fe的自扩散系数和碳的扩散系数。
若已知1%Cr可使碳在奥氏体铁中的扩散激活能增加为Q=143×103J/mol,试求其扩散系数的变化和对比分析以上计算结果。
3. 若将铁棒置于一端渗碳的介质中,其表面碳浓度达到相应温度下奥氏体的平衡浓度C S。
试求(1)结合铁-碳相图,试分别示意绘出930℃和800℃经不同保温时间(t1<t2<t3)碳浓度沿试棒纵向的分布曲线;(2)若渗碳温度低于727℃,试分析能否达到渗碳目的。
4. 含碳0.2%的低碳钢进行870℃渗碳较930℃渗碳具有晶粒细小的优点,则(1)试计算以上两种温度下碳在γ-Fe中的扩散系数;(2)试计算870℃渗碳需多少时间可达到930℃渗碳10小时的渗层厚度(忽略C在γ-Fe 中的溶解度差异);(3)若渗层厚度测至含碳量0.4%处,计算870℃渗碳10小时后的渗层厚度及其与930℃同样时间渗层厚度的比值。
(表面碳浓度取1.2)FeDγCDγCDγ习题4答案:1.解:根据扩散激活能公式得3-5132017110e x p () 2.110e x p 1.2610m /s8.314(815273)-⎛⎫⨯=-=⨯⨯-=⨯ ⎪⨯+⎝⎭CuZn Q D D RT 2.解:根据扩散激活能公式得3γ-5172027010e x p () 1.810e x p 3.1810m /s 8.314(927273)-⎛⎫⨯=-=⨯⨯-=⨯ ⎪⨯+⎝⎭Fe Q D D RT 3γ-5112014010e x p () 2.010e x p 1.6110m /s 8.314(927273)-⎛⎫⨯=-=⨯⨯-=⨯ ⎪⨯+⎝⎭C Q D D RT 已知1%Cr 可使碳在奥氏体铁中的扩散激活能增加为Q =143×103J/mol , 所以,3γ-51120143.310exp() 2.010exp 1.1610m /s 8.314(927273)-⎛⎫⨯'=-=⨯⨯-=⨯ ⎪⨯+⎝⎭CQ D D RT 由此可见,1%Cr 使碳在奥氏体铁中的扩散系数下降,因为Cr 是形成碳化物的元素,与碳的亲和力较大,具有降低碳原子的活度和阻碍碳原子的扩散的作用。
第十一讲扩散定律1.扩散第一定律考点再现:08、09年出现了证明扩散第一定律的题目,而10年出现了用误差函数解决扩散第二定律的问题,所以按照往年的经验,扩散第一定律和扩散第二定律必考其一,所以这部分比较重要,分值会在8至10分,题型还是简答。
考试要求:理解,记忆,并且要求会推导出扩散第一定律。
知识点在气体或者液体中,物质的传输方式为(扩散)和(对流)。
★★★★在固体中,物质的传输方式为(扩散)。
★★菲克第一定律,条件——稳态扩散,即材料内部各处的浓度不随时间而变(dc/dt=0)★★★★★单位时间内通过垂直于扩散方向单位截面的物质流量(称为扩散通量J)与该出的浓度梯度成正比。
J为扩散通量;D为扩散系数;dc/dx为浓度梯度。
由扩散第一定律可以得到一下几点结论:★★★(1)只要有浓度梯度,就会有扩散。
(2)扩散通量的大小与浓度梯度成正比(3)扩散方向与浓度梯度正方向相反,即扩散的宏观流动总是从溶质浓度高的向浓度低的方向进行。
2.扩散第二定律考点再现:10年已经出现了扩散第二定律的内容,相对来说11年考的可能性就要小一些,但是不能完全忽视,毕竟08,09还都考了扩散第一定律了,考试方式很固定,即误差函数法解扩散第二定律。
考试要求会用误差函数法解题,会计算,知道每个字母所代表的意义,对于一些题目,能够从中抽象出问题。
知识点扩散第二定律的表达★★★条件,非稳态扩散,即材料内部溶质浓度随时间改变。
dc/dt≠0因为这个公式相对比较复杂,所以对于这个公式的推导并不作为考试的要求,这一部分我们只需要把公式记住就可以了。
利用误差函数分布作为扩散第二定律的解★★★★★现对书中的例题进行讲解注:公式中,C0为初始浓度,C为某一点的浓度,Cs为表面浓度,x为浓度为C的那一点的深度,t为所需要的时间,将计算得到的结果查询误差函数表,就可以得到最后的结论。
同学们,以上就是第十一讲的主要内容,考点只有两个,即扩散第一定律的证明和用误差函数法解扩散第二定律,这两个考点都是非常重要的,每年二者必考其一,好了这一讲就到这里。
材料科学基础习题叶荷 11及材料班2013-1-10 第三章二元合金相图和合金的凝固一、名词:相图:表示合金系中的合金状态与温度、成分之间关系的图解。
匀晶转变:从液相结晶出单相固溶体的结晶过程。
平衡结晶:合金在极缓慢冷却条件下进行结晶的过程。
成分起伏:液相中成分、大小和位置不断变化着的微小体积。
异分结晶:结晶出的晶体与母相化学成分不同的结晶。
枝晶偏析:固溶体树枝状晶体枝干和枝间化学成分不同的现象。
共晶转变:在一定温度下,由—定成分的液相同时结晶出两个成分一定的固相的转变过程.脱溶:由固溶体中析出另一个固相的过程,也称之为二次结晶。
包晶转变:在一定温度下,由一定成分的固相与一定成分的液相作用,形成另一个一定成分的固相的转变过程。
成分过冷:成分过冷:由液相成分变化而引起的过冷度.二、简答:1。
固溶体合金结晶特点?答:异分结晶;需要一定的温度范围。
2。
晶内偏析程度与哪些因素有关?答:溶质平衡分配系数k0;溶质原子扩散能力;冷却速度。
3。
影响成分过冷的因素?答:合金成分;液相内温度梯度;凝固速度。
4。
相图分折有哪几步?答:以稳定化合物为独立组元分割相图并分析;熟悉相区及相;确定三相平衡转变性质。
三、绘图题绘图表示铸锭宏观组织三晶区。
四、书后习题1、何谓相图?有何用途?答:相图:表示合金系中的合金状态与温度、成分之间关系的图解。
相图的作用:由相图可以知道各种成分的合金在不同温度下存在哪些相、各个相的成分及其相对含量。
2、什么是异分结晶?什么是分配系数?答:异分结晶:结晶出的晶体与母相化学成分不同的结晶。
分配系数:在一定温度下,固液两平衡相中溶质浓度之比值。
3、何谓晶内偏析?是如何形成的?影响因素有哪些?对金属性能有何影响,如何消除?答:晶内偏析:一个晶粒内部化学成分不均匀的现象形成过程:固溶体合金平衡结晶使前后从液相中结晶出的固相成分不同,实际生产中,液态合金冷却速度较大,在一定温度下扩散过程尚未进行完全时温度就继续下降,使每个晶粒内部的化学成分布均匀,先结晶的含高熔点组元较多,后结晶的含低熔点组元较多,在晶粒内部存在着浓度差.影响因素:1)分配系数k0:当k0<1时,k0值越小,则偏析越大;当k0>1时,k0越大,偏析也越大。
扩散习题1. 说明下列概念的物理意义:(1)扩散通量;(2)扩散系数;(3)稳态扩散和非稳态扩散;(4)克根达耳效应;(5)互扩散系数;(6)间隙式扩散;(7)空位机制;(8)扩散激活能;(9)扩散驱动力;(10)反应扩散;(11)热力学因子。
2. 如图所示,在Ni 和Ta 中间插入一个0.05cm 厚的MgO 层作为扩散屏障以阻止Ni 和Ta 两种金属之间的相互作用。
在1400 ℃时,Ni 原子能穿过MgO 层扩散到Ta 中。
计算:①每秒钟通过MgO 层的Ni 原子数;②Ni 原子层减少一微米厚度所需的时间是多少?已知Ni 原子在MgO 中的扩散系数是9×10-12cm 2/s ,且1400℃时Ni 原子的晶格常数为3.6×10-8cm 。
被MgO 层隔离开的Ni 和Ta 扩散偶解:在Ni 和MgO 界面上Ni 的浓度为:32238MgO /Ni cmatoms 1057.8cm)106.3(cell unit atoms Ni 4⨯=⨯=-C 在Ta 和MgO 界面上Ni 的浓度应为0,所以浓度梯度为:cmcm atoms 1071.105.01057.8032422⋅⨯-=⨯-=∆∆x C Ni 通过MgO 的扩散通量为:)1071.1)(109(2412⨯-⨯=∆∆-=-xC D J scm atoms Ni 1054.1213⋅⨯=因此,每秒钟透过界面的Ni 原子总数为:s /atoms Ni 1016.6221054.11313⨯=⨯⨯⨯在一秒钟之内,从Ni/MgO 界面扩散出去的Ni 原子的体积为:scm 1072.0cm /atoms Ni 1057.8s/atoms Ni 1016.63932213-=⨯⨯⨯ 则Ni 层每秒钟减少的厚度为:s /cm 108.1cm4s /cm 1072.010239--=⨯⨯ 由此可得,Ni 层减少一微米所需的时间为:h 154s 000556s/cm 108.1cm 10104=,=--⨯3.设碳原子在铁中的八面体间隙三维空间中跃迁。
材料科学基础重点总结3扩散三材料的扩散扩散是物质中原⼦(分⼦或离⼦)的迁移现象,是物质传输的⼀种⽅式。
扩散的本质是原⼦依靠热运动从⼀个位置迁移到另⼀个位置。
是固体中原⼦迁移的唯⼀⽅式。
研究扩散⼀般有两种⽅法:表象理论—根据所测量的参数描述物质传输的速率和数量等;(宏观)原⼦理论—扩散过程中原⼦是如何迁移的。
(微观)3.1 扩散的分类1. 根据有⽆浓度变化⾃扩散:原⼦经由⾃⼰元素的晶体点阵⽽迁移的扩散。
(如纯⾦属或固溶体的晶粒长⼤-⽆浓度变化)互扩散:原⼦通过进⼊对⽅元素晶体点阵⽽导致的扩散。
(有浓度变化)2. 根据扩散⽅向下坡扩散:原⼦由⾼浓度处向低浓度处进⾏的扩散。
上坡扩散:原⼦由低浓度处向⾼浓度处进⾏的扩散。
固态扩散的条件1、温度⾜够⾼;2、时间⾜够长;3、扩散原⼦能固溶;4、具有驱动⼒:5、化学位梯度。
菲克第⼀定律稳态扩散:扩散过程中各处的浓度及浓度梯度不随时间变化(?C/?t=0,?J/?x=0)菲克第⼀定律:在稳态扩散过程中,扩散通量J与浓度梯度成正⽐J为扩散通量,表⽰单位时间内通过垂直于扩散⽅向x的单位⾯积的扩散物质质量,其单位为kg/(m2s)或kg/(cm2s)。
D为扩散系数,其单位为m2/s;ρ是扩散物质的质量浓度,其单位为kg/m3。
式中的负号表⽰物质从⾼浓度向低浓度扩散的现象,扩散的结果导致浓度梯度的减⼩,使成份趋于均匀。
菲克第⼆定律⾮稳态扩散——各处的浓度和浓度梯度随时间发⽣变化的扩散过程。
(?C/?t≠0, ?J/?x≠0)。
⼤多数扩散过程是⾮稳态扩散过程,某⼀点的浓度是随时间⽽变化的菲克第⼆定律:扩散过程中,扩散物质浓度随时间的变化率,与沿扩散⽅向上物质浓度梯度随扩散距离的变化率成正⽐。
3.2 置换式固溶体中的扩散---互扩散与柯肯达尔效应互扩散——柯肯达尔效应柯肯达尔最先发现互扩散,在α黄铜—铜扩散偶中,⽤钼丝作为标志,785℃下保温不同时间后,钼丝向黄铜内移动,移动量与保温时间的平⽅根成正⽐,Cu-黄铜分界⾯黄铜侧出现宏观疏孔。
一、形变强化形变强化:随变形程度的增加,材料的强度、硬度升高,塑性、韧性下降的现象叫形变强化或加工硬化。
机理:随塑性变形的进展,位错密度不断增加,因此位错在运动时的彼此交割加重,结果即产生固定的割阶、位错缠结等障碍,使位错运动的阻力增大,引发变形抗力增加,给继续塑性变形造成困难,从而提高金属的强度。
规律:变形程度增加,材料的强度、硬度升高,塑性、韧性下降,位错密度不断增加,依照公式Δσ=αbG ρ1/2,可知强度与位错密度〔ρ〕的二分之一次方成正比,位错的柏氏矢量〔b〕越大强化成效越显著。
方式:冷变形〔挤压、滚压、喷丸等〕。
形变强化的实际意义〔利与弊〕:形变强化是强化金属的有效方式,对一些不能用热处置强化的材料能够用形变强化的方式提高材料的强度,可使强度成倍的增加;是某些工件或半成品加工成形的重要因素,使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形等;形变强化还可提高零件或构件在利用进程中的平安性,零件的某些部位显现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停顿从而提高了平安性。
另一方面形变强化也给材料生产和利用带来麻烦,变形使强度升高、塑性降低,给继续变形带来困难,中间需要进展再结晶退火,增加生产本钱。
二、固溶强化随溶质原子含量的增加,固溶体的强度硬度升高,塑性韧性下降的现象称为固溶强化。
强化机理:一是溶质原子的溶入,使固溶体的晶格发生畸变,对滑移面上运动的位错有阻碍作用;二是位错线上偏聚的溶质原子形成的柯氏气团对位错起钉扎作用,增加了位错运动的阻力;三是溶质原子在层错区的偏聚阻碍扩展位错的运动。
所有阻止位错运动,增加位错移动阻力的因素都可使强度提高。
固溶强化规律:①在固溶体溶解度范围内,合金元素的质量分数越大,那么强化作用越大;②溶质原子与溶剂原子的尺寸差越大,强化成效越显著;③形成间隙固溶体的溶质元素的强化作用大于形成置换固溶体的元素;④溶质原子与溶剂原子的价电子数差越大,那么强化作用越大。