材料科学基础第6章扩散
- 格式:ppt
- 大小:631.00 KB
- 文档页数:51
材料科学基础重点总结3扩散三材料的扩散扩散是物质中原⼦(分⼦或离⼦)的迁移现象,是物质传输的⼀种⽅式。
扩散的本质是原⼦依靠热运动从⼀个位置迁移到另⼀个位置。
是固体中原⼦迁移的唯⼀⽅式。
研究扩散⼀般有两种⽅法:表象理论—根据所测量的参数描述物质传输的速率和数量等;(宏观)原⼦理论—扩散过程中原⼦是如何迁移的。
(微观)3.1 扩散的分类1. 根据有⽆浓度变化⾃扩散:原⼦经由⾃⼰元素的晶体点阵⽽迁移的扩散。
(如纯⾦属或固溶体的晶粒长⼤-⽆浓度变化)互扩散:原⼦通过进⼊对⽅元素晶体点阵⽽导致的扩散。
(有浓度变化)2. 根据扩散⽅向下坡扩散:原⼦由⾼浓度处向低浓度处进⾏的扩散。
上坡扩散:原⼦由低浓度处向⾼浓度处进⾏的扩散。
固态扩散的条件1、温度⾜够⾼;2、时间⾜够长;3、扩散原⼦能固溶;4、具有驱动⼒:5、化学位梯度。
菲克第⼀定律稳态扩散:扩散过程中各处的浓度及浓度梯度不随时间变化(?C/?t=0,?J/?x=0)菲克第⼀定律:在稳态扩散过程中,扩散通量J与浓度梯度成正⽐J为扩散通量,表⽰单位时间内通过垂直于扩散⽅向x的单位⾯积的扩散物质质量,其单位为kg/(m2s)或kg/(cm2s)。
D为扩散系数,其单位为m2/s;ρ是扩散物质的质量浓度,其单位为kg/m3。
式中的负号表⽰物质从⾼浓度向低浓度扩散的现象,扩散的结果导致浓度梯度的减⼩,使成份趋于均匀。
菲克第⼆定律⾮稳态扩散——各处的浓度和浓度梯度随时间发⽣变化的扩散过程。
(?C/?t≠0, ?J/?x≠0)。
⼤多数扩散过程是⾮稳态扩散过程,某⼀点的浓度是随时间⽽变化的菲克第⼆定律:扩散过程中,扩散物质浓度随时间的变化率,与沿扩散⽅向上物质浓度梯度随扩散距离的变化率成正⽐。
3.2 置换式固溶体中的扩散---互扩散与柯肯达尔效应互扩散——柯肯达尔效应柯肯达尔最先发现互扩散,在α黄铜—铜扩散偶中,⽤钼丝作为标志,785℃下保温不同时间后,钼丝向黄铜内移动,移动量与保温时间的平⽅根成正⽐,Cu-黄铜分界⾯黄铜侧出现宏观疏孔。
《材料科学基础》复习题第1章原子结构与结合键一、选择题1、具有明显的方向性和饱和性。
A、金属键B、共价键C、离子键2、以下各种结合键中,结合键能最大的是。
A、离子键、共价键B、金属键C、分子键3、以下各种结合键中,结合键能最小的是。
A、离子键、共价键B、金属键C、分子键4、以下关于结合键的性质与材料性能的关系中,是不正确的。
A、具有同类型结合键的材料,结合键能越高,熔点也越高。
B、具有离子键和共价键的材料,塑性较差。
C、随着温度升高,金属中的正离子和原子本身振动的幅度加大,导电率和导热率都会增加。
二、填空题1、构成陶瓷化合物的两种元素的电负性差值越大,则化合物中离子键结合的比例。
2、通常把平衡距离下的原子间的相互作用能量定义为原子的。
3、材料的结合键决定其弹性模量的高低,氧化物陶瓷材料以键为主,结合键故其弹性模量;金属材料以键为主,结合键故其弹性模量;高分子材料的分子链上是键,分子链之间是键,故其弹性模量。
第2章晶体结构(原子的规则排列)一、名词解释1、点阵2、晶胞3、配位数4、同素异晶转变5、组元6、固溶体7、置换固溶体8、间隙固溶体9、金属间化合物10、间隙相二、选择题1、体心立方晶胞中四面体间隙的r B/r A和致密度分别为A 0.414,0.68B 0.225,0.68C 0.291,0.682、晶体中配位数和致密度之间的关系是。
A、配位数越大,致密度越大B、配位数越小,致密度越大C、两者之间无直接关系3、面心立方晶体结构的原子最密排晶向族为。
A <100> B、<111> C、<110>4、立方晶系中,与晶面(011)垂直的晶向是。
A [011]B [100]C [101]5、立方晶体中(110)和(211)面同属于晶带。
A [101] B[100] C [111]6、金属的典型晶体结构有面心立方、体心立方和密排六方三种,它们的晶胞中原子数分别为:A、4;2;6B、6;2;4 D、2;4;66、室温下,纯铁的晶体结构为晶格。
稳定扩散 若扩散物质在扩散层dx 内各处的浓度不随时间而变化,即dc/dt=0。
这种扩散称稳定扩散不稳定扩散 扩散物质在扩散层dx 内的浓度随时间而变化,即dc/dt≠0。
这种扩散称为不稳定扩散菲克第一定律在扩散体系中,参与扩散质点满足xC-DJ ∂∂=,即菲克第一定律 菲克第二定律 在扩散体系中,参与扩散质点满足xC D t C22∂=∂∂∂,即菲克第二定律 本征扩散 扩散系统仅受热运动的影响形成的扩散称之为本征扩散非本征扩散 因扩散受固溶引入的杂质离子的电价和浓度等外界因素所控制,故称之为非本征扩散。
相应的D 则称为非本征扩散系数自扩散 一种原子或离子通过由该种原子或离子所构成的晶体中的扩散 互扩散 两种或两种以上的原子或离子同时参与的扩散 扩散系数 扩散系统中,单位浓度梯度下的通量扩散通量 扩散系统中,单位时间内通过垂直于x 轴的单位平面的原子数量上坡扩散 溶质原子从浓度地处向浓度高处迁移的现象称为上坡扩散;产生的原因是扩散的推动力是化学位梯度,而不是浓度梯度扩散激活能原子在晶体结构中由一个平衡位置跳向相邻的平衡位置时,通常要越过一个自由能垒,该能垒高度称为扩散激活自由能,它是原子扩散的阻力。
扩散激活自由能的内能部分称为扩散激活能柯肯达尔效应 对于置换型固溶体中溶质原子的扩散,由于溶质与溶剂原子的半径相差不大,原子扩散必须与相邻原子间做置换,能观察到这种结果的实验现象称为柯肯达尔效应反应扩散 伴随有化学反应或相变的扩散过程称之为反应扩散或相变扩散,反应扩散速度主要受化学反应和扩散速度控制短路扩散 固态金属中原子沿表面,晶界,位错等途径的扩散1.扩散机构总结扩散机构扩散方向 扩散激活能 扩散系数迁移方式 空位扩散机构(主要)空位扩散方向的逆方向空位形成能和迁移能之和和空位形成能和迁移能之扩散激活能,大小等于:)22exp()(exp *00Q RTQ D HHD Df+∆-=-=质点从结点位置上迁移到相邻的空位中间隙扩散机构(主要)间隙原子迁移能 )(exp 0RT Q D D -=间隙质点穿过晶格迁移到另一个间隙位置 亚间隙机构间隙质点从间隙位置迁移结点位置,并将结点位置上的质点撞离结点位置而成为新的间隙质点 易位扩散机构两个相邻结点位置上的质点直接交换位置进行迁移环易位机构几个结点位置上的质点以封闭的环形依次交换位置进行迁移1.空位机构和间隙机构是金属体系和离子化合物体系中质点扩散的主要形式2.空位机构比间隙机构的扩散激活能大,但是扩散系数小3.固态金属中扩散方向是化学位梯度降低方向 2.扩散中常用公式)(exp 0RT Q D D -=δ261D Γ=(频率,自由程)xC -D J ∂∂=(适用于稳定扩散和非稳定扩散)x C D t C 22∂=∂∂∂(不稳定扩散) dxdc -DA JA dt dm == Dt K x =(实验测得的浓度已知) DtA t x x4),(lnI 2-=(A :图像的截距,Dt41-为斜率;)3.扩散的结果都是使不均匀体系均匀化,不平衡逐渐达到平衡4.非稳定扩散类型①扩散质在晶体表面浓度恒定情况:)2(),(C 0Dtx erfc t x C =②定量扩散质由晶体表面向内部扩散(示踪扩散法原理):)4exp(2),(C 221)(DtM t x xDt -=π5.本征扩散一般处于高温处,非本征扩散一般处于低温处;由杂质扩散转变为本征扩散,其T1-ln D r 曲线上会出现转折点;置换型固溶体扩散一般只能在高温进行;杂质浓度升高,转折点升高6.扩散系数测定一般使用示踪扩散方法7.扩散动力学方程式(能斯特-爱因斯坦方程))ln ln 1)((D 211221~γγ∂∂++=D N D N①(γγ21ln ln 1∂∂+)>0:扩散系数大于0,正常扩散,高浓度向低浓度迁移,溶质趋于均匀②(γγ21ln ln 1∂∂+)<0:扩散系数小于0,反常扩散,低浓度向高浓度迁移,溶质偏聚或分相8.影响扩散系数因素①温度:影响扩散激活能和改变物质结构 ②杂质 ③气氛 ④固溶体类型:间隙性固溶体比置换型固溶体更容易扩散;在置换型固溶体中,原子间尺寸差别越小,电负性越大,亲和力越强,扩散越困难 ⑤扩散物质性质和结构 ⑥化学键类型和强度 ⑦扩散介质结构:体心立方结构大于面心立方结构的扩散系数 ⑧结构缺陷:结构缺陷活化能小,容易扩散 9.激活能越大,扩散速率对温度的敏感性越大 10.反应扩散对扩散层深度的影响过程实际上反应扩散起初由于新相层较浅,原子扩散不是主要矛盾,过程由表面扩散所支配,新相层的增加服从直线关系;随新相层深度增加,原子扩散逐步称为主要矛盾,新相层的增加服从抛物线规律。
第5章 纯金属的凝固1、金属结晶的必要条件:过冷度-理论结晶温度与实际结晶温度的差;结构起伏-大小不一的近程有序排列的此起彼伏;能量起伏-温度不变时原子的平均能量一定,但原子的热振动能量高低起伏的现象;成分起伏-材料内微区中因原子的热运动引起瞬时偏离熔液的平均成分,出现此起彼伏的现象。
结晶过程:形核和长大过程交替重叠在一起进行2、过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。
从热力学看,没有过冷度结晶就没有趋动力。
根据T R k ∆∝1可知当过冷度T ∆=0时临界晶核半径R *为无穷大,临界形核功(21T G ∆∝∆)也为无穷大,无法形核,所以液态金属不能结晶。
晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。
孕育期:过冷至实际结晶温度,晶核并未立即产生,结晶开始前的这段停留时间3、均匀形核和非均匀形核均匀形核:以液态金属本身具有的能够稳定存在的晶胚为结晶核心直接成核的过程。
非均匀形核:液态金属原子依附于固态杂质颗粒上形核的方式。
临界晶核半径:ΔG 达到最大值时的晶核半径r *=-2γ/ΔGv 物理意义:r<rc 时, ΔGs 占优势,故ΔG>0,晶核不能自动形成。
r>rc 时, ΔGv 占优势,故ΔG<0,晶核可以自动形成,并可以稳定生长。
临界形核功:ΔGv *=16πγ3/3ΔGv 3 形核率:在单位时间单位体积母相中形成的晶核数目。
受形核功因子和原子扩散机率因子控制。
4、正的温度梯度:靠近型壁处温度最低,凝固最早发生,越靠近熔液中心温度越高。
在凝固结晶前沿的过冷度随离界面距离的增加而减小。
纯金属结晶平面生长。
负的温度梯度:过冷度随离界面距离的增加而增加。
纯金属结晶树枝状生长。
5、光滑界面即小平面界面:液固两相截然分开,固相表面为基本完整的原子密排面,微观上看界面光滑,宏观上看由不同位向的小平面组成故呈折线状的界面。
粗糙界面即非小平面界面:固液两相间界面微观上看高低不平,存在很薄的过渡层,故从宏观上看界面反而平直,不出现曲折小平面的界面。
2020届材料科学基础期末必考知识点总结第六章固体中的扩散第一节概述1 扩散的现象与本质(1)扩散:热激活的原子通过自身的热振动克服束缚而迁移它处的过程。
(2)现象:柯肯达尔效应。
(3)本质:原子无序跃迁的统计结果。
(不是原子的定向移动)。
2 扩散的分类(1)根据有无浓度变化自扩散:原子经由自己元素的晶体点阵而迁移的扩散。
(如纯金属或固溶体的晶粒长大。
无浓度变化。
)互扩散:原子通过进入对方元素晶体点阵而导致的扩散。
(有浓度变化)(2)根据扩散方向下坡扩散:原子由高浓度处向低浓度处进行的扩散。
上坡扩散:原子由低浓度处向高浓度处进行的扩散。
(3)根据是否出现新相原子扩散:扩散过程中不出现新相。
反应扩散:由之导致形成一种新相的扩散。
3 固态扩散的条件(1)温度足够高;(2)时间足够长;(3)扩散原子能固溶;(4)具有驱动力:化学位梯度。
第二节扩散定律1 菲克第一定律(1)第一定律描述:单位时间内通过垂直于扩散方向的某一单位面积截面的扩散物质流量(扩散通量J)与浓度梯度成正比。
(2)表达式:J=-D(dc/dx)。
(C-溶质原子浓度;D-扩散系数。
)(3)适用条件:稳态扩散,dc/dt=0。
浓度及浓度梯度不随时间改变。
2 菲克第二定律一般:∂C/∂t=∂(D∂C/∂x)/ ∂x二维:(1)表达式特殊:∂C/∂t=D∂2C/∂x2三维:∂C/∂t=D(∂2/∂x2+∂2/∂y2+∂2/∂z2)C稳态扩散:∂C/∂t=0,∂J/∂x=0。
(2)适用条件:非稳态扩散:∂C/∂t≠0,∂J/∂x≠0(∂C/∂t=-∂J/∂x)。
3 扩散第二定律的应用(1)误差函数解适用条件:无限长棒和半无限长棒。
表达式:C=C1-(C1-C2)erf(x/2√Dt) (半无限长棒)。
在渗碳条件下:C:x,t处的浓度;C1:表面含碳量;C2:钢的原始含碳量。
(2)正弦解C x=Cp-A0sin(πx/λ)Cp:平均成分;A0:振幅Cmax- Cp;λ:枝晶间距的一半。
《材料结构》习题:固体中原子及分子的运动1. 已知Zn在Cu中扩散时D0=2.1×10-5m2/s,Q=171×103J/mol。
试求815℃时Zn在Cu中的扩散系数。
2. 已知C在γ铁中扩散时D0=2.0×10-5m2/s,Q=140×103J/mol; γ铁中Fe自扩散时D0=1.8×10-5m2/s,Q=270×103J/mol。
试分别求出927℃时奥氏体铁中Fe的自扩散系数和碳的扩散系数。
若已知1%Cr可使碳在奥氏体铁中的扩散激活能增加为Q=143×103J/mol,试求其扩散系数的变化和对比分析以上计算结果。
3. 若将铁棒置于一端渗碳的介质中,其表面碳浓度达到相应温度下奥氏体的平衡浓度C S。
试求(1)结合铁-碳相图,试分别示意绘出930℃和800℃经不同保温时间(t1<t2<t3)碳浓度沿试棒纵向的分布曲线;(2)若渗碳温度低于727℃,试分析能否达到渗碳目的。
4. 含碳0.2%的低碳钢进行870℃渗碳较930℃渗碳具有晶粒细小的优点,则(1)试计算以上两种温度下碳在γ-Fe中的扩散系数;(2)试计算870℃渗碳需多少时间可达到930℃渗碳10小时的渗层厚度(忽略C在γ-Fe 中的溶解度差异);(3)若渗层厚度测至含碳量0.4%处,计算870℃渗碳10小时后的渗层厚度及其与930℃同样时间渗层厚度的比值。
(表面碳浓度取1.2)FeDγCDγCDγ习题4答案:1.解:根据扩散激活能公式得3-5132017110e x p () 2.110e x p 1.2610m /s8.314(815273)-⎛⎫⨯=-=⨯⨯-=⨯ ⎪⨯+⎝⎭CuZn Q D D RT 2.解:根据扩散激活能公式得3γ-5172027010e x p () 1.810e x p 3.1810m /s 8.314(927273)-⎛⎫⨯=-=⨯⨯-=⨯ ⎪⨯+⎝⎭Fe Q D D RT 3γ-5112014010e x p () 2.010e x p 1.6110m /s 8.314(927273)-⎛⎫⨯=-=⨯⨯-=⨯ ⎪⨯+⎝⎭C Q D D RT 已知1%Cr 可使碳在奥氏体铁中的扩散激活能增加为Q =143×103J/mol , 所以,3γ-51120143.310exp() 2.010exp 1.1610m /s 8.314(927273)-⎛⎫⨯'=-=⨯⨯-=⨯ ⎪⨯+⎝⎭CQ D D RT 由此可见,1%Cr 使碳在奥氏体铁中的扩散系数下降,因为Cr 是形成碳化物的元素,与碳的亲和力较大,具有降低碳原子的活度和阻碍碳原子的扩散的作用。