考研数学之高等数学讲义第一章(考点知识点概念定理总结)
- 格式:doc
- 大小:502.50 KB
- 文档页数:8
第一章:函数与极限1.理解函数的概念,掌握函数的表示方法。
2.会建立简单应用问题中的函数关系式。
3.了解函数的奇偶性、单调性、周期性、和有界性。
4.掌握基本初等函数的性质及图形。
5.理解复合函数及分段函数的有关概念,了解反函数及隐函数的概念。
6.理解函数连续性的概念(含左连续和右连续)会判别函数间断点的类型。
7.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左右极限间的关系。
8.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
9.掌握极限性质及四则运算法则。
10.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
第二章:导数与微分1.理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握初等函数的求导公式,了解微分的四则运算法则和一阶微分形式的不变性,会求初等函数的微分。
3.会求隐函数和参数方程所确定的函数以及反函数的导数。
4.会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。
第三章:微分中值定理与导数的应用1.熟练运用微分中值定理证明简单命题。
2.熟练运用罗比达法则和泰勒公式求极限和证明命题。
3.了解函数图形的作图步骤。
了解方程求近似解的两种方法:二分法、切线法。
4.会求函数单调区间、凸凹区间、极值、拐点以及渐进线、曲率。
第四章:不定积分1.理解原函数和不定积分的概念,掌握不定积分的基本公式和性质。
2.会求有理函数、三角函数、有理式和简单无理函数的不定积分3.掌握不定积分的分步积分法。
4.掌握不定积分的换元积分法。
第六章:定积分的应用1.掌握用定积分计算一些物理量(功、引力、压力)。
2.掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积和侧面积、平行截面面积为已知的立体体积)及函数的平均值。
第一篇 高等数学第一章 函数、极限与连续一、大纲内容与要求【大纲内容】函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →=,1lim 1e xx x →∞⎛⎫+= ⎪⎝⎭.函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质. 【大纲要求】1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、知识网络Nε-”定义X-”定义δ-”定义数列整体有界函数局部有界两个重要的极限(数一、三)∞∞型、型∞-∞型、0∞⋅1∞、0∞、00型初等函数的连续性分段函数连续性的判定闭区间上连续函数的性质——左右极限都存在第二类——左右极限中至少有一个不存在跳跃间断点可去间断点关系极限连续性函数零点定理最值定理有界性、单调性、奇偶性、周期性1lim1nnen→∞⎛⎫+=⎪⎝⎭sinlim1xxx→=单调有界数列有极限夹逼定理三、基本内容(一)函数1.定义 设x 与y 是两个变量,D 是实数集的某个子集,若对于D 中的每个值x ,变量y 按照一定的法则有一个确定的值y 与之对应,称变量y 为变量x 的函数,记作()y f x =.数集D 称为函数的定义域,由函数对应法则或实际问题的要求来确定,相应的函数值的全体称为函数的值域,对应法则和定义域是函数的两个要素. 2.几种特性(1)有界性 设函数()y f x =在数集X 上有定义,若存在正数M ,使得对于每一个x X ∈,都有()f x M ≤成立,称()y f x =在X 上有界,否则,即这样的M 不存在,称()f x 在X 上无界.所以函数在X 上无界,是对任何0M >,总存在0x X ∈,使0()f x M >.(2)单调性 设函数()y f x =在区间I 上有定义,若对于I 上任意两点1x 与2x ,当12x x <时,均有12()()f x f x < [或12()()f x f x >],称函数()f x 在区间I 上单调增加(或单调减少).如果其中的“<”(或“>”)改为“≤”(或“≥”),称函数()f x 在I 上单调不减(或单调不增). (3)奇偶性 设函数()y f x =的定义域为(,)(0)a a a ->,若对于任一x ∈(,)a a -,都有()()f x f x -=,称()f x 为偶函数,如常数2,,cos C x x 等,其图像关于y 轴对称;若对于任一(,),x a a ∈-都有()()f x f x -=-,称()f x 为奇函数,如3,,sin x x x 等,其图像关于坐标原点对称.(4)周期性 对函数()y f x =,若存在常数0T >,使得对于定义域内的每一个,x x T +仍在定义域内,且有()()f x T f x +=,称函数()y f x =为周期函数,T 称为()f x 的周期. 3.复合函数、反函数、隐函数与分段函数(1)基本初等函数与初等函数基本初等函数 常数函数;幂函数;指数函数;对数函数;三角函数;反三角函数.初等函数 由基本初等函数经过有限次的加、减、乘、除和复合所得到且能用一个解析式表示的函数.(2)复合函数 设函数()y f u =的定义域为f D ,函数()u x ϕ=的值域为z ϕ,若集合f D 与z ϕ的交集非空,称函数[()]y f x ϕ=为函数()y f u =与()u x ϕ=复合而成的复合函数,u 为中间变量.对复合函数,重要的是会把它分解,即知道它是由哪些“简单”函数复合而成的.(3)反函数 设函数()y f x =的值域为f z ,定义域为f D ,则对于每一个f y z ∈必存在f x D ∈使()y f x =.若把y 作为自变量,x 作为因变量,便得一个函数()x y ϕ=,且[]()f y ϕ y =,称()x y ϕ=为()y f x =的反函数,但习惯上把()y f x =的反函数记作1()y f x -=.y()f x =与其反函数1()y f x -=的图像是关于直线y x =对称的.(4)隐函数 设有方程(,)0F x y =,若当x 在某区间内取任一值,便总有满足该方程唯一的值y 存在时,称由方程(,)0F x y =在上述区间内确定了一个隐函数()y y x =.(5)分段函数 若一个函数在其定义域的不同部分要用不同的式子表示其对应规律,如(),()(),x a x bf x x c x dϕψ<<⎧=⎨<<⎩称为分段函数. (二)极限 1.概念(1)定义1 设()y f x =在0x 的一个去心邻域010001(,)(,)x x x x δδ-+内有定义,若对于任意给定的0ε>,总存在0δ>,使得当上述去心邻域内任意x 满足00x x δ<-<时,不等式()f x a ε-<恒成立,则称常数a 为函数()f x 在0x x →的极限,记作0lim ().x x f x a →=或()f x a → (当0x x →).直观地说,即当x 无限趋近0x 时,函数()f x 无限趋近常数a .定义2 设()f x 在区域0x E >>内有定义,若对于任意给定的0ε>,存在0M >,使得当x M E >≥时,不等式()f x a ε-<恒成立,则称a 为当x →∞时函数()f x 的极限,记作lim ().x f x a →∞=直观地说,即当x 无限增大时,函数无限趋近常数a .(2)左极限与右极限 在定义1中,若把“00x x δ<-<”改为“00x x x δ-<<”,即自变量x 从0x 的左侧趋近于0x ,则称a 为函数()f x 当0x x →时的左极限,记作0lim ()(0);x x f x a f x a -→=-=或 相应把定义1中的“00x x δ<-<”改为00x x x δ<<+, a 便是函数()f x 当0x x →时的右极限,记作00lim ()(0).x x f x a f x a +→=+=或 极限存在的充分必要条件:当0x x →时,函数()f x 的极限存在的充分必要条件为其左、右极限存在并相等,即00(0)(0)f x f x -=+.在定义2中,把x M >改为x M >,便得到x →+∞时函数()f x 的极限的定义,即lim (),x f x a →+∞=以及把“x M >”改为x M <-,便得到lim ()x f x a →-∞=的定义.注 把数列{}n x 看作整数函数即()n x f n =(1,2,)n =,则数列极限的概念lim n n x a →∞=便是()f x 在x →+∞时极限的特殊情况:自变量x 取正整数.即对于任意给定的0ε>,总存在正整数N ,使当n N >时,不等式n x a ε-<恒成立,则称常数a 为数列{}n x 的极限,也称此数列收敛于a .2.性质(1)唯一性 在自变量的一个变化过程中(0x x →或x →∞),函数的极限存在,则此极限唯一. (2)有界性 若0lim ()[lim ()]x x x f x a f x a →→∞==或,则存在0x 的某去心邻域(或0x M >>),()f x 在此邻域(或0x M >>)内有界.(3)保号性 设0)lim ()x x f x a →→∞=(x ,0()lim ()x x x g x b →→∞=,若在0x 的某去心邻域(或0x M >>)内恒有()()f x g x <(或()()f x g x ≤),则a b ≤.3.极限存在准则夹逼准则:若在x 的某去心邻域(或0x M >>)内恒有()()()g x f x h x ≤≤, 且000()()()lim ()lim ()lim ().x x x x x x x x x g x h x a f x a →→→→∞→∞→∞===,则单调有界准则:单调有界数列必收敛. 4.两个重要极限(1)0sin lim 1.x x x→= (2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭或10lim xx x e →=(1+). 5.极限的运算设在自变量的同一变化过程中(0x x →或x →∞),lim (),lim ()f x a g x b ==,则有(1)和差:[]lim ()()lim ()lim ()f x g x f x g x a b ±=±=±.(2)积:[]lim ()()lim ()lim ()f x g x f x g x a b ⋅=⋅=⋅.特别地,lim ()lim ()cf x c f x =ca = (其中c 为常数),[][]lim ()lim ()k kk f x f x a ==(其中k 为正整数).(3)商:若lim ()0g x b =≠,则()lim ()lim()lim ()f x f x ag x g x b==. (4)复合函数的运算法则:已知00lim (),lim ()u u x x f u A x u ϕ→→==⇒在有意义的情况下,lim [()]x x f x ϕ→.A =6.无穷小量与无穷大量(1)无穷小量的概念 若0()lim ()0x x x x α→→∞=,称()x α为0x x →(x →∞)时的无穷小,即极限为0的变量为无穷小量,以下简称无穷小.常数0也是无穷小.(2)无穷小量的性质 0lim ()x x f x a →→∞=(x )的充分必要条件为()()f x a x α=+,其中()x α为0x x →(x →∞)的无穷小.(3)无穷小量的运算1°加法:有限多个无穷小的和仍为无穷小; 2°乘法:有限多个无穷小的积仍为无穷小; 3°有界变量与无穷小的乘积亦为无穷小. (4)无穷小量的比较设()x α与()x β都是在同一个自变量变化过程中的无穷小,且()lim ()x x αβ也是在此变化过程中的极限:若()lim0()x x αβ=,称()x α是比()x β高阶的无穷小,记作()(())x o x αβ=; 若()lim()x x αβ=∞,称()x α是比()x β低阶的无穷小; 若()lim0()x c x αβ=≠(其中c 为常数),称()x α与()x β是同阶的无穷小;特别()lim1()x x αβ=,称()x α与()x β是等价无穷小,记作()~()x x αβ. 在求极限过程中,有时利用等价无穷小代换可以化简计算,所以应掌握几个常见的等价无穷小:当0x →时,sin ~~tan x x x ,ln(1)~x x +,1~x e x -11~x n ,211cos ~2x x -等等. (5)无穷大量的概念 设函数()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义),如果对于任意给定的正数M (不论它多么大),总存在正数δ (或正数X ),只要x 适合不等式00x x δ<-<(或x X >),对应的函数值()f x 总满足不等式()f x M >,则称函数()f x 为当0x x →(或x →∞)时的无穷大量,以下简称无穷大.(6)无穷小量与无穷大量之间的关系在自变量的同一变化过程中,若()f x 为无穷大,则其倒数1()f x 必为无穷小;反之,若()f x 为无穷小,且()0f x ≠,则其倒数1()f x 必为无穷大. 7.洛必达(L’Hospital)法则(1)00⎛⎫⎪⎝⎭型 (),()f x g x 在点0x 的某去心邻域内可导,()0g x '≠,若lim ()x x f x →=0lim ()x x g x →0=,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (2)∞⎛⎫⎪∞⎝⎭型 (),()f x g x在点0x 的某去心邻域内可导,()0g x '≠,若 0lim ()x x f x →=0lim ()x x g x →=∞,且0()lim ()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (三)连续1.函数的连续性(1)连续性的概念 设函数()y f x =在点0x 某邻域内有定义,若当自变量增量x ∆=0x x -0→时,对应的函数值增量00()()0y f x x f x ∆=+∆-→,即0lim 0x y ∆→∆=,或0lim ()()x x f x f x →=,则称函数()f x 在0x 处连续.若00lim ()()x x f x f x -→=,称函数()f x 在0x 处左连续,00lim ()()x x f x f x +→=,称函数()f x 在0x 处右连续. 显然,函数()f x 在0x 处连续的充分必要条件是()f x 在0x 处既左连续又右连续.若函数()f x 在区间(,)a b 内每一处都连续,称()f x 在开区间(,)a b 内连续,也称()f x 是(,)a b 内的连续函数;若()f x 在(,)a b 内连续,又在a 点处右连续,b 点处左连续,则称()f x 在闭区间[,]a b 上连续.(2)运算1°加法 有限多个在同一点连续的函数之和,仍在该点处连续; 2°乘法 有限多个在同一点连续的函数之积,仍在该点处连续; 3°除法 若()f x 与()g x 均在点0x 处连续,且0()0g x ≠,则()()f xg x 在点0x 处连续. (3)复合函数与初等函数的连续性设函数()u x ϕ=在点0x x =处连续,且00()x u ϕ=,若函数()y f u =在点0u u =处连续,则复合函数[()]y f x ϕ=在点0x x =处连续.一切初等函数在其定义区间上都是连续的. 2.函数的间断点(1)函数间断点的概念 设函数()f x 在点0x 的某去心邻域内有定义.在此前提下,如果函数()f x 有下列三种情形之一:1°在0x x =没有定义;2°虽在0x x =有定义,但()0lim x x f x →不存在;3°虽在0x x =有定义,且()0lim x x f x →存在,但()00lim (),x x f x f x →≠则函数()f x 在点0x 不连续,而点0x 称为()f x 的不连续点或间断点.(2)函数间断点的类型 设0x x =为函数()y f x =的间断点,若0lim ()x x f x -→与0lim ()x x f x +→都存在,称0x 为函数()f x 的第一类间断点,其他均称为第二类间断点.在第一类间断点中,左、右极限相等的称为可去间断点,不相等的称为跳跃间断点;无穷间断点与振荡间断点都是第二类间断点.3.闭区间上连续函数的性质(1)最大值和最小值定理 闭区间上的连续函数一定有最大值与最小值. (2)有界性定理 闭区间上的连续函数在该闭区间上一定有界.(3)介值定理 设函数()f x 在闭区[,]a b 上连续,且()()f a f b ≠,则对于()f a 与()f b 之间的任一常数C ,必在开区间(,)a b 内至少存在一点ξ,使得()f C ξ=.推论 在闭区间上连续的函数必取得介于最大值M 与最小值m 之间的任何值.(4)零点定理 设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号,则在开区间(,)a b 内至少存在函数()f x 的一个零点,即至少有一点(,)a b ξ∈使()0f ξ=.四、典型例题[例1.1]设函数11()01x f x x ⎧≤⎪=⎨>⎪⎩,,,,则[()]f f x =.[例1.2]已知2()sin ,[()]1,f x x f x x ϕ==-则()________x ϕ=,其定义域为 .[例1.3]设函数2sin ()(ln )(tan )x f x x x e =,则()f x 是( ).(A)偶函数.(B)无界函数.(C)周期函数.(D)单调函数.[例1.4]设对任意(,)∈-∞+∞x 有(1)()+=-f x f x ,则()f x 一定是( ).(A)奇函数.(B)偶函数.(C)周期函数.(D)单调函数.[例1.5]设函数21tan(3)()(1)(2)(3)x x f x x x x --=---,则()f x 在下列哪个区间内有界().(A)(0,1).(B)(1,2). (C)(2,3). (D)(3,4).[例1.6]设数列n x 与n y ,满足lim 0n n n x y →∞=,则下列叙述正确的是().(A)若n x 发散,则n y 必发散. (B)若n x 无界,则n y 必有界. (C)若n x 有界,则n y 必为无穷小量. (D)若1nx 为无穷小量,则n y 必为无穷小量. [例1.7]下列极限正确的是().(A)sin lim1x xxπ→=.(B)1lim sin1x x x→∞⋅=. (C)11limsin 1x x x→∞=. (D)sin lim1x xx→∞=.[例1.8]设n n x a y ≤≤,且lim()0n n n y x →∞-=,a 为常数,则数列{}n x 和{}n y ( ).(A)都收敛于a .(B)都收敛,但不一定收敛于a . (C)可能收敛,也可能发散.(D)都发散.[例1.9]设n n n x a y ≤≤,且lim()0n n n y x →∞-=,{}n x ,{}n y 和{}n a 均为数列,则lim n n a →∞( ).(A)存在且等于0.(B)存在但不一定等于0. (C)一定不存在. (D)不一定存在.[例1.10]22212lim 12n n n n n n n n n →∞⎛⎫+++=⎪++++++⎝⎭.[例1.11]30arctan sin limx x xx →-=.[例1.12]求极限limx [例1.13]求下列极限:2011lim()tan x x x x→-. [例1.14]设2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则a =.[例1.15]21ln(1)0lim(cos )+→x x x =.[例1.16]当0x →时,211()sin f x x x=是( ). (A)无穷小量.(B)无穷大量.(C)有界量非无穷小量.(D)无界但非无穷大量.[例1.17]设220ln(1)()lim 2x x ax bx x →+-+=,则().(A)1a =,52b =-. (B)0a =,2b =-. (C)0a =,52b =-. (D)1a =,2b =-. [例1.18]设当0x →时,()()21cos ln 1x x-+是比sin n x x 高阶的无穷小,而sin n x x 是比2(1)x e -高阶的无穷小,则正整数n 等于().(A)1. (B)2. (C)3. (D)4.[例1.19]当0x →时,求常数,c k 使得(I)3sin sin3~;kx x cx -~kcx .[例1.20]设110x =,1n x +=(1,2,n =),试证数列{}n x 极限存在,并求此极限.[例1.21]下列各式中正确的是( ).(A)01lim (1)1xx x+→+=. (B)01lim(1)e xx x+→+=. (C)1lim(1)e xx x→∞-=. (D)1lim(1)e xx x-→∞+=-.[例1.22]求极限21lim ln(1)→∞⎡⎤-+⎢⎥⎣⎦x x x x.[例1.23]()f x 在0x 点连续是()f x 在0x 点连续的( ). (A)充分条件,但不是必要条件. (B)必要条件,但不是充分条件.(C)充分必要条件.(D)既不是充分条件,也不是必要条件.[例1.24]函数1()tan ()x x e e xf x x e e +=⎛⎫- ⎪⎝⎭在[],ππ-上的第一类间断点是x =().(A)0.(B)1.(C)2π-. (D)2π. [例1.25]设函数21()lim 1nn xf x x →∞+=+,讨论函数()f x 的间断点,其结论为().(A)不存在间断点. (B)存在间断点1x =. (C)存在间断点0x =. (D)存在间断点1x =-.[例1.26]设2(1)()lim1n n xf x nx →∞-=+,则()f x 的间断点为x =.[例1.27]设函数()tan 21e ,0arcsin 2e ,0xx x x f x a x ⎧->⎪⎪=⎨⎪⎪≤⎩在0x =处连续,则________a =.[例1.28]设)(x f 在(+∞∞-,)内有定义,且lim ()x f x a →∞=,1,0()0,0f x g x x x ⎧⎛⎫≠⎪ ⎪=⎝⎭⎨⎪=⎩,则( ).(A)0=x 必是)(x g 的第一类间断点. (B)0=x 必是)(x g 的第二类间断点.(C)0=x 必是)(x g 的连续点.(D))(x g 在点0=x 处的连续性与a 的取值有关.[例1.29]设函数()f x 在[,]a b 上连续,且12n a x x x b <<<<<,证明:存在(,)a b ξ∈,使得12()()()()n f x f x f x f nξ+++=.[例1.30]设()f x 是[0,1]上非负连续函数,且(0)(1)0.f f ==证明:对任意实数r (01r <<),必存在0[0,1]x ∈,使得0[0,1]x r +∈,且00()()f x f x r =+.[例1.31]设()f x 在[0,1]上连续,(0)(1)f f =且 . (1)证明:存在[0,1],ξ∈使1()()2f f ξξ=+.(2)证明:存在[0,1],η∈使1()()f f nηη=+(2n >且n 为正整数).五、经典习题1.求⎪⎪⎭⎫⎝⎛-+→x x x sin 1)1ln(1lim 0. 【答案】212.求xx e e xx x sin lim tan 0--→.【答案】23.已知()01lim2=--++-∞→b ax x xx ,则___________,==b a .【答案】21,1--. 4.极限()()2lim xx xx a x b →∞⎡⎤=⎢⎥-+⎣⎦( )(A) 1.(B) e . (C) a be-.(D) b ae-.【答案】(C).5.求22201cos lim sin x x x x →⎛⎫- ⎪⎝⎭. 【答案】43. 6.求1402sin lim 1x x x e x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭. 【答案】1. 7.若()3sin 6lim0x x xf x x →+=,则()26limx f x x →+为( ).(A)0.(B)6.(C)36.(D)∞.【答案】(C).8.1lim1cosn n→∞++=________. 【答案】π.9.设103x <<,1n x +=(n =1,2,…),证明数列{}n x 的极限存在,并求此极限.【答案】证明{}n x 单调增加且有上界,3lim 2n n x →∞=. 10.设函数()f x 在0x =的某邻域内具有一阶连续导数,且()00f ≠,()00f '≠,若()()()20af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.【答案】2,1a b ==-.11.设函数()f x 在(,)-∞+∞内连续,且[()]f f x x =,证明在(,)-∞+∞内至少有一个0x 满足00()f x x =.【答案】利用反证法.第二章 一元函数微分学导数与微分是一元函数微分学中的两个重要概念,在高等数学中占有重要地位,其内涵丰富,应用广泛,是研究生入学考试的主要内容之一,应深入加以理解,同时应熟练掌握导数的各种计算方法.中值定理与导数的应用在高等数学中占有极为重要的位置,内容多,影响深远,是复习的重点也是难点,而且具有承上启下的作用,应熟练掌握.一、大纲内容与要求【大纲内容】导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 (弧微分;曲率的概念;曲率圆与曲率半径,数学三不要求). 【大纲要求】1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,(了解导数的物理意义,会用导数描述一些物理量,数学一、二要求),理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当''()0f x >时,()f x 的图形是凹的;当''()0f x <时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径(数学一、二要求).二、知识网络三、基本内容(一)导数概念1.导数定义 设函数()y f x =在点0x 的某邻域内有定义,若自变量从0x 变到0x x +∆时,导数的定义左、右导数基本初等函数的导数导数的四则运算 复合函数的导数 反函数的导数隐函数的导数参数方程求导(数一、二)2阶导数n 阶导数 高阶导数导数的概念导数的计算罗尔定理拉格朗日中值定理 柯西中值定理 中值定理应用洛必达法则求极限 研究函数性质及几何应用单调性定理、函数的单调区间 函数的极值、最值曲线的凹凸性及拐点 渐近线、函数作图 边际、弹性经济中的最大值和最小值应用经济应用(数学三要求) 微分概念微分的计算 一阶微分形式不变性微分导数泰勒定理 曲率(数学一、二要求) 费马引理 切线、法线方程函数的增量00()()y f x x f x ∆=+∆-与自变量增量x ∆之比的极限0000()()limlim x x f x x f x yx x→∆→+∆-∆=∆∆存在,则称()y f x =在0x 处可导,此极限值称为()f x 在0x 处的导数,记作0()f x ',或00,x x x x dyy dx=='等.令0x x x =+∆,可得导数的等价定义0000()()()limx x f x f x f x x x →-'=-2.左导数 若000()()lim x f x x f x x -∆→+∆-∆存在,则称此极限值为()f x 在x =0x 处的左导数,记作0()f x -'.3.右导数 若000()()lim x f x x f x x+∆→+∆-∆存在,则称此极限值为()f x 在x =0x 处的右导数,记作0()f x +'.4.若函数()f x 在区间(,)a b 内任意点x 处的导数()f x '都存在,则称()f x 在(,)a b 内可导.5.若函数()f x 在(,)a b 内可导,且()f a +'及()f b -'都存在,称()f x 在闭区间[,]a b 上可导. (二)函数可导的条件1.()f x 在x =0x 处可导的必要(非充分)条件是()f x 在x =0x 处连续.2.()f x 在x =0x 处可导的充分与必要条件是0()f x -'与0()f x +'存在且相等. (三)导数的几何意义与物理意义1.设函数()f x 可导,则0()f x '等于曲线y =()f x 在点00(,())x f x 处切线的斜率.曲线y =()f x 在点00(,())x f x 处的切线与法线方程分别是:000()()()y f x f x x x '--=和0001()(),()y f x x x f x -=--'其中0()0f x '≠. 2.设一质点作变速直线运动,若其位移s 随时间t 的变化规律为函数()s s t =,则导数0()s t '表示该质点在时刻0t 的瞬时速度.注 导数的物理意义有多种,如细棒状物质的线密度,电路中的电流强度,转动物体的角速度等.(四)导数的计算1.基本初等函数的导数公式 (1)()0()c c '=为常数(2)1()()x x μμμμ-'=为实数(3)()ln (01)xxa a a a a '=>≠, (4)();x x e e '=(5) 1(log ||)(0,1);ln a x a a x a '=>≠ (6) 1(ln ||);x x'= (7)(sin )cos ;x x '= (8)(cos )sin ;x x '=- (9)2(tan )sec ;x x '= (10)2(cos )csc x x '=-(11)(sec )sec tan ;x x x '= (12)(csc )csc cot ;x x x '=-(13)(arcsin )x '=(14)(arccos )x '=(15)21(arctan );1x x'=+ (16)21(arccot ).1x x-'=+ 2.导数的四则运算法则 设函数(),()u x v x 都可导,则 (1)();u v u v '''±=±(2)()uv u v uv '''=+,特别()cu cu ''=(c 为常数).(3)2(0).u u v uv v v v '''-⎛⎫=≠ ⎪⎝⎭3.复合函数求导法设()u x ϕ=在x 处可导,()y f u =在对应的()u x ϕ=处可导,则复合函数[()]y f x ϕ=在x 处可导,且{[]}()(),f x f u x ϕϕ'''=()即d .y dy dudx du dx=⋅ 4.反函数的导数若()x y ϕ=在某区间内单调、可导,且()0y ϕ'≠,则其反函数()y f x =在对应的区间内也可导,且1()()f x y ϕ'='. 5.隐函数的导数设()y f x =是由方程(,)0F x y =所确定的可导函数,注意到x 是自变量,y 是x 的函数,y 的函数是x 的复合函数,在方程的两边同时对x 求导,可得到一个含有y '的方程,从中解出y '即可.注 y '也可由多元函数微分法中的隐函数求导公式x y F dydx F '=-'得到,这里()y x 是由方程(,)0F x y =确定的函数.6.高阶导数(1) 函数()y f x =导数的导数,称为函数()f x 的二阶导数,即(),y y ''''=记作()y f x ''''=,或2(2)2,d y y dx.一般地,函数()y f x =的n 阶导数为()(1)(),n n y y-'=也可写作()()n n n d y fx dx或.(2)设(),()u x v x 具有n 阶导数,则有()()()[()()]()()n n n au x bv x au x bv x +=+(,a b 为常数);()()1(1)()()()[()()]()()()()()()()().n n n k n k k n n n u x v x u x v x C u x v x C u x v x u x v x --'=+++++7.由参数方程所确定的函数的导数(数学一、二要求)设()y y x =是由参数方程()()()x t t y t ϕαβψ=⎧<<⎨=⎩确定的函数,(1)若()t ϕ和()t ψ都可导,且()0t ϕ'≠,则()()dy t dx t ψϕ'='. (2)若()()t t ϕψ,二阶可导,且()0t ϕ'≠,则223()1()()()()()()()td y t t t t t dx t t t ψψϕψϕϕϕϕ''''''''⎡⎤-=⋅=⎢⎥'''⎣⎦. (五)微分1.微分定义 设函数()y f x =在点x 的某邻域内有定义,若对应于自变量的增量x ∆,函数的增量y ∆可以表示为()y A x o x ∆=∆+∆,其中A 与x ∆无关, ()o x ∆是x ∆的高阶无穷小,则称函数()y f x =在点x 处可微,并把A x ∆称为()f x 在点x 处的微分,记作dy 或()df x ,即dy =A x ∆.2.函数()y f x =在点x 处可微的充分必要条件是()f x 在x 处可导,此时()A f x '=,即有()dy f x dx '=.3.一阶微分形式的不变性 设()y f u =可微,则微分()dy f u du '=,其中u 不论是自变量还是中间变量,以上微分形式保持不变. (六)微分中值定理1.费马(fermat)引理 若()f x 在0x 的某邻域0()U x 内有定义,且在0x 处可导,如果对任意0()x U x ∈,有0()()f x f x ≤(或0()()f x f x ≥),则0()0f x '=.2.罗尔(Rolle)定理 若函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,并且f (a )=f (b ),则在开区间(,)a b 内至少存在一点ξ,使得()0f ξ'=.3.拉格朗日(Lagrange)中值定理 若函数()f x 在闭区间上连续,在开区间(,)a b 内可导,则在开区间(,)a b 内至少存在一点ξ,使得()()()().f b f a f b a ξ'-=-4.柯西(Cauchy)中值定理 若函数()f x 和()g x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()0g x '≠,则在开区间(,)a b 内至少存在一点ξ,使得()()().()()()f b f a fg b g a g ξξ'-='-5.泰勒(Taylor)定理(1)假设函数()f x 在含有0x 的开区间(,)a b 内具有直到1n +阶的导数,则()20000000()()()()()()()()(),2!!n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+其中(1)10()()(),(1)!n n n f R x x x n ξξ++=-+是0x 与x 之间的某个值,此公式称为带有拉格朗日型余项的泰勒公式.(2)假设函数()f x 在含有0x 的开区间(,)a b 内具有直到n 阶的导数,则()200000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x o x x n '''⎡⎤=+-+-++-+-⎣⎦, 此公式称为带有佩亚诺型余项的泰勒公式.注 当00x =时,以下两公式称为麦克劳林(Maclaurin)公式,即()21(0)(0)(1)()()(0)(0)(01)2!!(1)!n n n f f f n x f x f f x x x x n n θθ+''+'=+++++<<+和 ()2(0)(0)()(0)(0)()2!!n n n f f f x f f x x x o x n '''=+++++.(七)洛必达(L ’Hospital)法则 1.00⎛⎫⎪⎝⎭型 0()()()0,f x g x x g x '≠设,在点的某去心邻域内可导,若0lim ()lim ()x x x x f x g x →→=0=,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. 2.∞⎛⎫⎪∞⎝⎭型 设()()f x g x ,在点0x 的某去心邻域内可导,()0g x '≠,若0lim ()x x f x →=0lim ()x x g x →=∞,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (八)利用导数研究函数及平面曲线的性态1.单调性定理 设函数()f x 在[,]a b 上连续,在(,)a b 内可导,若对任一x ∈(,)a b ,有()0(0)f x '><,则()f x 在[,]a b 上单调增加(减少).注 若将上面的不等式()0(0)f x '><,改为()0(0)f x '≥≤,且使()0f x '=的点(驻点)只有有限个,则结论仍成立.2.极值(1)极值的定义 若()f x 在0x 的某邻域0()U x 内有定义,且对该邻域内任意异于0x 的点x 都有0()()f x f x <(或0()()f x f x >),则称0x 的极大(或小)值点,0()f x 称为()f x 的极大(或小)值.(2)判断极值的第一充分条件 设函数()f x 在点0x 的某邻域00(,)x x δδ-+内连续,0x 是()f x 的驻点或不可导点,在00(,)x x δ-及00(,)x x δ+内()f x 均可导.1°若在00(,)x x δ-内()0(0)f x '<>而在00(,)x x δ+内()0(0)f x '><则()f x 在0x 处取21极小值(极大值);2°若在00(,)x x δ-和00(,)x x δ+内()f x '符号相同,则()f x 在0x 处不取得极值. (3)判断极值的第二充分条件 设函数()f x 在x =0x 处 ,一阶导数0()0f x '=,二阶导数0()f x ''存在且不等于零,则当0()0f x ''>时,()f x 在0x 处取得极小值;当0()0f x ''<时,()f x 在0x 处取得极大值.3.取到极值的唯一性定理 若()f x 在区间I 上可导,驻点唯一,且该驻点是极值点,则该驻点一定是最值点.4.曲线凹凸性及拐点(1)凹凸性的定义 设()x f 在区间I 上连续,若对任意不同的两点21,x x ,恒有()()()()12121212112222x x x x f f x f x f f x f x +⎛+⎫⎛⎫⎛⎫>+<+⎡⎤⎡⎤ ⎪ ⎪ ⎪⎣⎦⎣⎦⎝⎭⎝⎭⎝⎭或则称()x f 在I 上是凸(凹)的.(2)凹凸性的判断 若函数()f x 在区间I 上()0(0)f x ''><则曲线()y f x =在I 上凹 (凸)的.(3)拐点的定义 在连续曲线上,凹凸部分的分界点00(,())x f x 称为曲线的拐点.(4)拐点的第一充分条件 设函数()f x 在点0x 的某邻域内连续且在该去心邻域内二阶可导,若()f x 在0x 的左右两边()f x ''的符号相反,则点00(,())x f x 是曲线)(x f y =的拐点.(5)拐点的第二充分条件:设函数()f x 在点0x 的某邻域内连续,0()0f x ''=,而0()0f x '''≠,则点00(,())x f x 是曲线)(x f y =的拐点.5.曲线的渐近线(1)若lim ()x f x C →∞=(或x →+∞或x →-∞)(C 为常数),则y C =是曲线()y f x =的一条水平渐近线;(2)若0lim ()x x f x →∞=(或0x x +→,或0x x -→),则0x x =是曲线()y f x =的一条铅直渐近线; (3)若()lim,0,x f x a a x→∞=≠且lim[()],x f x ax b →∞-=则y ax b +=是曲线()y f x =的斜渐近线.22(九)平面曲线的曲率(数学一、二要求) 1.弧微分设()y f x =是平面内的光滑曲线,则弧微分.ds = 若曲线方程为(),(),x x t y y t =⎧⎨=⎩则弧微分为.ds =2.曲率(1)设M 和N 是曲线上不同的两点,弧MN 的长为s ∆,当M 点沿曲线到达N点时,M点处的切线所转过角为α∆,则称极限0lims K sα∆→∆=∆为该曲线在点M 处的曲率. (2)曲率计算公式若曲线方程为()y f x =,则曲率23/2(1)y K y ''='+. 若曲线由参数方程()()x x t y y t =⎧⎨=⎩给出,则曲率223/2()t t t t t t x y y x K x y ''''''-=''+. (3)曲率半径1(0)R K K=≠. 三、典型题型[例2.1]已知(3)2f '=,则0lim 2h h→=______________.[例2.2]设函数()f x 在0x =处连续,且201lim (1cos )1h f h h→-=,则().(A)(0)1-'=f .(B)(0)2-'=f .(C)(0)1+'=f . (D)(0)2+'=f .[例2.3]设函数()f x 可导,()(sin 2)()xF x e x f x =+,则(0)0f =是()F x 在0x =处可导的( )条件.(A)充要. (B)充分非必要. (C)必要非充分.(D)非充分非必要.[例2.4]设周期函数()f x 在),(+∞-∞内可导,周期为4,0(1)(1)lim2x f f x x→--=1-,则曲线()y f x =在点))5(,5(f 处的法线斜率为(). (A)21. (B)0.(C)1 .(D)2-.[例2.5]设函数()f x 在区间(,)δδ-内有定义,若当x ∈(,)δδ-时,恒有2()f x x ≤,则23x 0=必是()f x 的( ).(A)间断点.(B)连续而不可导的点. (C)可导的点,且(0)0'=f . (D)可导的点,且(0)0'≠f .[例2.6]设()(1)(2)()f x x x x x n =+++,则(0)________.f '=[例2.7]设函数0()y f x x x ==在处可导,0()1f x '=-,则0limx y dydy∆→∆-=_______.[例2.8] 设函数()f x 处处可微,且有()01f '=,且对任何,x y 恒有()()x f x y e f y +=()x e f y +, 求().f x[例2.9]设函数()f x 在(,)-∞+∞上有定义,对任意,x y ,()f x 满足关系式()()[()1]()f x y f x f x y y α+-=-+,其中0()lim0y y yα→=.又已知(0)2,f =则(1)f =.[例2.10]设()()(),()F x g x x x ϕϕ=在x a =连续,但不可导,又()g a '存在,则()0g a =是()F x 在x a =可导的()条件.(A) 充要. (B) 充分非必要.(C) 必要非充分.(D) 非充分非必要. [例2.11]函数32()2arctan f x x x x x =+-的不可导点的个数是( ). (A)3.(B)2.(C)1.(D)0.[例2.12]设函数11,0()1,0x x f x x e k x ⎧-≠⎪=-⎨⎪=⎩连续,求常数k 的值,并求()f x '.[例2.13] 求下列函数的导数(1)arctanx y e=-(2)2()ln |2a f x x =.24[例2.14]设2sin[()]y f x =,其中f 具有二阶导数,求22,dy d ydx dx . [例2.15]设函数1,()21,x f x x ⎧≥=⎨<⎩,()()y f f x =,则x edy dx ==_____________.[例2.16]设函数()f u 可导,2()y f x =当自变量x 在1=-x 处取得增量0.1x ∆=-时,相应的函数增量y ∆的线性主部为0.1,则(1)'=f _________________.[例2.17] (数一、二)设()2arctan ,25t x t y y x y ty e =⎧⎪=⎨-+=⎪⎩由所确定,求.dy dx[例2.18]设22411x y x -=-,求(100)y .[例2.19]设函数()y f x =由方程23ln()sin +=+x y x y x 确定,则==x dy dx_________.[例2.20]设()()()nf x x a x ϕ=-,其中()x ϕ在x a =处具有1n -阶连续导数,试求()()n f a (2)n ≥.题型三 利用导数研究函数的性态[例2.21]设当a x b <<时函数()f x ,()g x 是大于零的可导函数,且()()f x g x '-()f x ()0g x '<,则当a x b <<时,有().(A)()()()()f x g b f b g x >.(B)()()()()f x g a f a g x >.(C)()()()()f x g x f b g b >.(D)()()()()f x g x f a g a >.。
《高等数学》各章知识点总结——第1章(五篇)第一篇:《高等数学》各章知识点总结——第1章第1章函数与极限总结1、极限的概念(1)数列极限的定义给定数列{xn},若存在常数a,对于任意给定的正数ε(不论它多么小),总存在正整数N ,使得对于n >N 时的一切n,恒有|xn-a |<ε 则称a 是数列{xn}的极限,或者称数列{xn}收敛于a ,记为n→∞limxn=a或xn→a(n→∞).(2)函数极限的定义设函数f(x)在点x0的某一去心邻域内(或当x>M>0)有定义,如果存在常数A,对于任意给定的正数ε(不论它多么小),总存在正数δ,(或存在X)使得当x满足不等式0<|x-x0|<δ 时,(或当x>X时)恒有|f(x)-A|<ε,那么常数A就叫做函数f(x)当x→x0(或x→∞)时的极限,记为x→x0limf(x)=A或f(x)→A(当x→x0).(或limf(x)=A)x→∞类似的有:如果存在常数A,对∀ε>0,∃δ>0,当x:x0-δ<x<x0(x0<x<x0-δ)时,恒有f(x)-A<ε,则称A为f(x)当x→x0时的左极限(或右极限)记作x→x0-limf(x)=A(或lim+f(x)=A)x→x0x→x0x→x0x→x0显然有limf(x)=A⇔lim-f(x)=lim+f(x)=A) 如果存在常数A,对∀ε>0,∃X>0,当x<-X(或x>X)时,恒有f(x)-A<ε,则称A为f(x)当x→-∞(或当x→+∞)时的极限记作limf(x)=A(或limf(x)=A)x→-∞x→+∞显然有limf(x)=A⇔limf(x)=limf(x)=A)x→∞x→-∞x→+∞2、极限的性质(1)唯一性若limxn=a,limxn=b,则a=bn→∞n→∞若limf(x)=Alimf(x)=B,则A=Bx→∞(x→x0)x→∞(x→x0)(2)有界性(i)若limxn=a,则∃M>0使得对∀n∈Nn→∞+,恒有xn≤M(ii)若limf(x)=A,则∃M>0当x:0<x-x0<δ时,有f(x)≤Mx→x0(iii)若limf(x)=A,则∃M>0,X>0当x>X时,有f(x)≤Mx→∞(3)局部保号性(i)若limxn=a且a>0(或a<0)则∃N∈N+,当n>N时,恒有xn>0(或xn<0)n→∞)=A,且A>0(或A<0),则∃δ>0当x:0<x-x0<δ时,有(ii)若limf(xx→x0f(x)>0(或f(x)<0)3、极限存在的准则(i)夹逼准则给定数列{xn},{yn},{zn}若①∃n0∈N,当n>n0时有yn≤xn≤zn ②limyn=limzn=a,n→∞n→∞+则limxn=an→∞ 给定函数f(x),g(x),h(x), 若①当x∈U(x0,r)(或x>X)时,有g(x)≤f(x)≤h(x)②limg(x)=limh(x)=A,x→∞(x→x0)x→∞(x→x0)0则limf(x)=A x→∞(x→x0)(ii)单调有界准则给定数列{xn},若①对∀n∈N+有xn≤xn+1(或xn≥xn+1)②∃M(m)使对∀n∈N+有xn≤M(或xn≥m)则limxn存在n→∞若f(x)在点x0的左侧邻域(或右侧邻域)单调有界,则lim-f(x)(或lim+f(x))x→x0x→x0存在4、极限的运算法则(1)若limf(x)=A,limg(x)=Bx→∞(x→x0)x→∞(x→x0)则(i)lim[f(x)±g(x)]=A±Bx→∞(x→x0)(ii)lim[f(x)⋅g(x)]=A⋅Bx→∞(x→x0)(iii)limx→∞(x→x0)f(x)A=⋅(B≠0)g(x)B0(2)设(i)u=g(x)且limg(x)=u0(ii)当x∈U(x0,δ)时g(x)≠u0x→x0(iii)limf(u)=Au→u0则limf[g(x)]=limf(u)=Ax→x0u→u05、两个重要极限(1)limsinx=1x→0xsinu(x)=1u(x)→0u(x)limlimsinx11=0,limxsin=1,limxsin=0x→∞x→∞x→0xxxxu(x)⎛1⎫1⎫⎛lim1+(2)lim 1+⎪=e ⎪u(x)→∞x→∞u(x)⎭x⎭⎝⎝=e;lim(1+x)=ex→01xv(x)→0lim(1+v(x))1v(x)=e;6、无穷小量与无穷大量的概念(1)若limα(x)=0,即对∀ε>0,∃δ>0,当x:0<x-x0<δ(或x→∞(x→x0)x>X)时有α(x)<ε,则称当x→x0(或x→∞),α(x)无穷小量(2)或X>0),若limf(x)=∞即对∀M>0,∃δ>0(当x:0<x-x0<δx→∞(x→x0)(或x>X)时有f(x)>M则称当x→x0(或x→∞),f(x)无穷大量7、无穷小量与有极限的量及无穷大量的关系,无穷小量的运算法则(1)limf(x)=A⇔f(x)=A+α(x),其中limx→∞(x→x0)x→∞(x→x0)α(x)=0(f(x)≠0)⇒lim(2)limf(x)=0x→∞(x→x0)x→∞(x→x0)1=∞f(x)(3)limg(x)=∞⇒limx→∞(x→x0)x→∞(x→x01=0 g(x))(4)limf(x)=∞且∃M>0,当x:0<x-x0<δ(或x>X)时有g(x)≤M,x→∞(x→x0)则lim[f(x)+g(x)]=∞x→∞(x→x0)(5)limf(x)=0且∃M>0,当x:0<x-x0<δ(或x>X)时有g(x)≤M,x→∞(x→x0)则lim[f(x)⋅g(x)]=0x→∞(x→x0)nn(6)limfk(x)=0(k=1,2,Λ,n)则limx→∞(x→x0)x→∞(x→x0)k=1∑fk(x)=0,limx→∞(x→x0)k=1∏fk(x)= 0,8、无穷小量的比较x→∞(x→x0)limf(x)=0,limg(x)=0,limα(x)=0x→∞(x→x0)x→∞(x→x0)若(1)lim小。
高数第一章知识点总结笔记高数第一章主要包括函数与极限的基本概念,函数的性质,函数的图像与性质,函数的运算,以及极限的性质和运算法则等内容。
1.函数的定义和表示方法:- 函数的定义:函数是一个具有自变量和因变量的关系,对于每一个自变量,都唯一对应一个因变量。
- 函数的表示方法:通常用函数关系式、函数图、表格和文字描述等方式来表示函数。
2. 函数的性质:- 定义域和值域:函数的自变量的取值范围称为函数的定义域,因变量的取值范围称为函数的值域。
- 奇偶性:若对于定义域内的每一个x,都有f(-x) = f(x),则函数为偶函数;若对于定义域内的每一个x,都有f(-x) = -f(x),则函数为奇函数;若不满足以上两个条件,则称函数为既不是奇函数也不是偶函数。
- 增减性:在定义域中,若有x1 < x2,有f(x1) < f(x2),则函数在这个区间内是增函数;若有x1 < x2,有f(x1) > f(x2),则函数在这个区间内是减函数。
3. 函数的图像与性质:- 概念:函数的图像是函数在平面直角坐标系中的表示,函数的图像反映了函数的性质和规律。
- 图像的平移、翻折、伸缩、可导性和连续性等。
4. 函数的运算:- 四则运算:包括加法、减法、乘法和除法。
- 复合函数:将一个函数的自变量用另一个函数表示出来,形成复合函数。
- 反函数:若两个函数f(x)和g(x)满足f(g(x)) = x和g(f(x)) = x,则称g(x)为f(x)的反函数。
5. 极限的定义和性质:- 极限的定义:设函数f(x)在x0的某一邻域内有定义,如果对于任意给定的正数ε,总存在一个正数δ,使得当0 < |x - x0| < δ时,都有|f(x) - A| < ε成立,则称A为函数f(x)当x趋于x0时的极限,记作lim f(x) = A(x→x0)。
- 极限的性质:唯一性、局部有界性、保号性、夹逼准则、迫敛和夹蔽准则等。
任一子数列也收敛于a.假如数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}高数定理定义总结高数定理定义总结高数定理定义总结第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;假如有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)假如数列{xn}收敛,那么数列{xn}肯定有界。
假如数列{xn}无界,那么数列{xn}肯定发散;但假如数列{xn}有界,却不能断定数列{xn}肯定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)假如数列{xn}收敛于a,那么它的收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中00(或A0(或f(x)>0),反之也成立。
函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。
一般的说,假如lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。
假如lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。
4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理假如F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.1/9定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。
----高等数学----第一章函数、极限、连续函数是微积分的研究对象,极限是微积分的理论基础,而连续性是可导性与可积性的重要条件。
它们是每年必考的内容之一。
第一节数列极限与函数极限【大纲内容】数列极限与函数极限的定义以及它们的性质;函数的左极限与右极限;无穷小和无穷大的概念及其关系;无穷小的性质及无穷小的比较;极限的四则运算;极限存在的两个准则;单调有界准则和夹逼准则;两个重要极限:;洛必达()法则。
【大纲要求】理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系;掌握极限的性质及四则运算法则;掌握极限存在的两个准则,并会利用它们求极限;掌握利用两个重要极限求极限的方法;理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限;掌握用洛必达()法则求未定式极限的方法。
【考点分析】数列极限的考点主要包括:定义的理解,极限运算法则的理解,单调有界准则和夹逼准则求极限,利用定积分的定义求和式的极限等等。
函数极限的考点主要包括:用洛必达法则求未定式的极限,由已知极限求未知极限,极限中的参数问题,无穷小量阶的比较等等。
一、数列的极限1.数列的极限无穷多个数按一定顺序排成一列:称为数列,记为数列,其中称为数列的一般项或通项。
设有数列和常数A 。
若对任意给定的,总存在自然数,当n>N 时,恒有,则称常数A 为数列的极限,或称数列收敛于A,记为或。
没有极限的数列称为发散数列。
收敛数列必为有界数列,其极限存在且唯一。
2.极限存在准则(1)定理(夹逼定理)设在的某空心邻域内恒有,且有,则极限存在,且等于A .注对其他极限过程及数列极限,有类似结论.(2)定理:单调有界数列必有极限.3.重要结论:(1)若,则,其中为任意常数。
(2)。
(3)。
【考点一】(1)单调有界数列必有极限.(2)单调递增且有上界的数列必有极限,单调递增且无上界的数列的极限为+∞.(3)单调递减且有下界的数列必有极限,单调递减且无下界的数列的极限为-∞.【评注】(1)在应用【考点一】进行证明时,有些题目中关于单调性与有界性的证明有先后次序之分,需要及时进行调整证明次序。
高等数学第一章总结高等数学第一章总结高等数学是大学数学的重要组成部分,是培养学生数学思维和解决实际问题能力的重要课程之一。
第一章主要介绍了函数概念、极限与连续等内容。
下面将对第一章的内容进行总结。
函数是高等数学的基础概念之一。
函数是一种量与量之间的对应关系,常表示为y = f(x)。
其中,x是自变量,y是因变量,f表示函数的规则。
函数的定义域是自变量可能取值的集合,值域是因变量取值的集合。
在实际问题中,函数可以用来描述各种关系,如物体的运动、电路中的电流等。
函数可以分为代数函数、初等函数、三角函数等不同类型。
极限是数列和函数在某一点(或正无穷大、负无穷大)趋于的值。
数列的极限是其无穷项的极限,即数列的趋势或估计值。
而函数的极限是其自变量无限接近某一点时的极限值。
极限的概念与数学证明相关,对于计算极限需要掌握一些极限定理和运算法则。
常见的极限运算法则有四则运算法则、复合函数极限的运算法则、三角函数的极限运算法则、常数的极限运算法则等。
连续是函数在一定区间上无间断的性质。
对于某一点x=a来说,如果在x=a处函数f(x)的极限存在且等于f(a),则称函数在x=a处连续。
连续函数具有许多有用的性质,如介值定理、零点定理、最值定理等。
这些性质在实际问题中有广泛的应用,能够帮助我们解决实际问题。
在高等数学的学习过程中,我们还需要掌握一些重要的基本技巧和方法。
求导是一种重要的计算技巧,用于求函数的导数。
导数是函数在某一点上的变化率,也可以理解为函数曲线在该点处的切线斜率。
求导的方法主要有基本求导法则和常见函数的导数运算法则。
导数在物理、工程和经济学等领域中有广泛的应用,如求速度、加速度、成本函数、效益函数等。
本章的内容比较基础,但为后续的学习打下了坚实的基础。
通过学习第一章的内容,我们了解了函数的概念和性质,掌握了求函数极限和连续的方法和技巧,熟悉了常见函数的导数运算法则。
这些知识和技能是我们进一步学习高等数学的基础,也是我们解决实际问题的必备工具。
高等数学讲义目录第一章函数、极限、连续 (1)第二章一元函数微分学 (24)第三章一元函数积分学 (49)第四章常微分方程 (70)第五章向量代数与空间解析几何 (82)第六章多元函数微分学 (92)第七章多元函数积分学 (107)第八章无穷级数(数一和数三) (129)第一章 函数、极限、连续§1.1 函数(甲) 内容要点一、函数的概念1.函数的定义 2.分段函数3.反函数 4.隐函数二、基本初等函数的概念、性质和图象三、复合函数与初等函数四、考研数学中常出现的非初等函数1.用极限表示的函数(1) )(lim x f y n n ∞→= (2) ),(lim x t f y xt →= 2.用变上、下限积分表示的函数(1) ⎰=x a dt t f y )( 其中)(t f 连续,则)(x f dx dy = (2) ⎰=)()(21)(x x dt t f y ϕϕ 其中)(),(21x x ϕϕ可导,)(t f 连续, 则2211[()]()[()]()dy f x x f x x dxϕϕϕϕ''=- 五、函数的几种性质1. 有界性:设函数)(x f y =在X 内有定义,若存在正数M ,使X x ∈都有M x f ≤)(,则称)(x f 在X 上是有界的。
2. 奇偶性:设区间X 关于原点对称,若对X x ∈,都有)()(x f x f -=-,则称)(x f 在X 上是奇函数。
若对X x ∈,都有()()f x f x -=,则称)(x f 在X 上是偶函数,奇函数的图象关于原点对称;偶函数图象关于y 轴对称。
3. 单调性:设)(x f 在X 上有定义,若对任意X x X x ∈∈21,,21x x <都有)()(21x f x f <)]()([21x f x f >则称)(x f 在X 上是单调增加的[单调减少的];若对任意1x X ∈,2,x X ∈12x x <都有1212()()[()()]f x f x f x f x ≤≥,则称)(x f 在X 上是单调不减[单调不增](注意:有些书上把这里单调增加称为严格单调增加;把这里单调不减称为单调增加。
)4. 周期性:设)(x f 在X 上有定义,如果存在常数0≠T ,使得任意X x ∈,X T x ∈+,都有)()(x f T x f =+,则称)(x f 是周期函数,称T 为)(x f 的周期。
由此可见,周期函数有无穷多个周期,一般我们把其中最小正周期称为周期。
§1.2 极限(甲) 内容要点一、极限的概念与基本性质1.极限的概念(1) 数列的极限A x n n =∞→lim (2) 函数的极限lim ()x f x A →+∞=;lim ()x f x A →-∞=;lim ()x f x A →∞= A x f x x =→)(lim 0;A x f x x =+→)(lim 0;A x f x x =-→)(lim 02.极限的基本性质定理1 (极限的唯一性 ) 设A x f =)(lim ,B x f =)(lim ,则A=B定理2 (极限的不等式性质) 设A x f =)(lim ,B x g =)(lim若x 变化一定以后,总有)()(x g x f ≥,则B A ≥反之,B A >,则x 变化一定以后,有)()(x g x f >(注:当0)(≡x g ,0=B 情形也称为极限的保号性)定理3 (极限的局部有界性)设A x f =)(lim则当x 变化一定以后,)(x f 是有界的。
定理4 设A x f =)(lim ,B x g =)(lim则(1)B A x g x f +=+)]()([lim(2)B A x g x f -=-)]()([lim(3)B A x g x f ⋅=⋅)]()([lim(4))0()()(lim ≠=B BA x g x f (5)B x g A x f =)()]([lim )0(>A二、无穷小 1.无穷小定义:若0)(lim =x f ,则称)(x f 为无穷小(注:无穷小与x 的变化过程有关,01lim =∞→x x ,当∞→x 时x 1为无穷小,而0x x →或其它时,x1不是无穷小) 2.无穷大定义:任给M>0,当x 变化一定以后,总有M x f >)(,则称)(x f 为无穷大,记以∞=)(lim x f 。
3.无穷小与无穷大的关系:在x 的同一个变化过程中,若)(x f 为无穷大,则)(1x f 为无穷小, 若)(x f 为无穷小,且0)(≠x f ,则)(1x f 为无穷大。
4.无穷小与极限的关系:lim ()()()f x A f x A x α=⇔=+,其中lim ()0x α=5.两个无穷小的比较设0)(lim =x f ,0)(lim =x g ,且l x g x f =)()(lim (1)0=l ,称)(x f 是比)(x g 高阶的无穷小,记以()[()]f x o g x =称)(x g 是比)(x f 低阶的无穷小(2)0≠l ,称)(x f 与)(x g 是同阶无穷小。
(3)1=l ,称)(x f 与)(x g 是等阶无穷小,记以)(~)(x g x f6.常见的等价无穷小,当0→x 时x x ~sin ,x x ~tan ,x x arc ~sin ,x x arc ~tan ,221~cos 1x x -,x e x ~1-,x x ~)1ln(+,(1)1~x x αα+-。
7.无穷小的重要性质有界变量乘无穷小仍是无穷小。
三、求极限的方法1.利用极限的四则运算和幂指数运算法则2.两个准则准则1:单调有界数列极限一定存在(1) 若n n x x ≤+1(n 为正整数)又m x n ≥(n 为正整数),则A x n n =∞→lim 存在,且m A ≥ (2) 若n n x x ≥+1(n 为正整数)又n x M ≤(n 为正整数),则A x n n =∞→lim 存在,且A M ≤ 准则2:夹逼定理设)()()(x h x f x g ≤≤。
若A x g =)(lim ,A x h =)(lim ,则A x f =)(lim3.两个重要公式公式1:1sin lim 0=→xx x 公式2:e n n n =+∞→)11(lim ;e uu u =+∞→)11(lim ;e v v v =+→10)1(lim 4.用无穷小重要性质和等价无穷小代换5.用泰勒公式(比用等价无穷小更深刻)(数学一和数学二)当0→x 时,21()2!!nx n x x e x o x n =+++++ 352121sin (1)()3!5!(21)!n n n x x x x x o x n ++=-++-++ 2422cos 1(1)()2!4!(2)!n nn x x x x o x n =-+-+-+ 231ln(1)(1)()23n n n x x x x x o x n ++=-+--+ 3521121tan (1)()3521n n n x x x arc x x o x n +++=-+-+-++ 2(1)(1)[(1)](1)1()2!!n n n x x x x o x n ααααααα----+=+++++6.洛必达法则法则1:(00型)设(1)0)(lim ,0)(lim ==x g x f (2)x 变化过程中,()f x ',()g x '皆存在(3)()lim ()f x Ag x '='(或∞) 则A x g x f =)()(lim (或∞) (注:如果()lim()f x g x ''不存在且不是无穷大量情形,则不能得出()lim ()f x g x 不存在且不是无穷大量情形)法则2:(∞∞型)设(1)lim (),lim ()f x g x =∞=∞ (2)x 变化过程中,()f x ',()g x '皆存在(3)()lim ()f x Ag x '='(或∞) 则A x g x f =)()(lim(或∞)7.利用导数定义求极限 基本公式:0000()()lim ()x f x x f x f x x∆→+∆-'=∆[如果存在] 8.利用定积分定义求极限 基本公式⎰∑==∞→101)()(1lim dx x f n k f n n k n [如果存在]9.其它综合方法10.求极限的反问题有关方法§1.3 连续(甲) 内容要点一、函数连续的概念1.函数在一点连续的概念定义1 若)()(lim 00x f x f x x =→,则称)(x f 在点0x 处连续。
定义2 设函数)(x f y =,如果00lim ()()x x f x f x -→=,则称函数)(x f 在点0x 处左连续;如果)()(lim 00x f x f x x =+→,则称函数)(x f 在点0x 处右连续。
如果函数()y f x =在点0x 处连续,则()f x 在0x 处既是左连续,又是右连续。
2.函数在区间内(上)连续的定义如果函数)(x f y =在开区间(b a ,)内的每一点都连续,则称)(x f 在),(b a 内连续。
如果)(x f y =在开区间内连续,在区间端点a 右连续,在区间端点b 左连续,则称)(x f 在闭区间[b a ,]上连续。
二、函数的间断点及其分类1.函数的间断点的定义如果函数)(x f y =在点0x 处不连续,则称0x 为)(x f 的间断点。
2.函数的间断点分为两类:(1)第一类间断点设0x 是函数)(x f y =的间断点,如果)(x f 在间断点0x 处的左、右极限都存在,则称0x 是)(x f 的第一类间断点。
第一类间断点包括可去间断点和跳跃间断点。
(2)第二类间断点第一类间断点以外的其他间断点统称为第二类间断点。
常见的第二类间断点有无穷间断点和振荡间断点。
例如:0=x 是x x x f sin )(=的可去间断点,是x x x f ||)(=的跳跃间断点,是x x f 1)(=的无穷间断点,是xx f 1sin )(=的振荡间断点。
三、初等函数的连续性1.在区间I 连续的函数的和、差、积及商(分母不为零),在区间I 仍是连续的。
2.由连续函数经有限次复合而成的复合函数在定义区间内仍是连续函数。
3.在区间I 连续且单调的函数的反函数,在对应区间仍连续且单调。
4.基本初等函数在它的定义域内是连续的。
5.初等函数在它的定义区间内是连续的。
四、闭区间上连续函数的性质在闭区间[a ,b ]上连续的函数)(x f ,有以下几个基本性质,这些性质以后都要用到。