中考数学总复习视图与投影导学案课前预习课前练习经典考题剖析课后训练无答案华东师大版
- 格式:doc
- 大小:208.50 KB
- 文档页数:4
备考中考数学一轮专题复习学案23投影与视图这种关系在现实生活中的应用个小正方体;(3)几何体的展开图1.投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影.2.平行投影:由平行光线(如太阳光线)形成的投影称为平行投影.3.中心投影:由同一点发出的光线所形成的投影称为中心投影.4.正投影:投影线垂直于投影面的投影叫做正投影.5.视点、视线、盲区:人朝着某个方向看时,眼睛的位置称为视点,由视点发出的线称为视线,视线之外看不到的地方称为盲区.【例1】(2019·通辽20/26)两栋居民楼之间的距离CD=30m,楼AC和BD均为10层,每层楼高为3m.上午某时刻,太阳光线GB与水平面的夹角为30°,此刻楼BD的影子会遮挡到楼AC 的第几层?(参考数据:3≈1.7,2≈1.4)典型例题知识点梳理知识点1:投影【解答】解:设太阳光线GB 交AC 于点F ,过F 作FH ⊥BD 于H ,由题意知,AC =BD =3×10=30m ,FH =CD =30m ,∠BFH =∠α=30°,在Rt △BFH 中,tan ∠BFH =BH FH =30BH 3,∴BH =303=310×1.7=17,∴FC =HD =BD ﹣BH ≈30﹣17=13, ∵133≈4.3,所以在四层的上面,即第五层, 答:此刻楼BD 的影子会遮挡到楼AC 的第5层. 1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图.2.物体的三视图特指主视图、俯视图、左视图.(1)主视图:在正面内得到的由前向后观察物体的视图,叫做主视图.(2)俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图.知识点梳理 知识点2: 视图(3)左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图.3.画三视图的要素:画三视图时,三个视图要放在正确的位置,并且使主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.【例2】(2019•包头4/26)一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为()A.24 B.24πC.96 D.96π【答案】B.【解答】解:由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr2h=22×6•π=24π,故选:B.1.(2016•北京14/29)如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠巩固训练典型例题的身高分别为1.8 m,1.5 m,则路灯的高为m.2.(2019•赤峰5/26)如图是一个几何体的三视图,则这个几何体是()A.三棱锥B.圆锥C.三棱柱D.圆柱3.(2019·通辽4/26)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.4.(2019·天津市5/25)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.5.(2019·重庆市2/26)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.6.(2019·河南省5/23)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同7.(2019·河北省14/26)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=()A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x 8.(2019·北京市11/28)在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)9.(2019·安徽省3/23)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.10.(2019•呼和浩特7/25)如图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面积是()A.80﹣2πB.80+4πC.80 D.80+6π11.(2018·通辽5/26)如图,一个几何体的主视图和左视图都是边长为6的等边三角形,俯视图是直径为6的圆,则此几何体的全面积是()A.18πB.24πC.27πD.42π12.(2018·兴安盟呼伦贝尔3/26)如图,是一个长方体的主视图与左视图,由图示数据(单位:)cm可得出该长方体的体积是()A.38cm C.6 3cm D.18 3cm 9cm B.313.(2018·呼和浩特4/25)下面是几个一样的小正方体摆出的立体图形的三视图,由三视图可知小正方体的个数为()A.6个B.5个C.4个D.3个14.(2018·赤峰5/26)如图是一个空心圆柱体,其俯视图是()A.B.C.D.15.(2018·包头2/26)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.16.(2018·巴彦淖尔5/24)如图是一个几何体的三视图,则这个几何体的表面积是()A.60π+48 B.68π+48 C.48π+48 D.36π+48 17.(2015•兰州24/28)如图,在一面与地面垂直的围墙的同一侧有一根高10米的旗杆AB和一个高度未知的电线杆CD,它们都与地面垂直.为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光的照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米;而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是____________投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.1.【答案】3.【解答】解:方法一:如下图,因为小军、小珠都身高与影长相等,所以,∠E=∠F=45°,所以,AB=BE=BF,设路灯的高AB为x m,则BD=x-1.5,BC=x-1.8,又CD=2.7,所以,x-1.5+x-1.8=2.7,解得:x=3(m).巩固训练参考答案方法二:如图:∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF , ∴CD DE AB BE =,FN MN FB AB=, 即:1.8 1.81.8AB BD =+,1.5 1.51.5 2.7AB BD =+-, 解得:AB =3 m ,答:路灯的高为3 m.2.【答案】B .【解答】解:由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:B .3.【答案】B .【解答】解:A 、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A 不符合题意;B 、左视图和俯视图相同,故B 符合题意;C 、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C 不符合题意;D 、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.4.【答案】B.【解答】解:从正面看,共有3列,每列的小正方形的个数从左到右依次为1、1、2.故选:B.5.【答案】A.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.6.【答案】C.【解答】解:图①的三视图为:图②的三视图为:故选:C.7.【答案】A.【解答】解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选:A.8.【答案】①②.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.9.【答案】C.【解答】解:几何体的俯视图是:故选:C.10.【答案】B.【解答】解:由三视图可知,该几何体是长方体,中间是空心圆柱体,正方体的长宽高分别为4,4,3,圆柱体直径为2,高为3,正方体表面积:4×4×2+4×3×4=80,圆柱体表面积2×3=6π,上下表面空心圆面积:2π,∴这个几何体的表面积是:80+6π﹣2π=80+4π,故选:B.11.【答案】C.【解答】解:圆锥的全面积=π×32+π×3×6=27π.故选:C.12.【答案】D.【解答】解:观察其视图知:该几何体为立方体,且立方体的长为3cm,宽为2cm,高为3cm,故其体积为:3⨯⨯=,33218cm故选:D.13.【答案】C.【解答】解:综合三视图,这个立体图形的底层应该有3个,第二层应该有1个小正方体,因此构成这个立体图形的小正方体的个数是3+1=4个.故选:C.14.【答案】D.【解答】解:该空心圆柱体的俯视图是故选:D.15.【答案】C.【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选:C .16.【答案】A .【解答】解:此几何体的表面积为π•42××2+•2π•4×6+(4+4)×6=60π+48,故选:A .17.【答案】(1)平行;(2)7 m.【解答】解:(1)平行;(2)连接AM 、CG ,过点E 作EN ⊥AB 于点N ,过点G 作GM ⊥CD 于点M ,则BN =EF=2,GH =MD =3,EN=BF =10,DH =MG =5所以AN =10-2=8, 有平行投影可知:MG CM NE AN =即53108-=CD . 解得CD =7.所以电线杆的高度为7 m. MN。
2013年中考数学专题复习第二十八讲投影与视图【基础知识回顾】一、投影:1、定义:一般地,用光线照射物体,在某个平面上得到得影子叫做物体的其中照射光线叫做投影所在的平面叫做2、平行投影:太阳光可以近似地看作是光线,像这样的光线所形成的投影称为平行投影3、中心投影:由圆一点(点光源)发出的光线形成的投影叫做如物体在、、等照射下所形成的投影就是中心投影【名师提醒:1、中心投影的光线平行投影的光线2、在同一时刻,不同物体在太阳下的影长与物离成3、物体投影问题有时也会出现计算解答题,解决这类问题首先要根据图形准确找出比例关系,然后求解】三、视图:1、定义:从不同的方向看一个物体,然后描绘出所看到的图形即视图其中,从看到的图形称为立视图,从看到的图形称为左视图,从看到的图形称为俯视图2、三种视图的位置及作用⑴画三视图时,首先确定的位置,然后在主视图的下面画出在主视图的右边画出⑵主视图反映物体的和,左视图反映物体的和俯视图反映物体的和【名师提醒:1、在画几何体的视图时,看得见部分的轮廓线通常画成线,看不见部分的轮廓线通常画成线2、在画几何体的三视图时要注意主俯对正,主左平齐,左俯相等】三、立体图形的展开与折叠:1、许多立体图形是由平面图形围成的,将它们适当展开即为平面展开图,同一个立体图形按不同的方式展开,会得到不同的平面展开图2、常见几何体的展开图:⑴正方体的展开图是⑵几边形的柱展开图是两个几边形和一个⑶圆柱的展开图是一个和两个⑷圆锥的展开图是一个与一个【名师提醒:有时会出现根据物体三视图中标注的数据求原几何体的表面积,体积等题目,这时要注意先根据三种视图还原几何体的形状,然后想象有关尺寸在几何体展开图中标注的是哪些部分,最后再根据公式进行计算】【重点考点例析】考点一:投影例1 (2012•湘潭)如图,从左面看圆柱,则图中圆柱的投影是()A.圆B.矩形C.梯形D.圆柱考点:平行投影.分析:根据圆柱的左视图的定义直接进行解答即可.解答:解:如图所示圆柱从左面看是矩形,故选:B.点评:本题主要考查了简单几何体的三视图,关键是根据三视图的概念得出是解题关键.对应训练2.(2012•梅州)春蕾数学兴趣小组用一块正方形木板在阳光做投影实验,这块正方形木板在地面上形成的投影是可能是(写出符合题意的两个图形即可)考点:平行投影.专题:开放型.分析:平行投影的特点:在同一时刻,平行物体的投影仍旧平行.解答:解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形.故答案为:正方形、菱形(答案不唯一).点评:本题考查了平行投影,太阳光线是平行的,那么对边平行的图形得到的投影依旧平行.考点二:几何题的三视图例 2 (2012•咸宁)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A.B.C.D.考点:简单几何体的三视图.分析:看哪个几何体的三视图中有长方形,圆,及三角形即可.解答:解:A、三视图分别为长方形,三角形,圆,符合题意;B、三视图分别为三角形,三角形,圆及圆心,不符合题意;C、三视图分别为正方形,正方形,正方形,不符合题意;D、三视图分别为三角形,三角形,矩形及对角线,不符合题意;故选A.点评:考查三视图的相关知识;判断出所给几何体的三视图是解决本题的关键.例3 (2012•岳阳)如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得几何体的视图()A.主视图改变,俯视图改变B.主视图不变,俯视图不变C.主视图不变,俯视图改变D.主视图改变,俯视图不变考点:简单组合体的三视图.分析:主视图是从正面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.解答:解:根据图形可得,图①及图②的主视图一样,俯视图不一样,即主视图不变,俯视图改变.故选C.点评:此题考查了简单组合体的三视图,掌握主视图及俯视图的观察方法是解答本题的关键,难度一般.对应训练2.(2012•随州)下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个考点:简单几何体的三视图.分析:分别分析四种几何体的三种视图,再找出有两个相同,而另一个不同的几何体.解答:解:①正方体的主视图与左视图都是正方形;②圆柱的主视图和左视图都是长方形;③圆锥主视图与左视图都是三角形;④球的主视图与左视图都是圆;故答案为:D.点评:本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.3.(2012•宜昌)球和圆柱在水平面上紧靠在一起,组成如图所示的几何体,托尼画出了它的三视图,其中他画的俯视图应该是()A.两个相交的圆B.两个内切的圆C.两个外切的圆D.两个外离的圆考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面可看到两个外切的圆,故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解决此类问题时既要有丰富的数学知识,又要有一定的生活经验.考点三:判几何体的个数例4(2012•宿迁)如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是()A.2 B.3 C.4 D.5考点:由三视图判断几何体.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再结合题意和三视图的特点找出每行和每列的小正方体的个数再相加即可.解答:解:由俯视图易得最底层有3个立方体,第二层有1个立方体,那么搭成这个几何体所用的小立方体个数是4.故选C.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.对应训练4.(2012•孝感)几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是()A.4 B.5 C.6 D.7考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数,即可得出这个几何体的体积.解答:解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.故选:B.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.考点四:几何体的相关计算例 5 (2012•荆州)如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为 cm2.(结果可保留根号)考点:由三视图判断几何体;解直角三角形.分析:根据该几何体的三视图知道其是一个六棱柱,其表面积是六个面的面积加上两个底的面积.解答:解:根据该几何体的三视图知道其是一个六棱柱,∵其高为12cm,底面半径为5,∴其侧面积为6×5×12=360cm2密封纸盒的侧面积为:12×5×6×53=753cm2∴其全面积为:(753+360)cm2.故答案为:(753+360).点评:本题考查了由三视图判断几何体及解直角三角形的知识,解题的关键是正确的判定几何体.对应训练1.(2012•南平)如图所示,水平放置的长方体底面是长为4和宽为2的矩形,它的主视图的面积为12,则长方体的体积等于()A.16 B.24 C.32 D.48考点:简单几何体的三视图.分析:由主视图的面积=长×高,长方体的体积=主视图的面积×宽,得出结论.解答:解:依题意,得长方体的体积=12×2=24.故选B.点评:本题考查了简单几何体的三视图.关键是明确主视图是由长和高组成的.【聚焦山东中考】1.(2012•济南)下面四个立体图形中,主视图是三角形的是()A.B.C.D.考点:简单几何体的三视图.分析:找到立体图形从正面看所得到的图形为三角形即可.解答:解:A、主视图为长方形,不符合题意;B、主视图为中间有一条竖线的长方形,不符合题意;C、主视图为三角形,符合题意;D、主视图为长方形,不符合题意;故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.(2012•烟台)如图是几个小正方体组成的一个几何体,这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:俯视图是从上面看到的图形,共分三列,从左到右小正方形的个数是:1,1,1.解答:解:这个几何体的俯视图从左到右小正方形的个数是:1,1,1,故选:C.点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图所看的方向:从上面看所得到的图形.3.(2012•潍坊)如图空心圆柱体的主视图的画法正确的是()A.B.C.D.考点:简单组合体的三视图.分析:找到从前面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选C.点评:本题考查了三视图的知识,主视图是从物体的前面看得到的视图,考查了学生细心观察能力,属于基础题.4.(2012•威海)如图所示的机器零件的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据左视图的定义,找到从左面看所得到的图形即可.解答:解:机器零件的左视图是一个矩形.中间有1条横着的虚线.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看到的棱用实线表示,看不到的用虚线表示.5.(2012•泰安)如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有1个大长方形,第二层中间有一个小正方形.故选A.点评:本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,难度适中.6.(2012•济宁)如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个考点:由三视图判断几何体.分析:左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有3个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.解答:解:左视图与主视图相同,可判断出底面最少有3个小正方体,最多有4个小正方体.而第二行则只有1个小正方体.则这个几何体的小立方块可能有4或5个.故选B.点评:本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.7.(2012•临沂)如图是一个几何体的三视图,则这个几何体的侧面积是()A.18cm2 B.20cm2 C.(18+23)cm2 D.(18+43)cm2考点:由三视图判断几何体.专题:数形结合.分析:根据三视图判断出该几何体是底面边长为2cm,侧棱长为3cm的正三棱柱,然后根据矩形的面积公式列式计算即可得解.解答:解:根据三视图判断,该几何体是正三棱柱,底边边长为2cm,侧棱长是3cm,所以侧面积是:(3×2)×3=6×3=18cm2.故选A.点评:本题考查了由三视图判断几何体,熟练掌握三棱柱的三视图,然后判断出该几何体是三棱柱是解本题的关键.【备考真题过关】一、选择题1.(2012•绵阳)把一个正五菱柱如图摆放,当投射线由正前方射到后方时,它的正投影是()A.B.C.D.考点:平行投影.分析:根据正投影的性质:当投射线由正前方射到后方时,其正投影应是矩形.解答:解:根据投影的性质可得,该物体为五棱柱,则正投影应为矩形.故选B.点评:本题考查正投影的定义及正投影形状的确定,解题时要有一定的空间想象能力.2.(2012•益阳)下列命题是假命题的是()A.中心投影下,物高与影长成正比B.平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径考点:中心投影;三角形中位线定理;切线的性质;命题与定理;平移的性质.分析:分别利用中心投影的性质以及切线的性质、平移的性质、三角形中位线定理等进行判断即可得出答案.解答:解:A.中心投影下,物高与影长取决于物体距光源的距离,故此选项错误,符合题意;B.平移不改变图形的形状和大小,根据平移的性质,故此选项正确,不符合题意;C.三角形的中位线平行于第三边,根据三角形中位线的性质,故此选项正确,不符合题意;D.圆的切线垂直于过切点的半径,利用切线的判定定理,故此选项正确,不符合题意.故选:A.点评:此题主要考查了中心投影的性质以及切线的性质、平移的性质、三角形中位线定理等知识,熟练掌握并区分这些性质是解题关键.3.(2012•玉林)下列基本几何体中,三视图都相同图形的是()A.B.C.D.圆柱三棱柱球长方体考点:简单几何体的三视图.分析:根据三视图的基本知识,分析各个几何体的三视图然后可解答.解答:解:A、圆柱的主视图与左视图均是矩形,俯视图是圆,故本选项错误;B、三棱柱的主视图与左视图均是矩形,俯视图是三角形,故本选项错误;C、球体的三视图均是圆,故本答案正确;D、长方体的主视图与俯视图是矩形,左视图是正方形,故本答案错误.故选C.点评:本题难度一般,主要考查的是三视图的基本知识.解题时也应具有一定的生活经验.4.(2012•永州)如图所示,下列水平放置的几何体中,俯视图是矩形的是()A.B.C.D.考点:简单几何体的三视图.分析:俯视图是从物体的上面看得到的视图,仔细观察各个简单几何体,便可得出选项.解答:解:A、圆柱的俯视图为矩形,故本选项正确;B、圆锥的俯视图为圆,故本选项错误;C、三棱柱的俯视图为三角形,故本选项错误;D、三棱锥的俯视图为三角形,故本选项错误.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.本题比较简单.5.(2012•义乌市)下列四个立体图形中,主视图为圆的是()A.B.C.D.考点:简单几何体的三视图.分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.解答:解:A、主视图是正方形,故此选项错误;B、主视图是圆,故此选项正确;C、主视图是三角形,故此选项错误;D、主视图是长方形,故此选项错误;故选:B.点评:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.6.(2012•六盘水)如图是教师每天在黑板上书写用的粉笔,它的主视图是()A.B.C.D.考点:简单几何体的三视图.分析:首先判断该几何体是圆台,然后确定从正面看到的图形即可.解答:解:该几何体是圆台,主视图是等腰梯形.故选C.点评:本题考查了简单几何体的三视图,属于基础题,比较简单.7. (2012•黄冈)如图,水平放置的圆柱体的三视图是()A.B.C.D.考点:简单几何体的三视图.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,即可得出答案.解答:解:依据圆柱体放置的方位来说,从正面和上面可看到的长方形是一样的;从左面可看到一个圆.故选A.点评:本题考查了几何体的三种视图,掌握定义是关键,本题是基础题,常规题型.8.(2012•白银)将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.考点:简单几何体的三视图;点、线、面、体.分析:首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.解答:解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.故选:D.点评:此题主要考查了面动成体,以及简单几何体的三视图,关键是正确判断出Rt△ACB 绕直角边AC旋转一周所得到的几何体的形状9.(2012•资阳)如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A.B.C.D.考点:简单组合体的三视图;截一个几何体.分析:根据俯视图是从上面看到的图形判定则可.解答:解:从上面看,是正方形右边有一条斜线,故选:A.点评:本题考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.10.(2012•云南)如图是由6个形同的小正方体搭成的一个几何体,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上面看到的识图分析解答.解答:解:从上面看,是1行3列并排在一起的三个正方形.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.11.(2012•襄阳)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()A.B.C.D.考点:简单组合体的三视图.分析:主视图是从正面看,注意所有的看到的棱都应表现在主视图中.解答:解:从上面看,圆锥看见的是:三角形,两个正方体看见的是两个正方形.故答案为B.点评:此题主要考查了三视图的知识,关键是掌握三视图的几种看法.12.(2012•西宁)如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画好它的三视图,那么他所画的三视图的俯视图应该是()A.两个外切的圆B.两个内切的圆C.两个相交的圆D.两个外离的圆考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面可看到两个外切的圆.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.13.(2012•武汉)如图,是由4个相同小正方体组合而成的几何体,它的左视图是()A.B.C.D.考点:简单组合体的三视图.专题:常规题型.分析:左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.解答:解:从左边看得到的是两个叠在一起的正方形.故选D.点评:此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.14.(2012•温州)我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.解答:解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方形,得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.点评:此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.15.(2012•肇庆)如图是某几何体的三视图,则该几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选A.点评:主视图和左视图的大致轮廓为长方形的几何体为锥体.16.(2012•扬州)如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是()A.4个B.5个C.6个D.7个考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数.解答:解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个.故选B.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.17.(2012•厦门)如图是一个立体图形的三视图,则这个立体图形是()A.圆锥B.球C.圆柱D.三棱锥考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、圆锥的三视图分别为三角形,三角形,圆,故选项正确;B、球的三视图都为圆,错误;C、圆柱的三视图分别为长方形,长方形,圆,故选项错误;D、三棱锥的三视图分别为三角形,三角形,三角形及中心与顶点的连线,故选项错误.故选A.点评:本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析.二、填空题18.(2012•新疆)请你写出一个主视图与左视图相同的立体图形是.考点:简单几何体的三视图.专题:开放型.分析:主视图、左视图是分别从物体正面、左面看,所得到的图形.解答:解:圆柱的主视图与左视图都为长方形.故答案为:圆柱(答案不唯一).点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.19.(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为.考点:由三视图判断几何体.分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故答案为:4.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.20.(2012•鸡西)由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是.考点:由三视图判断几何体.分析:易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多7块.故答案为:4或5或6或7.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.21.(2012•大庆)用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是个.考点:由三视图判断几何体;简单组合体的三视图.。
XX年中考数学视图与投影专题复习导学案XX年中考数学专题练习31《视图与投影》【知识归纳】投影投影的定义:。
平行投影:。
中心投影:。
视图当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
物体的三视图特指、、。
概念:从看到的图形叫做主视图,从看到的图形叫做俯视图,从看到的图形叫做左视图;主视图反映几何体的,俯视图反映几何体的,左视图反映几何体的.画法:主视图的长与俯视图的长对正,主视图的高与左视图的高平齐,俯视图的宽与左视图的宽相等;画三视图时,看得见的轮廓线用实线,看不见的轮廓线应画成.【基础检测】.如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是A.B.c.D..如图是由4个大小相同的正方体组合而成的几何体,A.B.c.D.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是..一个侧面积为16πc2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为c..如图是一个几何体的三视图,则这个几何体的侧面积是A.c2B.c2c.c2D.c2一个物体由多个完全相同的小正方体组成,它的三视图如图1所示,那么组成这个物体的小正方体的个数为A.2个B.3个c.5个D.10个【达标检测】一.选择题.如图所示几何体的俯视图是A.B.c.D..如图是一个由4个相同的正方体组成的立体图形,它A.B.c.D..下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是A.B.c.D.如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2∶5,且三角尺的一边长为8c,则投影三角尺的对应边长为A.8cB.20cc.3.2cD.10c.由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是A.主视图的面积最小B.左视图的面积最小c.俯视图的面积最小D.三个视图的面积相等.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是A.B.c.D..如图所示,该几何体的俯视图是A.B.c.D..如图是由4个大小相同的正方体组合而成的几何体,其主视图是A.B.c.D.晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是A.变长B.变短c.先变长后变短D.先变短后变长0.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为A.236πB.136πc.132πD.120π1.把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是A.B.c.D.如图是由几个小立方体快所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的小数,这个几何体的主视图是二、填空题3.写出一个三视图中主视图与俯视图完全相同的几何体的名称.在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为..如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积为c2.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是.学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有A.7盒B.8盒c.9盒D.10盒.如图,由几个相同的小正方体搭成的几何体的主视图和俯视图,组成这个几何体的小正方体的个数是。
第三章 视图与投影§1 视图◆导学目标:一、通过实例能够判断简单物体的三种视图,能根据三视图描述基本几何体或实物原型。
二、会画圆柱、圆锥、球、直棱柱(仅限于直四棱柱)的三种视图,体会这几种几何体与其视图之间的相互转化。
◆课前预习:一、回顾主视图、左视图和俯视图的概念从不同的方向观察同一物体时,可能看到不同的图形。
其中,把从 看到的图形叫做主视图;从 看到的图形叫做左视图;从 看到的图形叫做俯视图。
二、圆柱、圆锥和球的三视图各是什么? 三、三棱柱、四棱柱的三视图各是什么?◆课堂导学:例一:一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子。
例二:如图是底面为等腰直角三角形和等腰梯形的三棱柱、四棱柱的俯视图,尝试画出它们的主视图和左视图。
规律: 画三视图时,主、俯视图要长对正,主、左视图要高平齐,左、俯视图要宽相等。
看得见部分的轮廊线通常画成实线,看不见部分的轮廊线通常画成虚线。
画直棱柱的三种视图时要依据几何体中的各边的 画主视图和左视图,◆当堂导练:右手栏1、桌面上放着一个圆柱和一个正方体。
请你说出右面的三幅图分别是从哪个方向看到的。
2、如右图,由三个小立方体搭成的几何体的俯视图是( )3、一种机器上有一个进行传动的零件叫燕尾槽(如图),为了准确车出这个零件,请画出它的三视图。
4、右图是由一些相同的小正方体构成的几何体的三视图,则构成这个几何体的小正方体的个数是( )A 、5B 、6C 、7D 、85、有一实物如图,那么它的主视图是 ( )A B C D6、将右图所示的直角三角形ABC(∠C=90°)绕斜边AB 旋转一周,所得的几何体的主视图是下面四个图形中的( )A.①B.②C.③D.④7、桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由 个这样的正方体组成。
①②③④A B右手栏8、如图,粗线表示嵌在玻璃正方体内的一根铁丝,请画出该正方体的三视图:◆课后练习:一、基础训练1、 图1所示的几何体的左视图是2、下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是( ) A 、球 B 、圆柱 C 、三棱柱 D 、圆锥3、如图所示的正四棱锥的俯视图是( )4、一空间几何体的三视图如图所示,则这个几何体是A 、圆柱B 、圆锥C 、球D 、长方体5、小明从正面观察下图所示的两个物体,看到的是( )。
中学中考数学第一轮复习导学案-视图与投影以下是为大家整理的中学中考数学第一轮复习导学案-视图与投影的相关范文,本文关键词为中学,中考,数学,第一轮,复习,导学案,视图,投影,视图,投,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在中考初中中查看更多范文。
视图与投影◆课前热身1.如图,箭头表示投影的方向,则图中圆柱体的投影是()A.圆b.矩形c.梯形D.圆柱2.小华拿着一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影不可能是()3.如图所示几何体的主(正)视图是()A.b.c.D.4.一个几何体的三视图如图所示,这个几何体是()A.圆柱【参考答案】1.b2.A3.b4.A◆考点聚焦b.球c.圆锥D.正方体主(正)视图左视图俯视图知识点几何体的三视图侧面展开图投影大纲要求1.能画出基本几何体的三视图,根据三视图描述基本几何体.2.能画直棱柱、圆锥、圆柱的侧面展开图.3.根据展开图判断和制作相应的立体模型.4.准确地进行平面图形与空间几何体的相互转换,?并能熟练地进行立体图形表达上路径最短问题的计算.5.掌握中心投影与平行投影的区别与联系.-1-考查重点和常考题型1.主要考查几何体的三视图,主要以选择题出现2.主要考查根据光线的方向辨认实物的阴影。
主要以选择题或者填空题出现◆备考兵法1.正确区分常见几何体的三视图.2.综合运用勾股定理,?解直角三角形的有关知识解决几何体的展开图的计算问题.3.学习立体图形展开与将展开图折叠成立体图形的问题.?通过实际动手操作,加深理解和掌握.培养自己的空间想象能力.◆考点链接1.从观察物体时,看到的图叫做主视图;从观察物体时,看到的图叫做左视图;从观察物体时,看到的图叫做俯视图.2.主视图与俯视图的一致;主视图与左视图的一致;俯视图与左视图的一致.3.叫盲区.4.投影可分为平行投影与中心投影.其中所形成的投影叫平行投影;所形成的投影叫中心投影.5.利用光线是否平行或是否交于一点来判断是投影或投影,以及光源的位置和物体阴影的位置.◆典例精析例1(河南)一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为()A.3b.4c.5D.6【解析】本题主要考查三视图的相关知识:主视图主要确定物体的长和高,左视图确定物体的宽和高,俯视图确定物体的长和宽。
第二十九章投影与视图29.1 投影第1课时平行投影与中心投影一、导学1.课题导入情景:放映电影《小兵张嘎》片段——小胖墩和他爸在日军炮台内为日本鬼子表演皮影戏.问题:皮影戏里蕴含了一个什么数学原理呢?这就是我们这节课要研究的问题.(板书课题)2.学习目标(1)知道投影、投影面、平行投影和中心投影的概念.(2)能说出平行投影和中心投影的区别.3.学习重、难点重点:理解平行投影和中心投影的特征.难点:在投影面上画出平面图形的平行投影或中心投影.4.自学指导(1)自学内容:教材P87~P88练习上面的内容.(2)自学时间:5分钟.(3)自学方法:观察,阅读,思考.(4)自学参考提纲:①一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.②由平行光线形成的投影叫做平行投影,如太阳光是一组互相平行的射线,物体在它的照射下形成的影子,就是平行投影.③由同一点(点光源)发出的光线形成的投影叫做中心投影.④平行投影的光源一般有探照灯,其光线是平行的;中心投影的光源有灯泡,其光线相交于一点.⑤有两根木棒AB、CD在同一平面上直立着,其中木棒AB在太阳光下的影子为BE(如图所示),请你在图中画出这时木棒CD的影子.解:如图所示,DF为木棒CD的影子.⑥确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.⑦下列现象中是投影现象的有CD(填序号)A.电视上的画面B.电影屏幕上的画面C.地上旗杆的影子D.墙上的树影E.水中的月亮⑧下列光源发出的光线形成的投影是平行投影的是(B)A.车头灯B.太阳C.蜡烛D.路灯⑨把下列物体与它们的投影用线连接起来.⑩小华在不同时间于天安门前拍了几幅照片,下面哪幅照片是小华在下午拍摄的?第三幅照片.二、自学学生结合自学指导进行自学.三、助学1.师助生:(1)明了学情:明了学生能否区分平行投影和中心投影.(2)差异指导:根据学情进行个别或分类指导.2.生助生:生生互动、交流、研讨、订正错误.四、强化1.平行投影和中心投影的概念及其联系和区别.2.展示自学参考提纲第⑤、⑥题的答案并讲解,点学生口答自学参考提纲第⑦~⑩题并点评.五、评价1.学生学习的自我评价:这节课你学到了哪些知识?还有什么疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、学习方法、效果及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时通过引入具体情境,让学生感受平行投影与中心投影的特征,进而探讨中心投影与平行投影的区别与联系,增强学生的抽象概括能力.对于空间观念不强的学生,可借助太阳光线进行投影实例帮助理解,这样不仅直观而且富有真实感,也能激发学生的学习兴趣.一、基础巩固(70分)1.(10分)皮影戏中的皮影是由中心投影得到的.2.(10分)下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序正确的是(C)A.abcdB.dbcaC.cdabD.acbd3.(10分)小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是(A)A B C D4.(20分)下面两幅图表示两根标杆在同一时刻的投影.请在图中画出形成投影的光线.它们是平行投影还是中心投影?并说明理由.解:第(1)幅图为平行投影,因为其投影线互相平行;第(2)幅图为中心投影,因为其投影线相交于一点.5.(20分)小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,在某时刻标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一条直线上),量得ED=2米,DB=4米,CD=1.5米,求电线杆AB的高度.解:∵CD∥AB,∴△ECD∽△EAB,∴CD ED AB EB=,即.AB=1526.解得AB=4.5(米).∴电线杆AB的高度是4.5米.二、综合应用(20分)6.(20分)如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点沿OA所在的直线行走14米到B点时,影子的长度是变长了还是变短了?变长或变短了多少米?解:影子的长度变短了.∵CA∥PO,∴△MCA∽△MPO,∴CA MA PO MO=,即.MAMA=+16820,解得MA=5(米).同理DB BN PO ON=,即.BNBN=+16820,解得BN=1.5(米).5-1.5=3.5(米).所以变短了3.5米.三、拓展延伸(10分)7.(10分)某校墙边有两根木杆.(1)某一时刻甲木杆在阳光下的影子如图1所示,你能画出乙木杆的影子吗?(用线段表示影子)(2)当乙木杆移动到什么位置时,其影子刚好不落在墙上? 在图2中画出木杆移动后的位置及其影子.29.1 投影第2课时正投影一、新课导入1.课题导入下图表示一块三角尺在光线照射下形成的投影,其中哪个是平行投影?哪个是中心投影? 图(2) (3)的投影线与投影面的位置关系有什么区别?像图(3)这样,投影线垂直于投影面产生的投影叫做正投影.这节课我们研究正投影.(板书课题)2.学习目标(1)知道什么是正投影.(2)能画出简单物体的正投影.3.学习重、难点重点:正投影的概念及性质.难点:正确画出简单物体的正投影.二、分层学习1.自学指导(1)自学内容:教材P88~P90归纳.(2)自学时间:8分钟.(3)自学方法:观察、归纳.(4)探究提纲:①投影线垂直于投影面产生的投影叫做正投影.②如图所示:当AB平行于投影面P时,AB=A1B1;当AB倾斜于投影面P时,AB>A2B2;当AB垂直于投影面P时,它的正投影是一个点.③如图所示:当纸板P平行于投影面Q时,P的正投影与P的形状、大小一样;当纸板P倾斜于投影面Q时,P的正投影与P的形状、大小不完全一样;当纸板P垂直于投影面Q时,P的正投影成为一条线段.④物体的正投影的形状、大小与它相对于投影面的位置有关.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.2.自学:学生结合自学指导进行自学.3.助学(1)师助生:①明了学情:观察学生探究提纲的完成情况和是否理解正投影的性质.②差异指导:根据学情进行相应指导,条件许可时,还可通过实验验证.(2)生助生:小组相互交流、研讨.4.强化:正投影的性质.1.自学指导(1)自学内容:教材P90~P92.(2)自学时间:10分钟.(3)自学方法:仔细阅读例题的分析和解题过程,体会画正投影的操作要点.(4)自学参考提纲:①教材P90例题第(1)问中,面ABCD和与它平行的面的正投影重合,投影都是正方形A′B′C′D′,其余四个面都与投影面垂直,所以它们的正投影分别是线段A′B′,B′C′,C′D′,A′D′.②例题第(2)问中,面ABCD和面CDEH的正投影重合,投影都是矩形A′B′C′D′,面ABGF和面GHEF的正投影重合,投影都是矩形A′B′G′F′,面ADEF的正投影是线段D′F′,面BCHG的正投影是线段C′G′;棱AB 和棱HE的正投影重合,投影都是线段A′B′,棱GF的正投影是线段G′F′,棱CD的正投影是线段C′D′.③如图,投影线的方向如箭头所示,画出圆柱体的正投影.2.自学:学生参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:观察学生能否画出简单物体的正投影.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:小组内相互交流、研讨.4.强化:物体正投影的画法.三、评价1.学生学习的自我评价:这节课你学到了哪些知识?掌握了哪些解题技能?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、学习方法、效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时是在上一课时的基础上进一步学习投影的有关知识.教学时要注意让学生自己动手操作,学生在经历观察、探究、思考、归纳的过程中,掌握正投影的特征.教师在教学过程中应注意让学生在实际操作中发现问题,教师对于学生的疑问要进行收集并及时解答,另外还要充分提升学生的空间想象力.一、基础巩固(70分)1.(10分) 如图,投影线的方向如箭头所示,则图中圆柱体的投影是(B)A.圆B.矩形C.梯形D.圆柱2.(10分)一条线段在阳光下的投影可能是(D)①线段②射线③直线④点A.①③B.②③C.①②D.①④3.(10分)三角形的正投影是(D)A.三角形B.线段C.直线或三角形D.线段或三角形4.(10分)当棱长为20 cm正方体的某个面平行于投影面时,这个正方体的正投影的面积为(C)A.20 cm2B.300 cm2C.400 cm2D.600 cm25.(10分)有一个窗户是田字形,阳光倾斜的照进窗户,地面便现出它的影子,你认为可能为窗户的影子的是(D)①②③④A.④B.②④C.①②D.①③6.(20分)水平面上放置的球、正三棱锥、竖直放置的圆锥和水平放置的圆柱在水平面上的正投影分别是圆、正三角形、圆、矩形.二、综合应用(20分)7.(10分)如图是由上到下的光线照射一个正五棱柱的正投影,请你指出这时正五棱柱的各个面的正投影分别是什么.解:上下表面的正投影相同,是正五边形;五个侧面的正投影都是一条线段.8.(10分)一个圆锥的轴截面平行于投影面,它的正投影是边长为3的等边三角形.求圆锥的体积和表面积.解:圆锥的体积:ππ⎛⎫⨯⨯⨯= ⎪⎝⎭21339333228;圆锥的表面积:πππ⎛⎫⨯+⨯⨯= ⎪⎝⎭2312733224.三、拓展延伸(10分)9.(10分)画出如图摆放的正六棱柱的正投影: (1)投影线由物体前方照射到后方; (2)投影线由物体左方照射到右方; (3)投影线由物体下方照射到上方. 解:29.2三视图第1课时三视图一、新课导入1.课题导入情景:展示图片,如图是从三个方向看我国海军115导弹驱逐舰的图象,你能根据这三个图象,想象出该舰的大致形状吗?这三个图象就是该舰的三视图.(板书课题)2.学习目标(1)了解视图、三视图的概念.(2)能说出三视图与正投影的关系及三视图中的位置、大小关系.3.学习重、难点重点:三视图的概念.难点:三个视图之间的关系.二、分层学习1.自学指导(1)自学内容:教材P94~P96例1上面的内容.(2)自学时间:5分钟.(3)自学方法:阅读、观察、理解、想象.(4)自学参考提纲:①当我们从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图.②一个物体在三个互相垂直的投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.③三视图的摆放:主视图要放在左上方,它的正下方应是俯视图,它的正右方应是左视图.④主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.⑤画三视图时,看得见部分的轮廓线画成实线,看不见部分的轮廓线画成虚线.⑥将图中的几何体与其对应的三视图用线连起来.2.自学:学生结合自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生是否弄清三视图的含义及其画法要求.②差异指导:根据学情确定指导对象和内容.(2)生助生:小组内相互交流、研讨.4.强化:点一名学生口答自学参考提纲第⑥题并点评.1.自学指导(1)自学内容:教材P96~P97.(2)自学时间:8分钟.(3)自学方法:阅读、理解例题中分析部分的内容.(4)自学参考提纲:①画三视图的方法:第一步,确定主视图的位置,画出主视图;第二步,在主视图正下方画出俯视图,注意与主视图长对正;第三步,在主视图正右方画出左视图,注意与主视图高平齐,与俯视图宽相等.②为表示圆柱、圆锥等的对称轴,规定在视图中加画点划线表示对称轴.③画出如图所示的正三棱柱、圆锥和半球的三视图.2.自学:学生结合自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生是否能按画三视图的要求准确地画出三视图.②差异指导:根据学情进行个别或分类指导.(2)生助生:小组内相互交流、研讨.4.强化(1)画三视图的方法.(2)点3名学生板演自学参考提纲第③题并点评.三、评价1.学生学习的自我评价:这节课你学到了哪些知识?还存在什么疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、学习方法、存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时的教学应在教师的指导下由学生自己动手作图,观察、发现并归纳三视图的基本要点,明确主视图反映的是物体的长和高,俯视图反映的是物体的长和宽,左视图反映的是物体的宽和高.“长对正,高平齐,宽相等”是画三视图必须遵从的规律.一、基础巩固(70分)1.(10分)下列几何体中,主视图、左视图和俯视图是全等形的几何体是(B )A.圆柱B.正方体C.棱柱D.圆锥2.(10分)沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是(D )3.(10分)如图是小亮送给他外婆的礼品盒,礼品盒的主视图是(A )4.(10分)某长方体的主视图和左视图如图所示(单位:cm),则其俯视图是面积为6cm2的长方形.5.(30分)画出下列几何体的三视图:解:二、综合应用(20分)6.(20分)分别画出图中由7个小正方体组合而成的几何体的三视图.解:三、拓展延伸(10分)7.(10分)分别画出下面组合体的三视图. 解:29.2 三视图第2课时由三视图确定几何体一、导学1.课题导入情景:根据下图中的椅子的视图,工人就能制造出符合设计要求的椅子.你能说明其中的数学道理吗?由于三视图不仅反映了物体的形状,还反映了各个方向的尺寸大小,设计人员可以把自己构思的创造物用三视图表示出来,再由工人制造出符合各种要求的机器、工具、生活用品等,因此三视图在许多行业有着广泛的应用.这节课我们研究由三视图想象几何体的问题.(板书课题)2.学习目标能由三视图描述几何体的基本形状或实物原型.3.学习重、难点根据物体的三视图描述出几何体的基本形状或实物原型.4.自学指导(1)自学内容:教材P98~P99例3和例4.(2)自学时间:8分钟.(3)自学方法:阅读、观察、归纳.(4)自学参考提纲:①由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形.②教材P98例4中,由主视图知,物体的正面是正五边形;由俯视图知,由上向下看物体有两个面的视图是矩形,它们的交线是一条棱,可见到,另有两条棱被遮挡;由左视图知,物体的左侧有两个面的视图是矩形,它们的交线是一条棱,可见到.综合各视图可知,该物体是正五棱柱形状的.③由三视图想象实物形状:④根据三视图描述物体的形状:这是一个由半圆柱(上部)和长方体(下部)组合而成的几何体.⑤下图是由几个小立方体所搭成的几何体的主视图和俯视图,小正方形中的数字表示该位置上的小立方体的个数.确定x、y的值;完成这个几何体的左视图.x=3,y=2;这个几何体的左视图如图所示.二、自学学生结合自学指导进行自学.三、助学1.师助生:(1)明了学情:明了学生能否根据三视图发挥自己的想象得到相应的实物原型.(2)差异指导:根据学情对学困生进行个别或分类指导.2.生助生:小组内相互交流、研讨、订正.四、强化1.解题要领.2.点4名学生展示自学参考提纲第③题,然后老师给出点评;点2名学生口答自学参考提纲第④、⑤题并点评.五、评价1.学生学习的自我评价:这节课你有哪些收获?还有哪些疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、学习方法、存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时教学要充分发挥学生的空间想象能力和动手能力,对于一些较复杂的立体图形,可借助多媒体进行展示,使图形变得更加直观.根据物体的三视图想象物体的形状,可由俯视图确定物体在平面上的形状,然后再根据左视图、主视图嫁接出它在空间里的形状,从而确定物体的形状.鼓励学生多想、多练,提高自己的空间想象能力.一、基础巩固(70分)1.(10分)一个立体图形的三视图是一个正方形和两个长方形,则这个图形是(B )A.正方体B.长方体C.四面体D.四棱锥2.(10分)若一个物体的俯视图是圆,则这个物体可能的形状是(D)①球②圆柱③圆锥A.①B.②C.①②D.①②③3.(10分)在下面的四个几何体中,它们各自的左视图与主视图不一样的是(B)A B C D4.(10分)如图是一个几何体的三视图,则该几何体的形状为正六棱柱.第4题图第5题图5.(10分)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是 4 .6.(10分)如图①是一个几何体的主视图和左视图.某班同学在探究它的俯视图时,画出了如图②的几个图形,其中,可能是该几何体俯视图的有a、b、c、e、f .图①图②7.(10分)某几何体的三视图如图所示,画出该几何体.解:如图所示.二、综合应用(20分)8.(10分)某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,俯视图如图所示,则此工件的左视图是(A)9.(10分)右图表示一个由相同小立方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方体的个数,则该几何体的主视图是(C)三、拓展延伸(10分)10.(10分)由5个相同的小正方体搭成的几何体的俯视图如图所示,这个几何体有几种搭法?解:一共有3种搭法.29.2 三视图第3课时由三视图确定几何体的表面积或体积一、导学1.课题导入问题:某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图),请按照三视图确定制作每个密封罐所需钢板的面积(图中尺寸单位:mm).这节课我们研究根据物体的三视图求其平面展开图形的面积问题.2.学习目标能由三视图想象立体图形,由立体图形想象其平面展开图并计算图形面积.3.学习重、难点重点:根据三视图描述基本几何体或实物原型.难点:知识的综合运用.4.自学指导(1)自学内容:教材P99~P100例5.(2)自学时间:10分钟.(3)自学方法:阅读、理解例题中的分析部分.(4)自学参考提纲:①如图所示是一个立体图形的三视图,则该立体图形是圆锥.②一张桌子摆放若干碟子,其三视图如图所示,则这张桌子上共有12 个碟子.③某几何体的三视图如图所示,那么这个几何体可能是(B)A.长方体B.圆柱C.圆锥D.球④某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图),请按照三视图确定制作每个密封罐所需钢板的面积(图中尺寸单位:mm).由三视图可知,密封罐的形状是正六棱柱.密封罐的高为50 mm,底面正六边形的直径100 mm,边长为50 mm.画出它的展开图:由展开图可知,制作一个密封罐所需钢板的面积为6个侧面与2个底面的面积和,即:6×50×50+2×6×12×50×50sin60°=6×502×(1+32)≈27990(mm2)⑤某工厂加工一批无底帐篷,设计者给出了帐篷的三视图,请你按照三视图确定每顶帐篷的表面积(图中尺寸单位:cm).(结果保留π)300×π×200+12×240×300×π=96000π(cm2).二、自学学生结合自学指导进行自学.三、助学1.师助生:(1)明了学情:观察学生自学参考提纲的答题情况.(2)差异指导:根据学情进行个别指导或分类指导.2.生助生:小组内相互交流、研讨、总结、归纳.四、强化总结交流解决例题的思路:(1)由三视图想象实物形状;(2)由实物图再结合三视图分析出实物图中各已知量,并画出其平面展开图;(3)根据平面展开图计算表面积.五、评价1.学生学习的自我评价:这节课你有哪些收获?掌握了哪些解题技能和方法?2.教师对学生的评价:(1)表现性评价:点评学生小组合作、交流、探讨的情况,学习效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本节课由学生日常生活中的实例引入,让学生在认识三视图、探索由三视图求物体表面积或体积的过程中,深切体会到数学知识来源于生活、运用于生活.教师引导学生进行合理的探索,培养学生的空间想象能力和整体思维能力.一、基础巩固(70分)1.(10分)右图是一个多面体的表面展开图,那么这个多面体是(C)A.四棱柱B.四棱锥C.三棱柱D.三棱锥2.(10分)一个几何体的三视图如图所示,那么这个几何体的侧面积是(B )A.4π cm2B.6π cm2C.8π cm2D.12π cm2第2题图第3题图3.(10分)如图是一个包装盒的三视图,则这个包装盒的体积是(C)A.1923cm3B.11523cm3C.2883cm3D.3843cm34.(20分)根据展开图,画出这个物体的三视图,并求出这个物体的体积和表面积(图中尺寸单位:cm,结果保留π).解:体积:20×π×(102)2=500π(cm3).表面积:2×π×(102)2+20×10×π=50π+200π=250π(cm2).第4题图第5题图5.(20分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积.解:4×π×6×12+π×(42)2=12π+4π=16π(cm2).二、综合应用(20分)6.(20分)根据三视图,画出这个几何体的展开图,并求几何体的表面积.解:20×10×π+12×10×π×(2255)+π×(102)2=225π+252π=(225+252)π.三、拓展延伸(10分)7.(10分)如图是一个几何体的三视图,根据所示数据,求该几何体的侧面积和体积.解:侧面积:32×20×π+(40×30+40×25)×2=(640π+4400)(cm2).体积:32×π×(202)2+40×30×25=(3200π+30000)(cm3).29.3 课题学习制作立体模型一、导学1.课题导入问题:怎样由视图转化为立体图形?这节课我们通过动手实践来体会这个过程.2.学习目标(1)体验平面图形向立体图形转化的过程.(2)体会用三视图表示立体图形的作用.(3)进一步感受平面图形与立体图形之间的关系.3.学习重、难点重点:根据三视图制作立体模型.难点:具体操作.4.自学指导(1)自学内容:教材P105~P106.(2)自学时间:30分钟.(3)自学方法:准备刻度尺、剪刀、小刀、胶水、硬纸板、马铃薯等参与活动.(4)课题活动参考提纲:①以硬纸板为主要材料,分别做出下面的两组三视图所表示的立体模型.图1 图2②按照下面给出的两组三视图,用马铃薯做出相应的实物模型.图3 图4③下面每组平面图形都是由四个等边三角形组成.a.其中哪些可以折叠成多面体,把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;b.画出由上面图形能折叠成的多面体的三视图,并指出图中是怎样体现“长对正,高平齐,宽相等”的;c.如果上图中小三角形的边长都是1,那么对应的多面体的表面积是多少?(3cm2)④下面的图形由一个扇形和一个圆组成.a.把上面的图形描在纸上,剪下来,围成一个圆锥.b.画出由上面图形围成的圆锥的三视图.c.如果上图中扇形的半径为13 cm,圆的半径为5 cm,那么对应的圆锥的体积是多少?1 3×π×52×221353).⑤结合具体实例,写一篇介绍三视图、展开图的应用的短文.二、自学学生结合自学指导进行自学.三、助学1.师助生:(1)明了学情:观察学生具体操作中的情况.(2)差异指导:根据学情进行个别指导或分类指导.2.生助生:小组内相互交流、研讨、总结、归纳.四、强化1.由三视图想象实物形状.2.由展开图折叠立体图形,再制作模型. 五、评价1.学生学习的自我评价:这节课你有哪些收获?掌握了哪些解题技能和方法?2.教师对学生的评价:(1)表现性评价:点评学生小组合作、交流、探讨的情况,学习效果和存在的问题等.(2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思).本节课的核心是学生动手实践,通过动手完成立体模型的制作过程,体验平面图形如何向立体图形转化和用三视图表示立体图形的作用,进一步感受平面图形与立体图形之间的联系.明白知识来源于实践、观察是得到知识的重要途径的道理.通过创设问题情境,让学生主动参与,激发学生的学习热情和兴趣,激活学生的思维.一、基础巩固(70分)1.(10分)某几何体的三视图如图所示,则这个几何体是(A )2.(10分)下列平面展开图是由5个大小相同的正方形组成的,其中沿正方形的边不能折成无盖小方盒的是(B )A B C D3.(10分)如图,在长方形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,求y与x 的函数式是y x π⎛⎫=+ ⎪⎝⎭122.。
人教版数学九年级上导学案第二十九章投影与视图第1课时:§29.1.1 投影第2课时:§29.1.2 投影第3课时:§29.1.2 投影习题课第4课时:§29.2.1 三视图(1)第5课时:§29.2.2三视图(2)第6课时:§29.2.3三视图(3)第7课时:§29.2.4三视图(4)第8课时:§29 全章复习第9课时:§29 全章测试2§29.1.1投影学习目标1.了解投影、投影面、平行投影和中心投影的概念;2.了解角平行投影和中心投影的区别;自主学习一、课前准备(预习教材P106~ P107,找出疑惑之处)二、新课导学※互动探究探究任务一:什么叫做物体的投影问题探究:学生先独立阅读课本第106页,再彼此交流结果,举例。
教师点拨:一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.探究任务二:平行投影和中心投影是什么?问题探究:学生先独立阅读课本第106,107页,再交流结果。
教师点拨:有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线.由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.探究任务三:平行投影与中心投影的区别与联系问题探究:学生以数学习小组为单位,观察在太阳光线和灯光下,木杆和三角形纸板在地面的投影。
教师点拨:平行投影与中心投影的区别与联系新知:1、物体的投影的概念;2、平行投影和中心投影的概念3、平行投影与中心投影的区别与联系学生反思本节课未理解的知识点,写在下面:※探究升华(学生独立完成,并自己总结,教师点拨)例1、地面上直立一根标杆AB如图,杆长为2cm。
中考数学复习第31课时《视图与投影》说课稿一. 教材分析《视图与投影》这一课时是中考数学复习的第31课时,主要内容是让学生掌握三视图(主视图、左视图、俯视图)的画法,以及了解和掌握投影的性质。
这部分内容在中考中占有重要的地位,每年都会有相关的题目出现,因此,对于学生来说,这部分内容是需要重点掌握的。
二. 学情分析学生在学习这一课时之前,已经掌握了二维图形的知识,对平面几何有了深入的了解。
同时,学生也掌握了三维图形的基本知识,对立体几何有一定的了解。
但是,学生在学习过程中,可能会对三视图的画法和投影的性质存在理解上的困难,因此,在教学过程中,需要教师耐心讲解,引导学生理解和掌握。
三. 说教学目标1.知识与技能目标:学生能够掌握三视图的画法,理解投影的性质,能够运用这些知识解决实际问题。
2.过程与方法目标:通过学生的自主学习、合作交流,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的探究精神,使学生体验到数学的乐趣。
四. 说教学重难点1.教学重点:三视图的画法,投影的性质。
2.教学难点:三视图的画法,投影的性质在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流的教学方法,引导学生主动探究,培养学生的空间想象能力和抽象思维能力。
2.教学手段:利用多媒体课件,直观展示三视图和投影的性质,帮助学生理解和掌握。
六. 说教学过程1.导入新课:通过一个实际问题,引入三视图和投影的概念,激发学生的学习兴趣。
2.自主学习:学生自主探究三视图的画法和投影的性质,教师给予适当的引导和帮助。
3.合作交流:学生分组讨论,分享自己的理解和发现,教师总结并给出正确的答案。
4.巩固练习:学生进行相关的练习题,加深对三视图和投影的理解和掌握。
5.课堂小结:教师引导学生总结本节课的主要内容和知识点。
七. 说板书设计板书设计如下:1.三视图的画法2.投影的性质八. 说教学评价教学评价主要通过学生的课堂表现、练习题的完成情况和学生的学习反馈来进行。
视图与投影 一:【课前预习】 (一):【知识梳理】 1.三视图
(1)主视图:从 看到的图;
(2)左视图:从 看到的图; (3)俯视图:从 看到的图; 2.画三视图的原则(如图)
长对正,高平齐,宽相等;在画图时,看得见部分的轮廓线通常画成实线,看
不见的轮廓线通常画成虚线。
3.投影
物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是 ;投
影分 投影和 投影。
(1)平行投影:太阳光线可以看成 光线,像这样的光线所形成的投影称为
投影;物体的三视图实际上就是该物体在垂直于投影面的平行光线下的平行投
影。
(2)中心投影:手电筒、路灯和台灯的光线可以看成是由一点出发的光线,像这样
的光线所形成的投影称为 投影。
(3)像眼睛的位置称为 ,由视点出发的线称为 ,两条视线的夹角称
为 ,看不到的地方称为 。
(二):【课前练习】
1.小明从正面观察图(1)所示的两个物体,
看到的是图(2)中的( )
(图1) (图2)
2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )
A .小明的影子比小强的影子长;
B .小明的影子比小强的影子短
C .小明的影子和小强的影子一样长;
D .无法判断谁的影子长
3.你在路灯下漫步时,越接近路灯,其影子成长度将( )
A .不变
B .变短
C .变长
D .无法确定
4.一个矩形窗框被太阳光照射后,留在地面上的影子是________
5.将如图1-4-22所示放置的一个直角三角形
ABC( ∠C=90°),绕斜边AB 旋转一周所得到的
几何体的主视图是图1-4-23四个图形中的
_________(只填序号).
二:【经典考题剖析】
1.某物体的三视图是如图所示的3个图形,
那么该物体的形状是( )
A .长方体
B .圆锥体
C .立方体
D .圆柱体
2.在同一时刻,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为( )
A .16m
B .18m
C .20m
D .22m
3.一天上午小红先参加了校运动会女子100m 比赛,过一段时间又参加了女子400m 比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是()
A .乙照片是参加100m 的
等相宽高平齐长对正左视图俯视图主视图
B .甲照片是参加 400m 的
C .乙照片是参加 400m 的
D .无法判断甲、乙两张照片
4.已知:如图,AB 和DE 是直立在地面
上的两根立柱.AB=5m ,某一时刻AB 在阳光下
的投影BC=3m .
(1)请你在图中画出此时DE 在阳光下的投影;
(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.
5.某居民小区有一朝向为正南方向的居民楼(如图),该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼,当冬季正午的阳光与水平线的夹角为32°时.
(1)问超市以上的居民住房采光是否有影响,为什么? (2)若要使超市采光不受影响,两楼应相距多少米?
(结果保留整数,参考数据: 531065sin 32,cos32,tan 321001258
≈≈≈)
三:【课后训练】
1.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么
下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )
2.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是( )。
A 、路灯的左侧
B 、路灯的右侧
C 、路灯的下方
D 、以上都可以
3.如图是空心圆柱体在指定方向上的视图,正确的是( )
4.图是一天中四个不同时刻同一物体价影子,(阴影部分的影子)它们按时间先后顺序排列的是( )
A .(1)(2)(3)(4);
B .(4)(3)(2)(1)
C .(4)(1)(3)(2);
D .(3)(4)(1)(2)
5.如图是两根杆在路灯底下形成的影子,试确定路灯灯泡所在的位置.
6.如图(l ),小明站在残墙前,小亮在残墙后面活动,又不被小明看见,请你在图⑴的 俯视图(2)中画出小亮的活动区域
(图1) (图2)
(第5题) (第6题) (第7题)
7.如图(1)
,一个小孩在室内由窗口观察室外的一棵树,在图(1)中,小孩站在什么位置就可以看到树的全部请你在图(2)中用线段表示出来.
8.如图,是一束平行的阳光从教室窗户射人的平面示意图,光线与地面所成角∠AMC =30A B C D
○,在教室地面的影长MN=23,若窗户的下檐到教室地面的距离BC=1m,则窗户的上檐到教室地面的距离AC是多少?
9.如图,住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=24cm,现需了解甲楼对乙楼的采光的影响情况,当太阳光与水平线的夹角为30”时,求甲楼的影子在乙楼上有多高?
10.图1-4-29至1-4-35中的网格图均是20 ×20的等距网格图(每个小方格的边长均为1个单位长),侦察兵王凯在P点观察区域MNCD内的活动情况.当5个单位长的列车(图中的)以每秒1个单位长的速度在铁路线MN上通过时,列车将阻挡王凯的部分视线,在区域MNCD内形成盲区(不考虑列车的宽度和车厢间的缝隙〕,设列车车头运行到M点的时刻为0,列车从M点向N点方向运行的时间为t(秒).
(1)在区域MNCD内,请你针对图1-4-29,图l-4-30,图l-4-31,图l-4-32中列车位于不同位置的情形分别画出相应的盲区,并在盲区内涂上阴影;
(2)只考虑在区域ABCD内形成的盲区.设在这个区域内的盲区面积是y(平方单位).
①如图 1-4-33,当 5<t<10时,请你求出用 t表示 y的函数关系式;②如图1-4-34,当10<t<15时,请你求出用t表示y的函数关系式;③如图1-4-35,当 15≤t≤20时,请你求出用t表示y的函数关系式;④根据①~③中得到的结论,请你简单概括y随t的变化而变化的情况;
(3)根据上述研究过程,请你按不同的时段,就列车行驶过程中在区域MNCD内所形成盲区的面积大小的变化情况提出一个综合的猜想(问题⑶)是额外加分题,加分幅度为 1~4分)
四:【课后小结】。