最新鲁教版五四制七年级数学上册《一次函数的图像二》教学设计-评奖教案
- 格式:docx
- 大小:31.89 KB
- 文档页数:5
6.3 一次函数的图象一、教学目标(1)能用“两点法”画出一次函数的图象(2)结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响.(3)通过操作、观察,培养学生动手和归纳的能力.(4)让学生通过直观感知、动手操作去经历、体会规律形成的过程.二、教学重点、难点用“两点法”画出一次函数图象是研究一次函数的性质的基础,是本节课重点.直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响,是本节课的难点.关键是通过学生的直观感知、动手操作、合作交流归纳其规律. 三、教学方法采用自主探究--合作交流式教学,让学生动手操作,主动去探索,小组合作交流.而互动式教学将顾及到全体学生,让全体学生都各有所获.四、教学设计(一)设疑,导入新课这节课让我们一起来研究“一次函数的图象”.(板书)师: 1.什么叫函数?在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.2. 函数的表示方法有哪几种? (1)解析法(2)列表法(3)图象法3.同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗?形如y=kx+b的函数,(其中k、b为常数,k≠0).师:(同学们回答的都很好)那么一次函数的图象是什么形状呢?(二)自主探究,梳理归纳1.师:问(1)你们知道一次函数是什么形状吗?师:那就让我们一起做一做,看一看:如何作出一次函数y=2x+1 的图象?要回答这个问题,必须弄清楚以下几点:(1)函数的图象是由无数个点构成的.(2)这些点在坐标系中是一对一对的有序实数.(3)此解析式实际上是一个二元一次方程,它的一对一对的x、y值可看作是图象上的点的坐标.(4)要找出它的某个点,实际上就是求出这个二元一次方程的一组解.(5)把x的值作为横坐标,y的值作为纵坐标.(6)把函数作图问题转化为求方程的解的问题.2.活动:作一次函数y = 2x + 1 的图象你认为一次函数的图象是什么形状?汇报:一次函数的图象是直线.师:所有的一次函数图象都是直线吗?师:那么一次函数y=kx+b(其中k、b为常数,k≠0),也可以称为直线y=kx+b (其中k、b为常数,k≠0).(板书)师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?活动小结1(1)函数的图象概念把一个函数的自变量x与因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做函数的图象.(2)作函数图象的一般步骤:列表.列出自变量和函数的对应值描点.根据上表的对应值描出点的位置连线.根据描出的点的发展趋势,用光滑的线把点连接起来.3.活动:问题1:一次函数y=2x+1图象是什么形状呢?问题2:凡是满足关系式y =2x+1的x,y的值所对应的点(x,y),如(1,3),(4,9)….都在一次函数y=2x+1的图象上吗?问题3:请你从一次函数y =2x+1的图像上任意取一点,检验该点的横坐标x和纵坐标y是否满足关系式y =2x+1.问题4:一次函数y=kx+b(k≠0)的图像都是一条直线吗?举例验证.问题5:几个点可以确定一条直线?问题6:画一次函数图像时,只要取几个点?做一做(1)作出一次函数y= -2x+5的图象(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系式y=-2x+5?议一议(1)满足关系式y =-2x+5的x,y所对应的点(x,y)都在一次函数y =-2x+5的图象上?(2)一次函数y =-2x+5的图象上的点(x,y)都满足关系式y=-2X+5吗?(3)一次函数y=kx+b的图象有什么特点?活动小结2一次函数y=kx+b的图象的特点:一次函数y=kx+b的图象是一条直线作一次函数y=kx+b的图象只要确定两个点,再过这两个点作直线就行了.一次函数y=kx+b,当k>0时y值随x值的增大而增大;k<0 y值随x值的增大而减小.4.活动:问:对于画一次函数y=kx+b(其中k、b为常数,k≠0)的图象——直线,你认为有没有更为简便的方法?画一次函数图象,只过两个点画直线就行.师,动画演示用“两点法”画一次函数的过程在同一直角坐标系内画出下列函数图象:y=2x+1 y=-2x+1活动小结3画出一次函数图象的关键是选取适当的两点,然后连线即可.为了描点方便,对于一次函数y=kx+b(k,b是常数,k≠0)通常选取(0,b)与(-b /k ,0)两点5.练习在同一直角坐标系中画出下列一次函数图象(1)y=3x+1(2)y=3x+2(3)y=12x+2师:我们现在已经用:“两点法”把三个一次函数图象准确而又迅速地画在了一个直角坐标系中,这三个函数图象之间在位置上有没有什么关系呢?比较画出的各对一次函数的图象有什么共同点,有什么不同点?1)y=3x+1 与y=3x+22)y=3x+2 与y=12x+2(三)探究交流、总结升华问题:对于直线y=kx+b(k,b是常数,k≠0),常数k和b的取值对于直线的位置各有什么影响?说说你的看法.师:刚才同学说的,当k值相同,且b值也相同时,两个函数图象又是什么样的位置关系?不画图象,你能说出下列每对函数的图象位置上有什么关系吗?①直线y=-2x-1与直线y=-2x+5;②直线y=0.6x-3与直线y=-x-3.师:一次函数的图象都是直线,它们的形状都相同,只是位置不同.活动:我们能不能将其中一条直线通过平移、旋转或对称性,使它们和另一条直线重合.你试试看.生1:①y=0.5x与y=0.5x+2;将y=0.5x平移能得到y=0.5x+2.我们这节课只研究平移.问:①y=0.5x与y=0.5x+2平行,观察图象,直线y=0.5x沿y轴(向上或向下),平行移动个单位得到y=0.5x+2?(四)课堂训练、巩固提高1.将直线y= -3x沿y轴向下平移2个单位,得到直线().2.直线y=4x+2是由直线y=4x-1沿y轴向()平移()个单位得到的.3.将直线y=-x-5向上平移6个单位,得到直线().4.先将直线y=x+1向上平移3个单位,再向下平移5个单位,得到直线().(五)拓展训练、提升能力1.小明的父亲饭后出去散步,从家中走20min到一个离家900m的报亭看10min报纸后,用15min返回家里,下图中表示小明父亲离家的时间与距离之间的关系是()2.拖拉机开始工作时,油箱中有油24L,那么油箱中剩余原油量y(L)与工作时间x(h)之间的函数关系式和图象是()A. y=4x-24(0≤x<6)B. y=24-4xC. y=24-4x (0≤x≤ 6)D. y=-24+4x(六)课堂小结你能谈谈你这节课的收获吗?生1:我知道了一次函数图象是直线,所以可以说直线y=kx+b(k≠0)我还学会了用“两点法”画一次函数的图象.生2:我觉得学习一次函数,既离不开数,也离不开图形.生3:我知道当k值相同,b值不同时,两个一次函数图象平行,当k值不同时,两个次函数图象相交.生4:我知道一条直线通过平移可以得到另一条直线,函数关系式中k,b值的变化情况.生5:一次函数y=kx+b (k≠0),当k>0时,y 值随x 值的增大而增大;k<0时,y 值随x 值的增大而减小.生6:一条直线通过平移可以得到另一条K 值相等直线……(七)课堂检测、及时反馈一、填空:1.一次函数y=kx+b (k≠0)的图象是 ,若该函数图象过原点,那么它是 。
《一次函数的图像》教学设计教师出示学习目标:1.会画一次函数的图象;2.能从图象角度理解正比例函数与一次函数的关系;3.理解一次函数图像的性质,了解中的k,b对函数图像的影响;4.通过观察图象、类比正比例函数性质概括一次函数性质的活动,发展数学感知、数学表征、数学概括能力,体会数形结合的思想,发展几何直观.教学过程:(一)温故知新:1.正比例函数的定义与图象性质形如_________(__________________)_的函数,叫做正比例函数正比例函数y=kx(k是常数,k≠0)的图象是一条_______,我们称它为直线y=kx.当k>0时,直线y=kx经过第_____象限,从左向右___,即随着x的增大y_____;当k<0时,直线y=kx经过第___象限,从左向右___,即随着x的增大y______.2、一次函数的定义一般地,形如___________(___________)的函数,叫做一次函数;由学生自主思考后,教师点名学生起立回答,设置温故知新的目的是,在熟知已学知识的基础上引入新知识的学习,这部分内容由小组中6号学生口答完成。
达到了新旧联系、自然过渡的目的。
(二)画一画学生在同一平面直角坐标系中完成正比例函数和一次函数的图象。
学生在方格纸上自主完成,教师在多媒体上进行演练。
(A)在同一个直角坐标系中画出函数y=2x,y=2x+3,y=2x-3的图像(三)观察、对比、归纳 ※ 观察图像,你发现了什么?学生动手操作,通过列表法描点、连线,复习了函数图象的作图方法。
通过学生观察、对比、猜想得出这两个函数的图像也是一条直线。
接着老师又通过课件的演示让学生再一次观察类比得出正比例函数的图像与一次函数的图像有什么相同点和不同点,让学生结合函数解析式对“平移”作出解释,进一步加强学生对一次函数图象理性认识,突出从特殊到一般的方法及归纳能力。
整个活动中教师及时启发、点拨与指导。
接下来归纳知识:一次函数的图像是一条直线,一次函数的图象是由正比例函数图象平移得到的,一次函数的增减性。
6.3 一次函数的图象(2)一.教学目标(一)教学知识点1.理解一次函数的代数表达式与图象之间的对应关系.2.能熟练作出一次函数的图象.(二)能力训练要求1.已知解析式作函数的图象,培养学生数形结合的意识和能力.2.在探究活动中发展学生的合作意识和能力.(三)情感与价值观要求1.经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力.2.加强新旧知识的联系,促进学生新的认知结构的建构.二.教学重点1.能熟练地作出一次函数的图象.2.归纳作函数图象的一般步骤.3.理解一次函数的代数表达式与图象之间的对应关系.三.教学难点理解一次函数的代数表达式与图象之间的对应关系.四.教学方法讲、议结合法.五.教具准备投影片两张:第一张:补充练习(§6.3.2 A );第二张:补充练习(§6.3.2 B).六.教学过程Ⅰ.知识回顾[师]上节课我们学习了正比例函数的图象画法及其性质,请大家回忆一下:1.作函数图象有几个主要步骤?2.上节课中我们探究得到正比例函数图象有什么特征?3.作一次函数图象需要描出几个点? [生]1. ①列表;②描点;③连线.2. (1)正比例函数的图象都经过坐标原点。
(2)在正比例函数y=kx 的图象中,当k>0时,y 的值随x 值的增大而增大;当k<0时,y 的值随x 值的增大而减小。
3.作正比例函数y=kx 的图象时,除原点外,还需找一点,一般找(1,k )点。
[师]非常好!看来大家掌握的不错,那么,一般的一次函数的图象又是怎样的呢? Ⅱ.讲授新课一、作一次函数的图象[例1]作出一次函数y=21x+1的图象.[师]根据图象的定义,需要先找点.所以要先列表,找满足条件的点,再描点,连线.解:列表 x … -2 -10 12 … y=21x+1…21 123 2…描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点. 连线:把这些点依次连接起来,得到y=21x+1的图象如下,它是一条直线.[师]从刚才我们作图的情况来总结一下,作一次函数的图象有哪些步骤呢?[生]①列表;②描点;③连线.二、做一做(1)作出一次函数y=-2x+5的图象.(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5.[生]列表x …-2 -1 0 1 2 …y=-2x+5 …9 7 5 3 1 …描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线.图象如下:在图象上找点A(3,-1),B(4,-3)当x=3时,y=-2×3+5=-1.当x=4时,y=-2×4+5=-3.∴(3,-1),(4,-3)满足关系式y=-2x+5.三、议一议(1)满足关系式y=-2x+5的x、y所对应的点(x,y)都在一次函数y=-2x+5的图象上吗?(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5吗?(3)一次函数y=kx+b的图象有什么特点?[师]请大家分组讨论,然后回答.[生]满足关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y=-2x+5的图象上.(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5.[师]由此看来,满足函数关系式y=-2x+5的x,y 所对应的点(x,y)都在一次函数y=-2x+5的图象上;反过来,一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5.所以,一次函数的代数表达式与图象是一一对应的.即满足一次函数的代数表达式的点在图象上,图象上的每一点的横坐标x,纵坐标y 都满足一次函数的代数表达式.(3)[生]一次函数的图象是一条直线. [师]非常正确.一次函数的图象是一条直线.由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y=kx+b 的图象也称为直线y=kx+b. Ⅲ.课堂练习分别作出一次函数y=31x 与y=-3x+9的图象.[师]根据刚才的讨论可知,我们在画一次函数的图象时,只要确定两个点就可以了.[生]作函数y=31x 的图象时,找点(3,1),(6,2)图象如下.作函数y=-3x+9的图象时,找点(1,6),(2,3) 图象如下:补充练习 投影片(§6.3.2A)(1)作出一次函数y=-x+21的图象.(2)在所作的图象上取几个点,找出它们的坐标,并验证其是否都满足关系式y=-x+21.[生](1)作一次函数y=-x+21的图象时,取点(0, 21)和(1,-21),然后过这两点作直线即可.图象如下:(2)在图象上取点A(23,-1),B(-1,23)当x=23时,y=-23+21=-1 当x=-1时,y=1+21=23∴A 、B 两点的坐标都满足关系式y=-x+21. 投影片(§6.3.2B)(1)作出一次函数y=4x+3的图象;(2)判断下列各对数是不是满足关系式y=4x+3,如果是,请验证一下以这些数对为坐标的点是否在你所作出的函数图象上. (0,3),(-1,-1),(21,5),(1,7),(-23,-3)[生]解:(1)作一次函数y=4x+3的图象时,找点(0,3),(1,7),然后过这两点作直线即可.图象如下:(2)当x=0时,y=4×0+3=3; 当x=-1时,y=4×(-1)+3=-1; 当x=21时,y=4×21+3=5; 当x=1时,y=4×1+3=7;当x=-23时,y=4×(-23)+3=-3. ∴每对数都满足关系式y=4x+3.由前面的议一议可知,以这些数对为坐标的点在所作的函数图象上. Ⅳ.课时小结本节课主要学习了以下内容:1.作一次函数图象的步骤以及熟练地作出一次函数的图象,并能验证某些数对是否在函数图象上.2.明确一次函数的图象是一条直线,因此在作一次函数的图象时,不需要列表,只要确定两点就可以了. Ⅴ.课后作业习题6.4 Ⅵ.活动与探究1.已知函数y=(m -2)x 552+-m m +m -4,问当m 为何值时,它是一次函数? 解:根据一次函数的定义,有⎩⎨⎧≠-=+-021552m m m解得⎩⎨⎧≠==241m m m 或∴m=1或m=42.如果y+3与x+2成正比例,且x=3时,y=7. ①写出y 与x 之间的函数关系式; ②求当x=-1时,y 的值; ③求当y=0时,x 的值.分析:①y+3与x+2成正比例,就是y+3=k·(x+2),根据x=3时,y=7,求k 的值,从而确定y 与x 之间的函数关系式.②把x=-1代入所求函数关系式,求出y 的值. ③把y=0代入函数关系式,求出x 的值. 解:①∵y+3与x+2成正比例 ∴y+3=k(x+2)把x=3,y=7代入得:7+3=k(3+2) ∴k=2,∴y=2x+1②把x=-1代入y=2x+1中,得 y=-2+1=-1③把y=0代入y=2x+1中,得 0=2x+1,∴x=-21.说明:若y 与x 成一次函数关系式,那么函数关系式要写成y=kx+b(k ≠0)的形式.3.如果y=mx 82-m是正比例函数,而且对于它的每一组非零的对应值(x,y)有xy <0,求m 的值.分析:按正比例函数y=kx(k ≠0)中对于k 及x 的指数的要求决定m 的值. 解:根据题意得,y=mx 82-m 是正比例函数,故有:m 2-8=1且m ≠0即m=3或m=-3 又∵xy <0,∴x,y 是异号.∴m=xy<0∴m=3不合题意,舍去. ∴m=-3.常见错误:忽略m ≠0的要求,在解题过程不写这一条件. 4.已知y+b 与x+a(a,b 是常数)成正比例. 求证:y 是x 的一次函数.分析:由y+b 与x+a 成正比例,设立解析式,分析此解析式为x 的一次函数. 解:∵y+b 与x+a 成正比例 ∴可设y+b=k(x+a)(k ≠0)整理,得y=kx+ka -b=kx+(ka -b) ∵k,a,b 都是常数.∴ka -b 也是常数. 又∵k ≠0∴y 是x 的一次函数.常见错误:整理得到y=kx+ka -b 时不会把ka -b 看作一个整式.说明:在叙述函数的,一定要说清楚谁是谁的什么名称函数,否则容易发生混淆现象.如本题中,y+b 是x+a 的正比例这个说法是正确的,同时,y 是x 的一次函数的说法也是正确的. 七.板书设计。
《一次函数综合课》教学设计一、教学目标:1、知道一次函数与正比例函数的定义.2、理解掌握一次函数的图象的特征和相关的性质;体会数形结合思想。
3、弄清一次函数与正比例函数的区别与联系.4、掌握直线的平移法则简单应用.5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系,能应用本章的基础知识熟练地解决数学问题。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学设计简介:因为这是一节综合课,本节的教学任务是一次函数的基础知识及其简单的应用,没有涉及实际应用。
为了节约学生的时间,打造高效课堂,我开门见山,让学生根据本节课的复习目标进行联想回顾,变被动学习为主动学习。
例如,在“图象及其性质”环节中,老师让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充纠正。
这样,使无味的复习课变得活跃一些,增强学习气氛。
随后就用大屏幕展示出标准答案,然后教师组织学生做一些针对性的练习。
为了巩固知识点,学生解决每一个问题时都要求其说出所运用的知识点。
四、教学过程:1、常量、变量、函数、一次函数与正比例函数的定义:问题1:(1)底边长为10的三角形的面积y与高x之间的关系式是___________(2)用周长为20米的铁丝围成一个长方形,则这个长方形的一边长x(米)与它的另一边长y(米)之间的关系是__________ 一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数正比例函数:对于y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
指出:从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
2.函数的取值范围你能求出以上两个问题中自变量的取值范围吗?3.一次函数的图像问题2:你能画出一次函数y=10-x的图像吗?复习一次函数图像的画法,并指出:实际问题的图像要注意自变量的取值范围4.一次函数图像和性质问题3:如图是一次函数y=kx+b(k≠0)的图像,你能获取哪些信息?(1)复习一次函数图像所在的位置与k,b的关系:k,b的符号与直线y=kx+b(k≠0) 的位置关系:k的符号决定了直线y=kx+b(k≠0);b的符号决定了直线y=kx+b与y轴的交点。
《一次函数》教学设计教学目标1.理解一次函数和正比例函数的概念,以及它们之间的关系;2.能根据所给的信息写出简单的一次函数表达式;3.经历一般规律的探索过程发展学生的抽象思维能力;4.经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。
教学重点和难点:(1)教学重点:1.一次函数、正比例函数的概念;2.一次函数、正比例函数的关系;3.会根据已知信息写出一次函数的表达式。
(2)教学难点:1.根据实际情景写出一次函数的表达式;2.一次函数知识的应用。
教学过程:一、创设问题,引领导入:这一环节我通过设置两个问题引导学生概括出一次函数的概念。
(一)提出问题问题1:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。
(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:x/千克0 1 2 3 4 5y/厘米 3 3.5 4 4.5 5 5.5 (2)你能写出y与x之间的关系式吗?问题2:某辆汽车油箱中原有油60升,汽车每行驶50千米耗油6升.(1)完成下表:汽车行驶路程x/千米0 50 100 150 200 300耗油量y/升0 6 12 18 24 36(2)你能写出耗油量y(L)与汽车行驶路程x(km)之间的关系吗?(3)你能写出油箱剩余油量z(L)与汽车行驶路程x(km)之间的关系吗?学生活动:学生独立思考后,小组交流并举手回答问题。
教师活动:让学生带着问题去研究,找出函数和变量之间的关系,计算出对应值。
但是让学生写出x与y之间的关系式有一定的难度,学生出现一定的差异在所难免,教学中应该给予学生一定的思考空间,组织学生进行小组交流,教师适当点拨,不要简单地“告诉”。
学生经过交流讨论会得出。
提问平时学习较弱的学生回答是否函数关系,关系式是什么?同时追问判断的依据是什么?引导学生回忆函数的定义。
然后再引导学生解释列关系式的理由。
“确定一次函数的表达式”教学设计一、教材分析本节内容是鲁教版七年级上册第六章第四节《确定一次函数的表达式》,主要内容是怎样通过已知条件求出正比例函数和一次函数的表达式. “确定一次函数的表达式”是利用待定系数来求解,它充分运用了简单的方程的知识,通过已知图像或其他已知条件来解决,体现了数形结合的思想。
在本节当中,遵循由特殊到一般的思路,在研究一次函数前先研究正比例函数,并阐明了特殊的正比例函数与一般的一次函数之间的联系与区别,不仅如此,还突出了对一次函数中k 与 b 的认识并让学生经历由图想到表达式的过程,体会数形结合的思想。
它能发展学生数形结合能力,从而提高学生的计算与灵活运用数学知识的能力.二、学情分析学生在上节课中,已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。
在此基础上引导学生根据图象等信息列出一次函数表达式的方法,并进一步感受数形结合的思想方法.学生在对这一节的学习中,内容是拓宽的,因为二元一次方程组是在以后的学习中要学,这一节相对来说比较简单,但是要让学生有一个理念,就是求两个未知数必须要有两个条件才能解决,在后面的学习中在加强练习。
“数”与“形”是一切数学对象不可分割的两个方面。
三、教学目标1.了解一个条件确定正比例函数两个条件确定一次函数。
2能根据已知条件确定正比例函数、一次函数表达式,并解决有关现实问题。
3、发展学生数形结合的能力。
经历对实际问题的解决过程,培养学生学习数学,运用数学的意识。
四、教学重难点根据已知条件利用所学知识确定正比例函数,一次函数的表达式。
五、教学过程(一)复习回顾1、正比例函数、一次函数的定义:2、正比例函数、一次函数的图像与性质设计意图:让学生回顾正比例函数、一次函数的定义,图像以及性质,目的是为了与本节内容相联系,能够灵活运用前面所学相关知识.(二)探究一某物体沿一个斜坡下滑,它的速度 v (米/秒)与其下滑时间 t (秒)的关系如右图所示: v(米/秒)(1)请写出 v 与 t 的关系式;t(秒)(2)下滑3秒时物体的速度是多少?分析:本题要求v与t之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可.解:(1)设V=kt;∵(2,5)在图象上∴5=2kK=2.5∴V=2.5t(2) V=7.5米/秒设计意图:利用函数图象所提供的信息可以确定正比例函数的表达式,一方面让学生初步掌握确定函数表达式的方法,即待定系数法,另一方面让学生通过实践感受到确定正比例函数只需一个条件.有的学生利用图象前面所学知识求函数表达式,如先求出速度,再写表达式,让学生比较两种方法异同,并突出待定系数法.(三)想一想1、某同学画了如图所示的一条直线,你能知道他画的直线的表达式是什么?2、已知一个正比例函数,它的图像经过点(-2,3),则该函数表达式是___31oyx3、正比例函数 y= -6x 经过点 A(_,12)设计意图:想一想中的三个问题是不同的,第一题是给了图像求表达式,第二题是给了点求表达式,第三题是给了表达式求点,不同的类型,目的是对学生求正比例函数表达式的掌握情况进行反馈,以便及时调整教学进程.从学生的做题情况来看,学生掌握的还不错。
6.3一次函数的图象一、教学目标知识目标使学生掌握利用两个适当的点画出一次函数的图象;和结合图象,使学生理解掌握一次函数的性质;能力目标探索新问题的能力,动手能力及现代化操作技术能力。
思想方法目标初步了解数形结合二、教学重点与难点教学重点一次函数的图象与性质教学难点对一次函数中的数与形的联系的理解三、教学方法“实践探究、启发引导、归纳概括”的引导探究法四、辅助教学手段1、教师、学生每人一台电脑、网络平台及大屏幕投影设备2、课前制作的多媒体辅助教学软件及资料3、运行环境:win98以上操作系统及几何画板工具五、教学过程创设情境,引入课题【】前面我们己学习了一次函数的概念,一般地,如果,那么叫的一次函数。
特别地:当时,一次函数就变成了正比例函数。
在同一直角坐标系中投影出的函数图象,让学生观察它们的图象都是直线并引入课题。
所有的一次函数的图象都是直线。
因此要画一次函数的图象——一条直线,就没有必要把所有的点都描出来,只要描出两个点就可以了,因为两个点确定一条直线。
利用这个结论,我们可以更快地作出一次函数的图象,并对它的性质进行研究。
描点画图,归纳画法【过渡】下面我们一起来画首先共同画出正比例函数与的图象。
并由此归纳出正比例函数的图象为过和两点的直线。
观察图象、研究性质然后提出问题1:让学生自己画图,研究正比例函数有何性质?即正比例函数中,对函数图象有何影响?并填写实验报告(课前印好发给学生,或者学生在网络上填写)。
研究问题1时,我首先通过几何画板与学生共同归纳正比例函数与的图象性质,特别是随的变化趋势。
打开几何画板,进行演示。
点在直线上运动,对应着轴上射影(用红点显示)、轴上的射影(用绿点显示)同时运动。
从左到右拖动红点,使点的横坐标从小到大变化,红点的运动引起绿点的运动,绿点的运动又使点的纵坐标发生变化。
在演示的同时,启发学生注意观察坐标的变化并得到:对于,随的增大而增大;对于,随的增大而减小。
6.2一次函数教学目标【知识目标】1、理解一次函数和正比例函数的概念,以及它们之间的关系。
2、能根据所给条件写出简单的一次函数表达式。
【能力目标】1、经历一般规律的探索过程、发展学生的抽象思维能力。
2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。
【情感目标】1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。
2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。
教学重点1、一次函数、正比例函数的概念及关系。
2、会根据已知信息写出一次函数的表达式。
教学过程1、新课导入有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,请看:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。
(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:(2)你能写出x与y之间的关系式吗?分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x 千克,弹簧就伸长0.5x 厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x 。
2、做一做某辆汽车油箱中原有汽油60升,汽车每行驶50千米耗油6升。
(1)完成下表:(2)你能写出x 与y 之间的关系吗?(y=60-0.12x ) 3、一次函数,正比例函数的概念上面的两个函数关系式为y=0.5x+3,y=60-0.12x ,都是左边是因变量y ,右边是含自变量x 的代数式。
并且自变量和因变量的指数都是一次。
若两个变量x,y 间的关系式可以表示成y=kx+b (k ,b 为常数k≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量)。
一、教学目标
1、了解正比例函数y=kx的图象的特点。
2、会作正比例函数的图象。
3、理解一次函数及其图象的有关性质。
4、能熟练地作出一次函数的图象。
二、能力目标
1、进一步培养学生数形结合的意识和能力。
2、通过议一议,培养学生的探索精神和合作交流意识。
三、情感目标
让学生全身心地投入教学活动中,能积极与同伴合作交流,并能进行探索的活动,发展实践能力与创新精神。
四、教学重点
1、正比例函数的图象的特点。
2、一次函数的图象的性质。
五、教学过程
1、新课导入
上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;
③连线。
经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。
本节课我们进一步来研究一次函数的图象的其他性质。
2、讲授新课
(1)首先我们来研究一次函数的特例——正比例函数有关性质。
1x,y=x,y=3x,y=-2x 请大家在同一坐标系内作出正比例函数y=
2
的图象。
3、议一议
(1)正比例函数y=kx的图象有什么特点?(都经过原点)
(2)你作正比例函数y=kx的图象时描了几个点?(至少两点)
1x,y=x,y=3x中,哪一个与x轴正方向所成的锐角(3)直线y=
2
最大?哪一与x轴正方向所成的锐角最小?
4、小结:正比例函数的图象有以下特点:
(1)正比例函数的图象都经过坐标原点。
(2)作正比例函数y=kx的图象时,除原点外,还需找一点,一般找(1,k)点。
(3)在正比例函数y=kx图象中,当k>0时,k的值越大,函数图象与x轴正方向所成的锐角越大。
(4)在正比例函数y=kx的图象中,当k>0时,y的值随x值的增大而增大;当k<0时,y的值随x值的增大而减小。
5、做一做
在同一直角坐标系内作出一次函数y=2x+6,y=-x,y=-x+6,y=5x的图象。
一次函数y=kx+b的图象的特点:分析:在函数y=2x+6中,k>0,y 的值随x值的增大而增大;在函数y=-x+6中,y的值随x值的增大而减小。
由上可知,一次函数y=kx+b中,y的值随x的变化而变化的情况跟正比例函数的图象的性质相同。
对照正比例函数图象的性质,可知一次函数的图象不过原点,但是和两
个坐标轴相交。
在作一次函数的图象时,也需要描两个点。
一般选取(0,
b,0)比较简单。
b),(-
k
6、想一想
(1)x从0开始逐渐增大时,y=2x+6和y=5x哪一个值先达到20?这说明了什么?(y=5x的函数值先达到20,这说明随着x的增加,y=5x 的函数值比y=2x+6的函数值增加得快)
(2)直线y=-x与y=-x+6的位置关系如何?(平行,一次函数k相同就平行)
(3)直线y=2x+6与y=-x+6的位置关系如何?(相交)
7、课堂练习
1、下列一次函数中,y的值随x值的增大而增大的是()
A、y=-5x+3
B、y=-x-7
C、y=x3-5
D、y=-x7+4
2、下列一次函数中,y的值随x值的增大而减小的是()
2x-8 B、y=-x+3 C、y=2x+5 D、y=7x-6
A、y=
3
六、课后小结
1、正比例函数y=kx的图象的特点。
2、一次函数y=kx+b的图象的特点。
七、作业
课后习题
教后感:通过议一议,培养学生的探索精神和合作交流意识。
让学生全身心地投入教学活动中,能积极与同伴合作交流,并能进行探索的活动,发展实践能力与创新精神。