最新鲁教版五四制六年级数学下册
- 格式:doc
- 大小:55.00 KB
- 文档页数:1
六年级数学下册第九章变量之间的关系重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、圆周长公式2C r π=,下列说法正确的是( ).A .C r 、、π是变量,2是常量B .C 是变量, r π、 是常量 C .r 是变量, C π、 是常量D .C r 、是变量 , 2π、是常量 2、在进行路程 s 、速度 v 和时间 t 的相关计算中,若保持行驶的路程不变,则下列说法正确的是()A .s 、v 是变量B .s 、t 是变量C .v 、t 是变量D .s 、v 、t 都是变量3、弹簧挂上物体后会伸长,若一弹簧长度(cm)与所挂物体质量(kg)之间的关系如下表:则下列说法错误..的是( ) A .弹簧长度随物体的质量的变化而变化,物体的质量是自变量,弹簧的长度是因变量B .如果物体的质量为x kg ,那么弹簧的长度y cm 可以表示为y=12+0.5xC .在弹簧能承受的范围内,当物体的质量为7kg 时,弹簧的长度为16cmD .在没挂物体时,弹簧的长度为12cm4、在圆的面积计算公式2S r π=,其中r 为圆的半径,则变量是( )A .SB .rC .π,rD .S ,r5、某科研小组在网上获取了声音在空气中传播的速度y 与空气温度x 关系的一些数据(如下表):下列说法错误的是( )A .在这个变化中,自变量是温度,因变量是声速B .温度越高,声速越快C .当空气温度为20℃时,声音5s 可以传播1740mD .温度每升高10℃,声速提高6m/s.6、下表是某报纸公布的世界人口数据情况:表中的变量是( )A .仅有一个,是时间(年份)B .仅有一个,是人口数(亿)C .有两个,是时间和人口数D .一个也没有 7、在球的体积公式343V R π=中,下列说法正确的是( )A .V 、π、R 是变量,43为常量 B .V 、π是变量,R 为常量 C .V 、R 是变量,43、π为常量 D .以上都不对8、在圆的面积公式2S r π=中,变量有( )A .0个B .1个C .2个D .3个9、一辆汽车以50 km/h的速度行驶,行驶的路程s km与行驶的时间t h之间的关系式为s=50 t,其中变量是()A.速度与路程B.速度与时间C.路程与时间D.三者均为变量10、某电影放映厅周六放映一部电影,当天的场次、售票量、售票收入的变化情况如表所示.在该变化过程中,常量是()A.场次B.售票量C.票价D.售票收入第Ⅱ卷(非选择题 70分)二、填空题(8小题,每小题5分,共计40分)1、若一个三角形底边长是x,底边上的高为8,则这个三角形的面积y与底边x之间的关系式是____.2、假期即将开始,李伟制定了一张“假期每天时间分配表”,其中课外阅读时间为1.5小时,这里的“1.5小时”为________.(填“常量”或“变量”)3、如图,在长方形ABCD中,AB=CD=5厘米,AD=BC=4厘米.动点P从A出发,以1厘米/秒的速度沿A→B运动,到B点停止运动;同时点Q从C点出发,以2厘米/秒的速度沿C→B→A运动,到A点停止运动.设P点运动的时间为t秒(t > 0),当t=____________时,S△ADP=S△BQD.4、长方形的周长为20,宽为x.若设长方形的面积为S,则面积S与宽x之间的关系是________.5、当圆的半径r由小变大时,它的面积S也越来越大,它们之间的变化关系为2,在这个变化过S rπ程中,自变量为______,因变量为______,常量为______.6、球的表面积S与半径R之间的关系是S=4πR2.对于各种不同大小的圆,请指出公式S=4πR2中常量是________ ,变量是________7、一空水池,现需注满水,水池深4.9m,现以均匀的流量注水,如下表:由上表信息,我们可以推断出注满水池所需的时间是______h.8、在烧开水时,水温达到100℃就会沸腾,下表是某同学做“观察水的沸腾”实验时所记录的两个变量时间t(分)和温度T(℃)的数据:t<),温度T与时间t的关系式为__________.在水烧开之前(即10三、解答题(3小题,每小题10分,共计30分)1、如图,是若干个粗细均匀的铁环最大限度的拉伸组成的链条,已知铁环粗0.8厘米,每个铁环长5厘米,设铁环间处于最大限度的拉伸状态.求:(1)2个、3个、4个铁环组成的链条长分别有多少.(2)设n个铁环长为y厘米,请用含n的式子表示y;(3)若要组成2.09米长的链条,需要多少个铁环?2、为响应环保组织提出的“低碳生活”的号召,李明决定不开汽车而改骑自行车上班.有一天,李明骑自行车从家里到工厂上班,途中因自行车发生故障,修车耽误了一段时间,车修好后继续骑行,直至到达工厂(假设在骑自行车过程中匀速行驶).李明离家的距离y(米)与离家时间x(分钟)的关系表示如下图:(1)李明从家出发到出现故障时的速度为米/分钟;(2)李明修车用时分钟;(3)求线段BC所对应的函数关系式(不要求写出自变量的取值范围).3、某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的).(1)在这个变化过程中,每月的乘车人数x与每月利润y分别是变量和变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)当每月乘车人数为4000人时,每月利润为多少元?-参考答案-一、单选题1、D【解析】【分析】根据事物发生变化的过程中发生变化的量是变量,事物变化的过程中不变的量是常量,可得答案【详解】由2C r π=,得C 、r 是变量,2π是常量,故D 正确故选:D【点睛】此题考查常量与变量,难度不大2、C【解析】【分析】根据常量和变量的定义判定,始终不变的量为常量【详解】s 始终不变,是常量,v 和t 会变化,是变量故选:C【点睛】本题考查常量和变量的区分,注意,常量是始终不变的量,因此有些不变的字母也是常量.3、C【解析】【分析】根据表格中所给的数据判断即可.【详解】解:A 选项,表中的数据涉及到了弹簧的长度及物体的质量,且弹簧长度随物体的质量的变化而变化,物体的质量是自变量,弹簧的长度是因变量,故A 正确;B 选项由表中的数据可知,弹簧的初始长度为12cm ,物体的质量每增加1kg ,弹簧的长度伸长0.5cm ,所以物体的质量为x kg 时,弹簧的长度y cm 可以表示为y=12+0.5x ,B 正确;C 选项由B 中的关系式可知当物体的质量为7kg 时,弹簧的长度y 为120.5715.5+⨯=cm ,C 错误;D 选项没挂物体时,即物体的质量为0,此时弹簧的长度为12cm ,故D 正确.故选:C.【点睛】本题考查了变量之间的关系,灵活的根据表中数据分析两个变量间的关系是解题的关键.4、D【解析】【分析】在圆的面积计算公式2S r π=中,π是圆周率,是常数,变量为S ,R .【详解】在圆的面积计算公式2S r π=中,π是圆周率,是常数,变量为S ,R .故选D.【点睛】本题主要考查常量与变量,解题关键是熟练掌握圆的面积S随半径的变化而变化.5、C【解析】【分析】根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.【详解】解:∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;根据数据表,可得温度越高,声速越快,∴选项B正确;342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;324-318=6(m/s),330-324=6(m/s),336-330=6(m/s),342-336=6(m/s),348-342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项D正确;故选C.【点睛】此题主要考查了自变量、因变量的含义和判断,要熟练掌握.6、C【解析】【分析】根据事物的变化过程中发生变化的量是变量,数值不变的量是常量,可得答案.【详解】解;观察表格,得时间在变,人口数在变,故C正确.故选C.本题考查常量与变量,解题的关键是能够了解常量与变量的定义.7、C【解析】【分析】根据常量与变量的定义解答即可.【详解】 解:在球的体积公式343V R π=中,V 、R 是变量,43、π为常量, 故选C .【点睛】本题考查了常量与变量,在某一问题中,保持不变的量叫做常量,可以取不同数值的量叫做变量.8、C【解析】【分析】圆的面积S 随半径r 的变化而变化,所以S ,r 都是变量,其中r 是自变量,S 是因变量.【详解】解:在圆的面积公式2S r π=中,变量为S ,r ,变量有2个.故选:C .【点睛】本题考查了变量和常量,变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.9、C【分析】在函数中,给一个变量x一个值,另一个变量y就有对应的值,则x是自变量,y是因变量,据此即可判断.【详解】解:由题意得:s=50 t,路程随时间的变化而变化,则行驶时间是自变量,行驶路程是因变量.故选C.【点睛】此题主要考查了自变量和因变量,正确理解自变量与因变量的定义,是需要熟记的内容.10、C【解析】【分析】根据表格可知,场次、售票量、售票收入中,不变的量是票价,进而根据函数的定义可知票价是常量.【详解】根据表格数据可知,不变的量是票价,则常量是票价.故选C.【点睛】本题考查了函数的定义,掌握常量是不变的量是解题的关键.二、填空题1、y= 4x【解析】【分析】根据三角形的面积公式求解即可得到答案.【详解】解:∵三角形底边长是x ,底边上的高为8,三角形的面积为y , ∴1842y x x =⨯=,故答案为:4y x =.【点睛】本题主要考查了求两个变量之间的关系式,解题的关键在于能够熟练掌握三角形的面积公式.2、常量.【解析】【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行解答即可.【详解】解:假期即将开始,李伟制定了一张“假期每天时间分配表”,其中课外阅读时间为1.5小时,这里的“1.5小时”为常量,故答案为常量.【点睛】此题主要考查了常量,关键是掌握常量定义.3、107s 或4s 【解析】【分析】分两种情况:(1)当点Q 在CB 上时,如图1所示,(2)当点Q 运动至BA 上时,如图2所示,分别根据三角形的面积公式即可列出关于t 的方程,解方程即可.解:分两种情况:(1)当点Q在CB上时,如图1所示:S△ADP=12AD×AP=2t,S△BQD=12BQ×DC=52(4﹣2t),则2t=52(4﹣2t),解得:t=107;(2)当点Q运动至BA上时,如图2所示:S△ADP=12AD×AP=2t,S△BQD=12BQ×DA=2(2t﹣4),则2t=2(2t﹣4),解得:t=4;综上可得:当t=107s或4s时,S△ADP=S△BQD.故答案为:107s或4s.本题主要考查了三角形的面积、变量之间的关系和简单的一元一次方程的解法,正确分类、善于动中取静、灵活应用运动变化的观点是解题的关键.4、210S x x =-【解析】【分析】先用x 表示出长方形的长,再根据长方形的面积公式解答即可.【详解】解:因为长方形的周长为20,宽为x ,所以长方形的长为(10-x ),所以长方形的面积S 与宽x 的关系式是:()21010S x x x x =-=-. 故答案为:210S x x =-.【点睛】本题考查了用关系式表示变量之间的关系,准确掌握长方形的周长与面积公式是解题的关键. 5、 r S π【解析】【分析】根据常量、变量的概念,通过对圆的面积公式中的各个量进行分析,即可确定答案.【详解】∵圆的半径r 由小变大时,它的面积S 也越来越大,∴自变量是圆的半径r ,因变量是圆的面积S ,常量是π.故答案为r ,S ,π.【点睛】本题考查变量与常量. 常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量. 自变量就是本身发生变化的量,因变量就是由于自变量发生变化而引起变化的量.6、4π S和R【解析】【分析】变量是指在程序的运行过程中随时可以发生变化的量,常量是数值始终不变的量,根据定义即可确定. 【详解】解:公式是S=4πR2中常量是4π,变量是S和R.故答案是: 4π;S和R.【点睛】本题考查了常量与变量的定义,属于简单题,理解定义是关键.7、3.5【解析】【分析】由表格中的数据得出注水时间每增加0.5个小时,水的深度就加深0.7m,由此得出答案;【详解】解:由表格中的数据得出注水时间每增加0.5个小时,水的深度就加深0.7m,∴注水时间每增加1个小时,水的深度就加深1.4m,∴4.9÷1.4=3.5(小时)∴推断出注满水池所需的时间是3.5小时;故答案为:3.5【点睛】本题考查了用表格表示的变量之间的关系,正确理解题意、明确求解的方法是关键.8、T=7t+30【解析】【分析】由表知开始时温度为30℃,再每增加2分钟,温度增加14℃,即每增加1分钟,温度增加7℃,可得温度T 与时间t 的关系式.【详解】解:∵开始时温度为30℃,每增加1分钟,温度增加7℃,∴温度T 与时间t 的关系式为:T=30+7t .故答案为T=7t+30.【点睛】本题考查了求函数的关系式,关键是得出开始时温度为30℃,每增加1分钟,温度增加7℃.三、解答题1、(1)2个铁环组成的链条长8.4cm ,3个铁环组成的链条长为11.8cm ,4个铁环组成的链条长15.2cm ;(2) 3.4 1.6y n =+;(3)需要61个铁环【解析】【分析】(1)根据铁环粗0.8厘米,每个铁环长5厘米,进而得出2个、3个、4个铁环组成的链条长;(2)根据铁环与环长之间的关系进而得出y 与n 的关系式;(3)由(2)得,3.4n +1.6=209,进而求出即可.【详解】解:(1)由题意可得:2520.810 1.68.4()cm ⨯-⨯=-=,3540.815 3.211.8()cm ⨯-⨯=-=,4560.820 4.815.2()cm ⨯-⨯=-=.故2个铁环组成的链条长8.4cm ,3个铁环组成的链条长为11.8cm ,4个铁环组成的链条长15.2cm ;(2)由题意得:n 个铁环一共有n -1个相接的地方,∴52(1)0.8y n n =--⨯,即 3.4 1.6y n =+;(3)∵2.09米=209cm∴据题意有3.4 1.6209n +=,解得:61n =,答:需要61个铁环.【点睛】本题主要考查了用关系式表示的变量之间的关系,利用链条结构得出链条长的变化规律是解题的关键.2、(1)200(2) 5(3)y=200x-1000【解析】【详解】试题分析:(1)由OA 段,骑自行车匀速前进,可求出速度=路程/时间;(2)由AB 段,可看出修车时间;(3)通过设出函数一般式y=kx+b ,将(20,3000)(25,4000)代入即可求出.试题解析:(1) 200 (2) 5(3)设线段BC 解析式为:,y kx b =+过点(25,4000)和(20,3000)根据题意得:400025{300020.k b k b =+=+ 计算得出:200,1000.k b ==-∴解析式为:y 2001000.x =-3、(1)每月的乘车人数,每月利润;(2)2000人;(3)4000元【解析】【分析】(1)根据函数的定义即可求解;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,即可求解;(3)有表中的数据推理即可求解.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量;故答案为:每月的乘车人数,每月利润;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,故答案为:2000;(3)有表中的数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,利润为0元,故每月乘车人数为4000人时,每月的利润是(4000-2000)÷500×1000=4000元.【点睛】本题考查了根据表格与函数知识,正确读懂表格,理解表格体现变化趋势是解题关键.。
鲁教版(五四制)六年级下册单元评价检测第五章(45分钟100分)一、选择题(每小题4分,共28分)1.下列说法:①射线AB与射线BA是同一条射线;②线段AB是直线AB的一部分;③延长线段AB到C,使AB=AC;④射线AB与射线BA的公共部分是线段AB.正确的个数是( )(A)1 (B)2 (C)3 (D)42.如图所示,长度为12 cm的线段AB的中点为M,C为线段MB上一点,且MC∶CB=1∶2,则线段AC的长度为( )(A)2 cm (B)8 cm (C)6 cm (D)4 cm3.下列说法正确的是( )(A)角的两边可以度量(B)一条直线可看成一个平角(C)角是由一点引出的两条射线组成的图形(D)一条射线可看成一个周角4.如图,∠1=20°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为( )(A)95°(B)100°(C)110°(D)120°5.如图,已知C是线段AB的中点,D是BC的中点,E是AD的中点,F是AE的中点,那么线段AF是线段AC的( )(A)18(B)14(C)38(D)3166.如图,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数是( )(A)3对(B)4对(C)5对(D)7对7.已知∠α和∠β的和是平角,且∠α∶∠β=1∶8,则∠β的度数是( )(A)20°(B)40°(C)80°(D)160°二、填空题(每小题5分,共25分)8.30.12°=________°_______′_______″,100°12′36″=_______°.9.已知线段AB,延长线段AB到C,使BC=2AB,反向延长AB到D,使AD=AB,则AC=_______AB;DC=_______AC.10.如图,圆中两条半径把圆分成面积为4∶5的两个扇形,则两个扇形的圆心角的度数为_________.11.如图,点C是∠AOB的边OA上一点,D,E是OB上两点,则图中共有_________条线段,可用字母表示的射线有_________条,_________个小于平角的角.12.直线上有2 013个点,我们进行如下操作:在每相邻两点间插入1个点.经过3次这样的操作后,直线上共有_________个点.三、解答题(共47分)13.(11分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若AB=18 cm,求DE的长;(2)若CE=5 cm,求BD的长.14.(11分)如图所示,∠AOB=30°,∠BOC=40°,∠COD=26°,OE平分∠AOD.求∠BOE的度数.15.(12分)如图所示,回答下列问题.(1)2条直线相交有几个交点?(2)3条直线两两相交,最多有几个交点?(3)4条直线两两相交,最多有几个交点?(4)根据(1)(2)(3)总结:n(n为大于或等于2的正整数)条直线两两相交,最多有几个交点;(5)根据上述结论,求100条直线两两相交最多有几个交点.16.(13分)(1)如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)如果(1)中的∠AOB=α(OC在∠AOB外),其他条件不变,求∠MON的度数;(3)如果(1)中的∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)(2)(3)的结论中能得出什么结论?答案解析1.【解析】选B.射线的端点不同,射线就不同,所以射线AB与射线BA不是同一条射线,①错;②对;③错,因为无法使AB=AC;④对;所以选B.2.【解析】选B.因为AM=MB=12AB=6(cm),MC=6×13=2(cm),所以AC=AM+MC=6+2=8(cm),故选B.3.【解析】选C.角是由具有公共端点的两条射线组成的,可知C正确;射线不可以度量,故A错;角有顶点和两条边,故B,D错,因此选C.4.【解析】选C.因为∠BOC=90°-20°=70°,所以∠2=180°-∠BOC=180°-70°=110°.5.【解析】选C.根据题意可设CD=DB=x,则AC=CB=2DB=2x,AD=3x,AE=32x,AF=12AE=34x,所以3xAF34==AC2x8,故选C.6.【解析】选C.因为∠COB=∠DOE=90°,所以∠COE+∠COD=90°,∠COD+∠BOD=90°,所以∠COE=∠BOD;因为∠AOC=∠DOE,所以∠COE+∠COD=90°,∠AOE+∠COE=90°,所以∠AOE=∠COD;∠AOC=∠BOC.故选C.7.【解析】选D.可设∠α=x,∠β=8x,则x+8x=180°,x=20°,所以∠β=8x=160°,故选D.8.【解析】0.12°=0.12×60'=7.2',0.2'=0.2×60″=12″,所以30.12°=30°7'12″,36″=36×(160)'=0.6',12.6'=12.6×(160)°=0.21°,所以100°12'36″=100.21°.答案:30 7 12 100.219.【解析】如图所示,AC=3AB,DC=4AB,所以DC=43AC.答案:3 4310.【解析】两个扇形圆心角的度数分别为360°×49=160°和360°×59=200°.答案:160°,200°11.【解析】图中有线段OD,OE,OB,DE,DB,EB,OC,OA,CA,DC,EC,共11条,射线OA,CA,OB,DB,EB,共5条,小于平角的角有∠O,∠ODC,∠CDE,∠CED,∠CEB,∠ACE,∠ECD,∠DCO,∠ACD,∠OCE,共10个.答案:11 5 1012.【解析】2 013+2 012=4 025,4 025+4 024=8 049,8 049+8 048=16 097. 答案:16 09713.【解析】(1)因为C 是AB 的中点,所以AC=BC=12AB=9 cm.因为D 是AC 的中点,所以AD=DC=12AC=92cm.因为E 是BC 的中点,所以CE=BE=12BC=92cm.又因为DE=DC+CE,所以DE=92+92=9(cm). (2)由(1)知AD=DC=CE=BE,所以CE=13BD. 因为CE=5 cm,所以BD=15 cm.14.【解析】因为∠AOB=30°,∠BOC=40°,∠COD=26°,所以∠AOD=∠AOB+∠BOC+∠COD=30°+40°+26°=96°, 又因为OE 平分∠AOD,所以∠AOE=12∠AOD=12×96°=48°, 所以∠BOE=∠AOE-∠AOB=48°-30°=18°. 15.【解析】(1)由图可知,2条直线相交有1个交点. (2)3条直线两两相交,最多有2+1=3个交点. (3)4条直线两两相交,最多有3+2+1=6个交点. (4)依此类推,n 条直线两两相交最多有n-1+…+3+2+1=n(n 1)2-个交点. (5)根据上述结论,当n=100时, n(n 1)2-=100992⨯=4 950个交点.16.【解析】(1)因为ON 是∠BOC 的平分线, 所以∠CON=∠BON=12∠BOC=12×30°=15°. 因为OM 是∠AOC 的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(90°+30°)=60°,所以∠MON=∠COM-∠CON=60°-15°=45°. (2)当∠AOB=α,其他条件不变时,由(1)得∠CON=15°.因为OM是∠AOC的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(α+30°)=12α+15°,所以∠MON=∠COM-∠CON=12α+15°-15°=12α.(3)当∠BOC=β,其他条件不变时,因为ON是∠BOC的平分线,所以∠CON=∠BON=1 2∠BOC=12β,因为OM是∠AOC的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(90°+β)=45°+12β,所以∠MON=∠COM-∠CON=45°+12β-12β=45°.(4)∠MON的度数总等于∠AOB的一半,而与锐角∠BOC的度数没有关系.。
六年级数学下册第八章相数据的收集与整理专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某校为了了解七年级800名学生期中数学考试情况,从中抽取了100名学生的期中数学成绩进行了统计,下面判断中不正确的有()A.这种调查的方式是抽样调查B.800名学生是总体C.每名学生的期中数学成绩是个体D.100名学生的期中数学成绩是总体的一个样本2、下列调查中,最适合采用全面调查(普查)方式的是()A.对长江忠县县城段水域污染情况的调查B.对某校九年级一班学生身高情况的调查C.对某工厂出厂的灯泡使用寿命情况的调查D.对某品牌上市的化妆品质量情况的调查3、以下调查中,适宜全面调查的是()A.调查某批次汽车的抗撞击能力B.调查某市居民日平均用水量C.调查全国春节联欢晚会的收视率D.调查某班学生的身高情况4、2020年10月16日是第40个世界粮食日,某校学生会开展了“光盘行动,从我做起”的活动,对随机抽取的100名学生的在校午餐剩余量进行调查,结果有86名学生做到“光盘”,那么下列说法不合理的是()A.个体是每名学生是否做到“光盘”B.样本容量是100C.全校只有14名学生没有做到“光盘”D.全校约有86%的学生做到“光盘”5、为了完成下列任务,你认为最适合采用普查的是()A.了解某品牌电视的使用寿命B.了解一批西瓜是否甜C.了解某批次烟花爆竹的燃放效果D.了解某隔离小区居民新冠核酸检查结果6、为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么估计鱼塘中鱼的条数为()A.anbB.bnaC.banD.abn7、在“5•18世界无烟日”来临之际,小明和他的同学为了解某街道大约有多少成年人吸烟,于是随机调查了该街道1000个成年人,结果有180个成年人吸烟.对于这个数据的收集与处理过程,下列说法正确的是()A.调查的方式是普查B.该街道约有18%的成年人吸烟C.该街道只有820个成年人不吸烟D.样本是180个吸烟的成年人8、下列调查中,适合用普查方式的是()A.调查佛山市市民的吸烟情况B.调查佛山市电视台某节目的收视率C.调查佛山市市民家庭日常生活支出情况D.调查佛山市某校某班学生对“文明佛山”的知晓率9、下列调査最适合普查的是()A.调查某中学适宜接种新冠疫苗人员的实际接种情况B.调查国庆期间全国观众最喜爱的电影C.调查“深圳读书月”活动中市民的读书情况D.了解一批哈密瓜是否甜10、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是()A.1月份生产量最大B.这七个月中,每月的生产量不断增加C.1﹣6月生产量逐月减少D.这七个月中,生产量有增加有减少第Ⅱ卷(非选择题 70分)二、填空题(8小题,每小题5分,共计40分)1、要想了解中国疫情的变化情况,最好选用 ___统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用 ___统计图.2、某超市质检人员为了检测某品牌产品的质量,从同一批次共2000件产品中随机抽取100件进行检测,检测出次品一件,由此估计这批产品中的次品件数是______件.3、小明家7至12月份的用水量统计图如图所示,根据图中的数据可知,8月的用水量比10月的用水量多______吨.4、一个盒子中有5个红球和若干个白球,它们除颜色外都相同,从中随机摸出一个球,记下它的颜色后再放回盒子中.不断重复这个过程,共摸了100次球,发现有25次摸到红球,请估计盒子中白球大约有_____个.5、质检部门从2000件电子元件中随机抽取100件进行检测,其中有3件是次品.试据此估计这批电子元件中大约有______件次品.6、小张所在的公司共有600名员工,他为了解公司员工所使用的手机品牌情况,随机调查了部分员工,并将调查得到的数据绘制成如图所示的统计图,那么小张所在公司使用“华为”品牌手机的人数约是_____人.7、一个不透明的盒子中有若干个白球和5个黑球,从中摸出一球记下颜色后放回,重复摸球100次,其中摸到黑球的次数为25次,盒中有白球约______个.8、如图为某市未来几天的每日最高气温与最低气温的变化趋势图,根据图中信息可知,最大的温差是______.三、解答题(3小题,每小题10分,共计30分)1、第24届冬季奥林匹克运动会即将于2022年2月4日至2月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会.随着冬奥会的日益临近,北京市民对体验冰雪活动也展现出了极高的热情.下图是随机对北京市民冰雪项目体验情况进行的一份网络调查统计图,请根据调查统计图表提供的信息,回答下列问题:(1)都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的___________%,并在图中将统计图补面完整;(2)此次网络调查中体验过冰壶运动的有120人,则参加过滑雪的有___________人;(3)此次网络调查中体验过滑雪的人比体验过滑冰的人多百分之几?2、某校对全校2600名学生进行“新冠防疫知识”的教育活动,从中抽取部分学生进行测试,成绩评定按从高分到低分排列分为A、B、C、D四个等级,绘制了图(1)、图(2)两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)求本次抽查的学生共有多少人?(2)将两幅统计图补充完整.(3)求扇形统计图中“B”等级所对应的扇形圆心角的度数.(4)估计全校得“D”等级的学生有多少人?3、今年是建党100周年,学校决定开展观看爱国电影、制作手抄报、朗诵经典和唱响红歌四项活动喜迎建党100周年.为了解学生对四种活动的喜爱程度,随机调查了m名学生最喜爱的一项活动(每名学生只能选择一项),并将调查结果绘制成两幅不完整的统计图表.请根据统计图表提供的信息,解答下列问题:(1)m=,n=,x=;(2)在扇形统计图中,“朗诵经典”所对应的圆心角度数是度;(3)若该学校有1000人,请你估计喜欢“制作手抄报”和“唱响红歌”的学生共有名.-参考答案-一、单选题1、B【解析】【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体.本题考查的对象是七年级800名学生期中数学考试情,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【详解】解:A、题中的调查方式为抽样调查,选项正确,不符合题意;B、总体为800名学生的期中数学成绩,而不是学生,选项错误,符合题意;C、每名学生的期中数学成绩是个体,选项正确,不符合题意;D、100名学生的期中数学成绩是总体的一个样本,选项正确,不符合题意;故选B【点睛】本题主要考查了总体、个体与样本,解题要分清具体问题中的总体、个体与样本.关键是明确考查的对象,总体、个体与样本的考察对象是相同的,所不同的是范围的大小.2、B【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、对长江忠县县城段水域污染情况的调查适合抽样调查,故不符合题意;B、对某校九年级一班学生身高情况的调查适合普查,故符合题意;C、对某工厂出厂的灯泡使用寿命情况的调查适合抽样调查,故不符合题意;D、对某品牌上市的化妆品质量情况的调查适合抽样调查,故不符合题意;故选:B.【点睛】本题考查了抽样调查和全面调查的区别,解题的关键是掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、D【解析】【分析】根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查省时省力,但得到的调查结果比较近似即可解答.【详解】解:A. 调查某批次汽车的抗撞击能力,调查具有破坏性,适合抽样调查,故不合题意;B. 调查某市居民日平均用水量,调查耗时耗力,适合抽样调查,故不合题意;C. 调查全国春节联欢晚会的收视率调查耗时耗力,适合抽样调查,故不合题意;D. 调查某班学生的身高情况,适合全面调查,故符合题意.故选:D【点睛】本题考查了抽样调查和全面调查的区别,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.4、C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、个体是每一名学生是否做到“光盘”情况,故A不合题意;B、样本容量是100,故B不合题意;C、样本中有14名学生没有做到“光盘”,故C符合题意;D、全校约有86%的学生做到“光盘”,故D不合题意;故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.5、D【解析】【分析】普查和抽样调查的选择,需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、了解某品牌电视的使用寿命,调查带有破坏性,应用抽样调查方式,故此选项不合题意;B、了解一批西瓜是否甜,调查带有破坏性,应用抽样调查方式,故此选项不合题意;C、了解某批次烟花爆竹的燃放效果,调查带有破坏性,适合选择抽样调查,故此选项不符合题意;D、了解某隔离小区居民新冠核酸检查结果,对结果的要求高,结果必须准确,应用全面调查方式,故此选项符合题意.故选:D.【点睛】本题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.6、A【解析】【分析】首先求出有记号的b条鱼在a条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【详解】解:∵打捞a条鱼,发现其中带标记的鱼有b条,∴有标记的鱼占ba,∵共有n条鱼做上标记,∴鱼塘中估计有n÷ba=anb(条).故选:A.【点睛】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.7、B【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:根据题意,随机调查1000个成年人,是属于抽样调查,故A选项错误;这1000个人中180人吸烟不代表本地区只有180个成年人吸烟,故C选项错误;样本是1000个成年人是否吸烟,故D选项错误;本地区约有18%的成年人吸烟是对的,故B选项正确.故选:B.【点睛】本题主要考查了样本估计总体思想以及抽样调查的定义,正确把握相关定义是解题关键.8、D【解析】【分析】根据普查和抽样调查的定义进行逐一判断即可.【详解】解:A、调查佛山市市民的吸烟情况,应采用抽样调查,故此选项不符合题意;B、调查佛山市电视台某节目的收视率,应采用抽样调查,故此选项不符合题意;C、调查佛山市市民家庭日常生活支出情况,应采用抽样调查,故此选项不符合题意;D、调查佛山市某校某班学生对“文明佛山”的知晓率,应采用普查,故此选项符合题意;故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、A【解析】【分析】根据全面调查与抽样调查的意义判断即可.【详解】解:A、最适合全面调查,故选项正确,符合题意;B、最适合抽样调查,故选项错误,不符合题意;C、最适合抽样调查,故选项错误,不符合题意;D、最适合抽样调查,故选项错误,不符合题意.故选:A.【点睛】此题考查了全面调查与抽样调查的问题,解题的关键是掌握全面调查与抽样调查的区别.10、B【解析】【分析】根据折线图的特点判断即可.【详解】解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;每月的生产量不断增加,故7月份的生产量最大,A错误;故选:B.【点睛】本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.二、填空题1、折线扇形【解析】【分析】根据折线统计图不仅能够表示数量的多少而且能够表示数量的增减变化趋势;扇形统计图能够表示部分与整体之间的关系进行解答即可.【详解】解:根据统计图的特点可知:要想了解中国疫情,既要知道每天患病数量的多少,又要反映疫情变化的情况和趋势,最好选用折线统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用扇形统计图.故答案为:折线,扇形.此题考查了统计图的选择,掌握三种统计图的特点和作用是解答此题的关键.2、20【解析】【分析】先求出次品所占的百分比,再根据共2000件产品,直接相乘得出答案即可.【详解】解:∵随机抽取100件进行检测,检测出次品1件,∴次品所占的百分比是:1 100,∴这一批产品中的次品件数是:2000×1100=20(件),故答案为:20.【点睛】此题主要考查了用样本估计总体,根据出现次品的数量求出次品所占的百分比是解题关键.3、3【解析】【分析】用8月的用水量减去10月的用水量即可求解.【详解】解:由题意得6-3=3吨,故答案为:3.本题考查了折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.读懂折线统计图,从图中找出必要的数据是解题的关键.4、15【解析】【分析】由共摸了100次球,发现有25次摸到红球知摸到红球的概率为0.25,设盒子中白球有x 个,可得50.255x=+,解之即可. 【详解】解:设盒子中白球大约有x 个, 根据题意,得:50.255x=+, 解得15x =,经检验15x =是分式方程的解,所以估计盒子中白球大约有15个,故答案为:15.【点睛】本题考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息,解题的关键是用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.5、60【解析】【分析】用总数量乘以所抽样本中次品数量所占比例即可.【详解】解:估计这批电子元件中次品大约有2000×3100=60(件),故答案为:60.【点睛】本题主要考查了用样本频数估计总体的频数,解题的关键在于能够准确读懂题意.6、210【解析】【分析】用样本中使用华为品牌的人数所占比例乘以总人数即可得出答案.【详解】解:小张所在公司使用“华为”品牌手机的人数约是600×3535152051015+++++=210(人),故答案为:210.【点睛】本题考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.7、15【解析】【分析】可根据“黑球数量=黑球所占比例⨯黑白球总数”来列等量关系式,其中“黑白球总数=黑球个数+白球个数”,“黑球所占比例⨯总共摸球的次数=随机摸到的黑球次数”.【详解】解:设盒中原有白球有x 个,根据题意得:()2555100x ⨯+=⨯, 解得:x =15,答:盒中原有白球约有15个.故答案为:15.【点睛】本题主要考查用样本估计总体,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.8、10【解析】【分析】求出每天的最高气温与最低气温的差,再比较大小即可.【详解】解:∵由折线统计图可知,15日温差=4−(−3)=7;16日温差=4−(−6)=10;17日温差=2−(−6)=8;18日温差=2−(−2)=4;19日温差=1−(−5)=6;20日温差=1−(−1)=2;∴最大的温差是10.故答案为:10.【点睛】本题考查了折线统计图的应用以及有理数的减法,掌握有理数减法法则是解答本题的关键.有理数减法法则:减去一个数,等于加上这个数的相反数.三、解答题1、 (1)12%.补图见解析(2)270(3)12.5%【解析】【分析】(1)用冰壶的人所占百分比减去4个百分点即可求出百分比,按照百分比补全统计图即可;(2)用120人除以体验过冰壶运动的百分比求出总人数,再乘以滑雪的百分比即可;(3)求出体验过滑雪的人比体验过滑冰的人多多少人,再求出百分比即可.(1)解:都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的百分比为:16%-4%=12%,不全统计图如图:故答案为:12%.(2)解:调查的总人数为:120÷24%=500(人),参加过滑雪的人数为:500×54%=270(人),故答案为:270(3)解:体验过滑冰的人数为:500×48%=240(人),(270-240)÷240=12.5%,体验过滑雪的人比体验过滑冰的人多12.5%.【点睛】本题考查了条形统计图,解题关键是准确从条形统计图中获取信息,正确进行计算求解.2、(1)120人;(2)见解析;(3)144°;(4)260人【解析】【分析】(1)由A等级人数及其所占百分比可得总人数;(2)总人数乘以C等级百分比求出其人数,再根据四个等级人数之和等于总人数求出D等级人数,继而分别用B、D等级人数除以总人数求出其所占百分比即可补全图形;(3)用360°乘以样本中B对应的百分比即可;(4)用总人数乘以样本中D等级人数所占百分比即可.【详解】解:(1)本次抽查的学生人数为24÷20%=120(人);(2)C等级人数为120×30%=36(人),D等级人数为120﹣(24+48+36)=12(人),B等级人数所占百分比为48÷120×100%=40%,D等级人数所占百分比为12÷120×100%=10%,补全图形如下:(3)扇形统计图中“B”等级所对应的扇形圆心角的度数为360°×40%=144°;(4)估计全校得“D”等级的学生有2600×10%=260(人).【点睛】此题主要考查统计调查的应用没解题的关键是熟知条形统计图与扇形统计图的特点.3、 (1)200,25,54(2)90(3)450【解析】【分析】(1)根据喜爱观看电影的有60人,占30%可以求得m的值,从而可以求得n、x的值;(2)根据“朗诵经典”的百分比,即可得到所对应的圆心角度数;(3)求出“制作手抄报”和“唱响红歌”占的百分比,可以估算出全校1000名学生中,喜欢“制作手抄报”和“唱响红歌”的学生数;(1)解:由题意可得,m=60÷30%=200,n%=50÷200=25%,即n=25,x=200-60-36-50=54,故答案为:200,25,54;(2)扇形统计图中,朗诵经典所对应的圆心角度数是360°×25%=90°;故答案为:90;(3)由题意可得,全校1000名学生中,喜爱“制作手抄报”的学生有:1000× =180(名),喜爱“唱响红歌”的学生有:1000× =270(名),180+270=450(名),答:估计喜欢“制作手抄报”和“唱响红歌”的学生共有450名.故答案为:450.【点睛】本题考查扇形统计图、统计表、用样本估计总体.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.。
鲁教版五四制六年级下册数学答案1. 我国目前沙化面积达到一百六十八万九千平方千米,这个数写作()平方千米[填空题] *_________________________________(答案:168 9000)2. 如果一个物体向东移动3米,记作+3,那么这个物体向西移动5米记作()米[填空题] *_________________________________(答案:-5)3. 2时15分=()时 [填空题] *_________________________________(答案:2.25)4. 把2000元存入银行,定期二年,年利率是3.75%到期后得到利息()元。
[填空题] *_________________________________(答案:150)5. 一个书架降价20%后,售价是180元,它的原价是()元。
[填空题] *_________________________________(答案:225)6. 有6只鸽子飞回5个鸽巢,总有一个鸽巢里至少飞进()只鸽子。
[填空题] * _________________________________(答案:2)7. 平行四边形的面积一定,底和高成()比例。
[填空题] *_________________________________(答案:反)8. 请算出0.6 : 0.3的比值() [填空题] *_________________________________(答案:2)9. 用圆规画一个周长是25.12厘米的圆,圆规两脚间的距离是()厘米。
[填空题] *_________________________________(答案:4)10. 在4:5中,比的前项增加12,要使比值不变,比的后项应增加()。
[填空题] *_________________________________(答案:15)11. 二成五可以写成()% [填空题] *_________________________________(答案:25)12. 某饭店营业额中应纳税的部分是50万元。
1 / 1
鲁教版五四制六年级数学下册
一、精心选一选:
1、-3的绝对值等于( ) A.-3
B. 3
C. ±3
D. 小于3
2. 在数轴上,原点及原点右边的点表示的数是( )
A.正数
B.负数
C.非正数
D.非负数
3. 在数 -(-3), 0 ,(-3)2, |-9|, -14
中,正数的有( )个 A .2 B .3 C .4 D .5 2、与2ab -是同类项的为( ) A.2ac - B.22ab C.ab D.2abc -
5 已知方程21
0k x
k -+=是关于x 的一元一次方程,则方程的解等于( )
A.-1
B.1
C.12
D.-12
6、与2ab -是同类项的为( )
A.2ac -
B.22ab
C.ab
D.2abc -
7. 某中学七年级(2)班有学生42人,已知男生人数比女生人数的2倍少3人,求男生和女生各多少人?下面设未知数的方法,合适的是( ). A. 设总人数为x 人
B. 设男生比女生多x 人
C. 设男生人数是女生人数的x 倍
D. 设女生人数为x 人
8. 下列说法错误的是( )
A. 若a=b 则a+1=b+1
B. 若a=b 则a(x ²+1)=b( x ²+1 )
C. 若a=b 则3a
2a =3b 2
b
D. 若a(x-1)=b(x-1) 则a=b 二、细心填一填:
9. -8的相反数是_________.
10. 用科学记数法表示13040000应记作_______________________. 11. 一件运动衣按原价的八折出售时,售价是40元,则原价为_____元. 三、耐心做一做:
12.若|m -2|+|n -5|=0,求(m -n)2
的值
13、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.
⑴这个班有多少学生? ⑵这批图书共有多少本?
14、雅丽服装厂童装车间有40名工人,缝制一种儿童套装(一件上衣和两条裤子配成一套)。
已知1名工人一天可缝制童装上衣3件或裤子4件,问怎样分配工人才能使缝制出来的上衣和裤子恰好配套?。