有限元动力学模型的综合修正方法
- 格式:pdf
- 大小:112.21 KB
- 文档页数:5
有限元模型修正技术的工程应用
陈德成;魏震松;曲广吉;朱安文;肖益芳
【期刊名称】《中国工程科学》
【年(卷),期】2001(003)010
【摘要】从工程应用的角度讨论了有限元模型修正技术的一些关键性问题,并且提出了作者的观点;提供了一个比较成熟的、达到实际工程应用水平的修正方法的基本思路和计算过程,指出了修正技术在实际应用中可能遇到的困难及其解决途径.【总页数】5页(P59-63)
【作者】陈德成;魏震松;曲广吉;朱安文;肖益芳
【作者单位】北京大学力学与工程科学系,北京,100871;北京大学力学与工程科学系,北京,100871;北京空间飞行器总体设计部,北京,100086;北京空间飞行器总体设计部,北京,100086;广西公安管理干部学院,南宁,530023
【正文语种】中文
【中图分类】O1
【相关文献】
1.基于桥梁优化理论的有限元模型修正技术 [J], 李伶;尹骏晖;杜青
2.基于分层思想对复杂工程结构的有限元模型修正技术研究 [J], 朱跃;张令弥;郭勤涛
3.运载火箭动特性有限元模型修正技术研究 [J], 林宏;罗恒;潘忠文;王旭;朱礼文
4.面向桥梁工程的响应面技术在有限元模型修正中的应用探讨 [J], 张挣鑫;刘黔会;
黄方林
5.基于有限元模型修正技术的复杂索拱体系施工稳定性 [J], 戴轩奥;张其林;罗晓群因版权原因,仅展示原文概要,查看原文内容请购买。
结构有限元模型的修正方法摘要模型修正可以提高有限元模型的可信度,随着结构的大型化和复杂化,模型修正方法越来越受到重视。
根据修正对象的不同,模型修正方法有很多种。
本文采用参考基方法,以修正后的质量矩阵为参考基准,通过目标函数最小化来进行模型修正。
数值实验表明本文的方法是可行的,问题的解存在唯一性。
关键词模态数据;有限元;模型修正0 引言有限元模型修正是一门正在兴起的学科,近几年来,人们渐渐发现它在很多科学领域中发挥了越来越重要的作用,特别是在结构动力学、工程技术、信号处理和电子振荡等领域,有限元模型修正指的是关于动力系统模型的设计、构造和修正。
在工程技术领域里,要解决工程中普遍存在的振动问题,首先就必须建立结构的动力学模型。
一般的建模方法有理论建模和实验建模两种,而理论建模工程上常用有限元方法。
模型修正的目的是用实测数据校正不精确的分析模型,而这些数据像固有的频率、阻尼比和振型等,一般是通过振动测试得到的。
根据实测的模态数据修正模型分析得到质量矩阵、阻尼矩阵和刚度矩阵,缩小有限元模型与实测模型之间的误差,改善有限元模型[1]。
1 模型修正方法假设由有限元方法计算得到近似的质量矩阵、阻尼矩阵和刚度矩阵分别为,根据实际测量得到的低阶频率和相应的振型,一般情况下二次束的特征值和特征向量跟实际的频率和振型存在着一定的误差。
模型修正方法是利用实测模态数据对质量矩阵、阻尼矩阵和刚度矩阵进行修正,使修正后的质量矩阵M、阻尼矩阵C和刚度矩阵K满足谱约束条件[3]。
设低阶频率和相应的振型分别为:改写成矩阵形式如下:,其中。
一般的模型修正问题可表述如下:给定,以及模态数据,求矩阵,使得这里Sn表示n阶实对称矩阵,M>0表示对称正定矩阵,C1,C2为两个正的参数。
对于阻尼结构动力系统,如果以质量矩阵作为不变的参考基准,即取M=Ma,那么就可以直接修正阻尼矩阵和刚度矩阵[2]。
在实际问题中,往往要求质量矩阵M是对称正定矩阵,我们可以先修正质量矩阵Ma,取,这里表示所有实对称正定矩阵的集合,表示Ma在上的投影,即.于是,我们以修正后的质量矩阵为参考基,同时修正阻尼矩阵和刚度矩阵,使得罚函数最小。
d o i :10.3963/j .i s s n .1674-6066.2022.04.012基于H o pf i e l d 神经网络的有限元模型修正杨昕怡(武汉理工大学土木工程与建筑学院,武汉430070)摘 要: 工程结构的有限元模型对结构的健康监测与可靠性评估有重大意义,但实际工程中测量数据和模型都与结构初始有限元模型有一定的差异,因此有必要对实际结构的有限元模型进行修正㊂首先建立有限元模型修正方程来表达结构响应与待修正参数之间的关系,再通过H o p f i e l d 递归神经网络技术,对模型修正方程进行求解㊂通过一个数值梁模型对提出的方法进行了验证,结果显示H o p f i e l d 神经网络在求解线性模型修正仿真中有较好的效果㊂关键词: H o pf i e l d 神经网络; 模型修正; 线性方程组; 有限元模型F i n i t eE l e m e n tM o d e lM o d i f i c a t i o nB a s e do nH o p f i e l d N e u r a lN e t w o r kY A N G X i n -yi (S c h o o l o fC i v i l E n g i n e e r i n g a n dA r c h i t e c t u r e ,W u h a nU n i v e r s i t y o fT e c h n o l o g y ,W u h a n430000,C h i n a )A b s t r a c t : T h e f i n i t e e l e m e n tm o d e l o f e n g i n e e r i n g s t r u c t u r ew a so f g r e a t s i g n i f i c a n c e t o t h eh e a l t h m o n i t o r i n g a n d r e l i a b i l i t y e v a l u a t i o n o f t h e s t r u c t u r e ,b u t t h em e a s u r e d d a t a a n d t h em o d e l i n t h e a c t u a l e n g i n e e r i n g w e r e d i f f e r e n t f r o m t h e i n i t i a l f i n i t e e l e m e n tm o d e l o f t h es t r u c t u r e ,s o i tw a sn e c e s s a r y t o m o d i f y t h e f i n i t ee l e m e n tm o d e l o f t h ea c t u a l s t r u c t u r e .F i r s t l y ,t h e f i n i t ee l e m e n tm o d e lm o d i f i c a t i o ne q u a t i o n w a se s t a b l i s h e dt oe x p r e s st h er e l a t i o n s h i p b e t w e e n s t r u c t u r a l r e s p o n s e a n d p a r a m e t e r s t o b em o d i f i e d ,a n d t h e n t h eH o p f i e l d r e c u r s i v e n e u r a l n e t w o r k t e c h n o l o g y wa s u s e d t os o l v e t h em o d e lm o d i f i c a t i o n e q u a t i o n .An u m e r i c a lb e a m m o d e lw a s u s e d t o v e r i f y t h e p r o p o s e dm e t h o d ,a n d t h e r e -s u l t s s h o w e d t h a tH o p f i e l dn e u r a l n e t w o r kw a s e f f e c t i v e i n s o l v i n g l i n e a rm o d e lm o d i f i c a t i o n s i m u l a t i o n .K e y wo r d s : H o p f i e l dn e u r a l n e t w o r k ; m o d e lm o d i f i c a t i o n ; l i n e a r e q u a t i o n s ; f i n i t e e l e m e n tm o d e l 收稿日期:2022-04-08.基金项目:武汉理工大学土木工程与建筑学院国家级大学生创新创业训练计划资助(202110497067).作者简介:杨昕怡(2000-),本科生.E -m a i l :y a n g x i n y i @w h u t .e d u .c n 自有限单元元分析法问世至今,一直备受工程界学者的广泛关注㊂利用有限元模型来模拟研究结构响应对结构的设计㊁运营㊁维护㊁监测等活动具有重大作用㊂有限元模型修正主要是用结构实测的响应来反演结构力学参数,如弹性模型㊁质量㊁密度㊁尺寸参数等㊂常用的结构实测响应数据主要有静力数据和动力数据㊂由于结构动力数据种类丰富㊁测量方便,因此基于动力数据的有限元模型修正方法较多㊂国内外很多工程领域的研究人员都对基于动力数据的模型修正方法开展了研究,例如,方圣恩等[1]提出了一种模型修正措施,将建立的响应面模型与应用蒙特卡罗仿真技术得到的结构响应样本相联合,用于结构有限元模型修正㊂姚春柱等[2]采用了贝叶斯模型修正方法,将使用吉布斯抽样的蒙特卡罗马尔科夫链抽样方法得到的数据代入随机模型,应用贝叶斯理论,得到关于模型参数的后验分布动态统计特征,达到对参数进行识别的目标㊂陈辉等[3]结合结构随机响应实测数据列出了能准确表达待修正参数与结构反应之间联系的模型修正方程式,并在求解该方程时运用混合摄动-伽辽金方法,从而获取修正参数的概率统计特征㊂在国际上,美国的B e c k JL 教授[4]在对线弹性土木结构的随机模型修正研究中应用了贝叶斯方法,通过判断所抽取样本对应的响应与测量结果是否吻合来确定修正参数㊂R u i [5]通过响应面法㊁改进的蒙特卡洛统计模拟法和移动最小二乘法求解了模型修正方程㊂模型修正是力学反问题,求解模型修正方程,会涉及大型矩阵反复求逆,或存在多解或者病态问题,导致64建材世界 2022年 第43卷 第4期计算精度不高㊂并且根据目前国内外研究人员的研究成果可以看出学者们对模型修正的研究还在初级阶段,还需克服许多困难㊂因此,在工程界的迫切需求下,提出更为实用和高效的模型修正方法具有必要性㊂使用H o p f i e l d神经网络来求解模型修正方程能有效解决上述问题㊂首先建立基于动力模态数据的模型修正方程,并对H o p f i e l d神经网络解决实际问题的理论解与模型推导进行阐述,然后通过一个两跨连续梁对该方法进行了验证㊂结果表明,该方法能非常准确地求解模型修正方程,使修正结果与预设的工况一致,修正后的结构参数能够复现结构动力响应,具有实际工程意义㊂1理论1.1模型修正方程的建立考虑具有N个自由度的无阻尼结构,初始模型满足以下特征值方程K aφi=λi M aφi(i=1, ,n c)(1)式中,K a和M a分别是初始结构模型的整体刚度矩阵和质量矩阵;λi和φi分别是初始模型的第i阶特征值和特征向量;n c为初始模型的计算模态个数㊂类似地,实际结构的特征方程可以表示为K dφ-j=λ-j M dφ-j(j=1, ,n m)(2)式中,K d和M d分别是实际结构模型的整体刚度矩阵和质量矩阵;λ-j和φ-j分别是实际模型的第j阶特征值和特征向量;n m为实际模型的计算模态的个数㊂初始结构跟实际结构的质量矩阵与刚度矩阵存在以下关系M d=M a+ðN e n=1βn M n(3)K d=K a+ðN e n=1αn K n(4)式中,N e为结构的单元个数;K n和M n分别是结构第n个单元的NˑN单元组装矩阵;αn和βn分别为结构第n个单元的质量和刚度的修正系数,表示为实际结构的单元刚度和质量相对于初始矩阵的变化率㊂将式(1)的每个方程左乘φ-T j,其中j=1, ,n m㊂同样,将式(2)的每个方程左乘φT i,其中i=1, ,n c㊂可以得到φ-T j K aφi=λiφ-T j M aφi(5)φT i K dφ-j=λ-T jφi M dφ-j(6)合并式(5)和式(6)可以得到φT i K dφ-jφT i K aφ-j =λ-jφT i M dφ-jλiφT i M aφ-j(7)将式(3)㊁式(4)代入式(7)可以得到1+ðN e n=1αnφT i K nφ-jφT i K aφ-j =λ-jλi1+ðN e n=1βnφT i M nφ-jφT i M aφ-æèçöø÷j(8)对式(8)进行因式变换可以得到ðN e n=1αnφT i K nφ-jφT i K aφ-j -ðN e n=1βnφT i M nφ-jφT i M aφ-j=λ-jλi-1(9)式(9)可以简写为C(0)E(0[])㊃γ(0)=f(0)(10)式中,C=Φ()i T K nΦj,E=ðN e n=1-λ-jΦ()i T M nΦj,f(0)=λ-jΦ()i T MΦj-Φ()i T KΦj,γ=α[]βT㊂1.2H o p f i e l d神经网络H o p f i e l d神经网络作为一种递归神经网络,具有多反馈回路㊂递归神经网络通过结构递归建立,根据不同形式的递归性应用,产生了许多具有不同结构的递归网络㊂在各种神经网络的学习算法中,梯度下降法应用十分广泛㊂采用H o p f i e l d神经网络来求解现行矩阵方程,根据得到的解与理论解之间的对比,能判断该74建材世界2022年第43卷第4期神经网络模型求解线性矩阵方程的有效性㊂数学矩阵论中求C (0)E (0[])㊃γ(0)=f (0)的方法如下x =C ()0 E ()[]0/f ()0=C ()0 E ()[]0-()1㊃f ()0 下面依据负梯度设计方法推导该神经网络模型:1)构造一个基于矩阵范数的标量误差函数ε(t )= C ()0E ()[]0 22/2=C ()0E ()[](0㊃γ()0-f ())0T C ()0E ()[]0㊃γ()0-f ()()0/2 2)为了使上述误差减小,可采用经典的负梯度方法,因此我们可以得到如下误差函数负梯度方向作为下降方向-∂ε∂χ=-C ()0E ()[]0T C ()0E ()[](0㊃γ()0-f ())0 3)线性的基于负梯度的神经网络模型如下γ㊃()0()t =-γC ()0E ()[]0T C ()0E ()[](0㊃γ()0-f ())0其中参数γ>0决定网络的收敛速度,如条件允许,越大越好㊂2 数值算例下面对一个双跨连续梁进行模型修正研究,跨长和梁截面如图1所示㊂模拟连续梁的有限元模型由12个相同的欧拉-伯努利梁单元组成㊂单元中的每一个节点包括两个自由度㊁一个垂直位移和一个扭转角度㊂假设初始梁模型弹性模量为2.8ˑl 010P a ,密度为2.5ˑ103k g /m 3㊂假设第②㊁⑤㊁⑩三个单元的真实质量分别下降了40%㊁30%和20%,同时第③㊁⑤㊁⑨㊁⑩㊁单元的弹性模量分别减少30%㊁40%㊁35%㊁30%和20%,其他单元的质量与弹性模量保持初始值不变㊂将12个单元的弹性模量和质量认定为修正参数㊂修正后的弹性模量参数从左到右编为1~12号,相应的质量参数为13~24㊂换句话说,修正后的参数总数为24㊂计算得到该两跨连续梁24个参数修正后的神经网络预测值与实际真值结果对比如图2所示㊂由图2可以看出,修正后的H o p f i e l d 识别值与实际真值基本吻合,由此可证明H o p f i e l d 神经网络修正模型的有效性㊂(下转第65页)84建材世界 2022年 第43卷 第4期建材世界2022年第43卷第4期[10]施有志,柴建峰,赵花丽,等.地铁深基坑开挖对邻近建筑物影响分析[J].防灾减灾工程学报,2018,38(6):927-935.[11]郑翔,汤继新,成怡冲,等.软土地区地铁车站深基坑施工全过程对邻近建筑物影响实测分析[J].建筑结构,2021,51(10):128-134.[12]A n JB,S u nCF.S a f e t y A s s e s s m e n t o f t h e I m p a c t s o f F o u n d a t i o nP i t C o n s t r u c t i o n i nM e t r oS t a t i o no nN e a r b y B u i l d i n g s[J].I n t e r n a t i o n a l J o u r n a l o f S a f e t y a n dS e c u r i t y E n g i n e e r i n g,2020,10(3):423-429.[13]王利军,邱俊筠,何忠明,等.超大深基坑开挖对邻近地铁隧道变形影响[J].长安大学学报(自然科学版),2020,40(6):77-85.[14]尚国文,李飒,翟超,等.基坑开挖与邻近地铁结构变形相关性的实测分析[J].防灾减灾工程学报,2020,40(1):107-115.[15]丁智,张霄,金杰克,等.基坑全过程开挖及邻近地铁隧道变形实测分析[J].岩土力学,2019,40(S1):415-423.[16]许四法,周奇辉,郑文豪,等.基坑施工对邻近运营隧道变形影响全过程实测分析[J].岩土工程学报,2021,43(5):804-812.[17]左自波,黄玉林,吴小建,等.基坑施工对下方双线地铁隧道影响的数值模拟[J].北京交通大学学报,2019,43(3):50-56.[18]章润红,刘汉龙,仉文岗.深基坑支护开挖对临近地铁隧道结构的影响分析研究[J].防灾减灾工程学报,2018,38(5):857-866.[19]S u nH S,W a n g,L W,C h e nSW,e t a l.AP r e c i s e P r e d i c t i o n o f T u n n e l D e f o r m a t i o nC a u s e d b y C i r c u l a r F o u n d a t i o nP i t E x-c a v a t i o n[J].A p p l i e dS c i e n c e s,2019,9(11),2275.[20]徐宏增,石磊,王振平,等.深基坑开挖对邻近大直径管线影响的优化分析[J].科学技术与工程,2021,21(2):714-719.[21]贺雷,张亚楠,曹明洋,等.软土区基坑开挖对邻近电缆隧道的影响研究[J].建筑结构,2020,50(S1):1032-1037.[22]施有志,葛修润,李秀芳,等.地铁深基坑施工对周边管线影响数值分析[J].中山大学学报(自然科学版),2017,56(6):83-93.[23]L iWJ,H a nX M,C h e nT,e t a l.R e s e a r c ho n I n f l u n e n c eL a wo f E x i s t i n g P i p e-j a c k i n g T u n n e lA f f e c t e db y A d j a c e n t F o u n-d a t i o nP i tE x c a v a t i o ni nS o f tC l a y S t r a t u m[J].I O P C o n fe r e n c eS e r i e s M a t e r i a l sS c i e n c ea n d E n g i n e e r i n g,2019,688:022041.(上接第48页)3结论该文提出了一种基于H o p f i e l d人工神经网络和模态数据求解有限元模型修正参数的方法㊂基于结构实测响应,通过构建修正方程与H o p f i e l d神经网络对一两跨连续梁质量与弹性模量参数进行修正,修正后得到的有限元模型与结构实际特征基本统一㊂因此可以认为将H o p f i e l d神经网络引入模型参数修正中可以避免大型矩阵求逆和正则化,能更准确的修正结构参数㊂参考文献[1]方圣恩,林友勤,夏樟华.考虑结构参数不确定性的随机模型修正方法[J].振动.测试与诊断,2014,34(5):832-837,973.[2]姚春柱,王红岩,芮强,等.车辆点焊结构有限元模型参数不确定性修正方法[J].机械科学与技术,2014,33(10):1545-1550.[3]陈辉,张衡,李烨君,等.测量模态不确定的梁式结构随机有限元模型修正[J].振动工程学报,2019,32(4):653-659.[4] B e c k JL,K a t a f y g i o t i sLS.U p d a t i n g M o d e l s a n dT h e i rU n c e r t a i n t i e s-I:B a y e s i a nS t a t i s t i c a l F r a m e w o r k[J].J o u r n a l o f E n-g i n e e r i n g M e c h a n i c s,1988,124(4):455-461.[5] R u iQ,O u y a n g H,W a n g H Y.A nE f f i c i e n tS t a t i s t i c a l l y E q u i v a l e n tR e d u c e d M e t h o do nS t o c h a s t i c M o d e lU p d a t i n g[J].A p p l i e d M a t h e m a t i c a lM o d e l l i n g,2013,37(8):6079-6096.56。
有限元模型修正研究进展从线性到非线性一、本文概述随着计算力学的快速发展,有限元方法作为一种重要的数值分析工具,广泛应用于工程领域的各个方面。
然而,由于实际工程问题的复杂性和多样性,有限元模型的精度往往受到各种因素的影响,如材料参数的不确定性、边界条件的复杂性、模型简化的误差等。
为了提高有限元模型的预测精度,模型修正技术应运而生。
本文旨在对有限元模型修正的研究进展进行全面综述,特别是从线性到非线性的发展历程进行深入探讨。
文章首先回顾了线性有限元模型修正的基本理论和方法,包括基于灵敏度分析的方法、基于优化算法的方法以及基于响应面方法等。
然后,文章重点分析了非线性有限元模型修正的研究现状,包括材料非线性、几何非线性和接触非线性等方面的修正技术。
在此基础上,文章对模型修正技术的发展趋势进行了展望,包括多尺度模型修正、智能算法在模型修正中的应用等方面。
通过本文的综述,旨在为相关领域的研究人员提供一个全面、系统的有限元模型修正技术参考,同时也为工程实践中的模型修正工作提供理论支持和指导。
二、线性有限元模型修正研究线性有限元模型修正研究,作为有限元模型修正的初始阶段,主要关注于如何在保证计算效率的前提下,提高模型的预测精度。
线性有限元模型修正研究的目标在于优化模型参数,以使得模型的计算结果与实际观测结果尽可能一致。
在线性有限元模型修正中,研究者通常利用实验数据对模型进行验证和修正。
这些实验数据可能来源于各种物理实验,如静力实验、动力实验等。
通过比较实验结果和模型预测结果,研究者可以识别出模型中的误差来源,进而对模型进行修正。
线性有限元模型修正的方法主要包括参数辨识、模型更新和模型验证三个步骤。
参数辨识是通过实验数据确定模型参数的过程。
这个过程需要利用优化算法,如最小二乘法、遗传算法等,来寻找最优的参数组合。
模型更新是将辨识得到的参数应用到模型中,以更新模型的预测能力。
模型验证是通过比较更新后的模型预测结果和新的实验数据,来验证模型的有效性和准确性。
基于响应面方法的多喷嘴引射器有限元模型修正杨毅晟;刘宗政;麻越垠;闫喜强;王元兴;谢强【摘要】针对某多喷嘴引射器在脉动载荷作用下的动力学响应预测问题,对其有限元模型进行了修正,减少了材料属性、边界条件等对计算结果的影响.首先开展了引射器有限元模态分析,获得了初始模态分析频率;采用了多点激励多点响应锤击法进行了模态试验,获取了试验模态频率;基于有限元模型进行了误差分析,确定了材料密度、弹性模量、质量点质量等修正参数,通过中心复合设计方法确定了样本空间,构建了多目标响应面并对待修正参数进行了约束优化,得到了修正参数的最优解;最后,使用修正后的参数进行了有限元分析,获得了修正后的模态分析频率,并通过动力响应计算进行了模型确认.研究结果表明:修正后模态分析频率与模态试验频率(前三阶)误差均值由修正前的8.01%减小到2.81%,该修正方法能够显著提高有限元模态分析精度.%Aiming at the problems that prediction of the dynamic response of a multi-nozzle ejector under the action of pulsating load, the fi-nite element model was updated to reduce the influence of material properties and boundary conditions on the calculation results. Firstly, the finite element modal analysis of the ejector was carried out to obtain the initial modal analysis frequency. Secondly, the hammering modal test on ejector was done using multi-input multi-output analysis method to get the modal test frequency of ejector. Thirdly, based on the finite ele-ment model error analysis, the correction parameters such as material density, elastic modulus and quality of mass-point were determined. After the sample space was determined by the central composite design method, the multi-objective response surface was constructed and used to obtainthe optimal solution of the correction parameters. Finally, the optimal correction parameters were used for finite element analysis to obtain the corrected modal analysis frequency and dynamic response under the real load. The results indicate that the error of the first three modes between the corrected modal analysis frequency and the modal test frequency is reduced from 8. 01% to 2. 81%, so the updating method can significantly improve the precision of the finite element modal analysis.【期刊名称】《机电工程》【年(卷),期】2017(034)012【总页数】6页(P1376-1381)【关键词】多喷嘴引射器;响应面;模态试验;模态分析;模型修正【作者】杨毅晟;刘宗政;麻越垠;闫喜强;王元兴;谢强【作者单位】中国空气动力研究与发展中心,四川绵阳621000;中国空气动力研究与发展中心,四川绵阳621000;中国空气动力研究与发展中心,四川绵阳621000;中国空气动力研究与发展中心,四川绵阳621000;中国空气动力研究与发展中心,四川绵阳621000;中国空气动力研究与发展中心,四川绵阳621000【正文语种】中文【中图分类】TH113.1;TB123近年来,有限元法已经成为模态分析领域的支柱方法之一。
动力学有限元模型的复模态评估余好文;王轲【摘要】工程中常采用频率和模态置信度准则评估有限元模型,评估结果对无阻尼或阻尼很小的结构是有效的,但一般阻尼结构其每一阶模态不同自由度存在相位差异,此时实数域上的评估会产生误差,且常用评估方法难以总体衡量模型.基于复模态的基本理论,从复频率、复振型幅值及相位值三方面来评估有限元模型,并且根据响应分析要求,通过建立评判标准和权重集,得到一个能综合衡量有限元模型建模准确度的参数.算例表明该方法可较好预估模型响应准确度,对于结构动力学建模技术具有重要的工程实用价值.%Frequency and MAC are often used for the evaluation of the finite element models. The result of the evaluation is effective for the structures with small damping or without damping. However, there are phase differences for each mode of the damping structure with different DOFs. In this case, the evaluation in real number domain will produce errors, and it is difficult to evaluate the model using conventional evaluation methods. In this paper, based on the complex modal theory, the finite element model is evaluated from three aspects of complex frequency, complex amplitude and phase value. According to the requirement of response analysis, the evaluation criteria and weight sets are established, and the parameter that can comprehensively measure the accuracy of the finite element model is presented. Results of an example show that this method can effectively predict the accuracy of the model response. It has an important engineering practical value for the structural dynamics modeling.【期刊名称】《噪声与振动控制》【年(卷),期】2018(038)003【总页数】5页(P31-35)【关键词】振动与波;结构动力学;模型评估;复模态;有限元模型;阻尼结构【作者】余好文;王轲【作者单位】南京航空航天大学机械结构力学及控制国家重点实验室,南京210016;南京航空航天大学机械结构力学及控制国家重点实验室,南京 210016【正文语种】中文【中图分类】O321;TB123目前常用的结构动力学有限元模型评估方法主要适用于实模态情况下的模型评估,一般是从频率和振型两方面来评估所建立有限元模型的模态准确性,具体的方法是从试验所测得复模态中提取实模态的相关信息,然后与所建立的有限元模型计算结果比较。