高考数学(理)二轮专练:中档小题(6)及答案解析
- 格式:doc
- 大小:267.50 KB
- 文档页数:7
2023高考数学二轮复习专项训练《导数的概念和几何意义》一、单选题(本大题共12小题,共60分)1.(5分)直线y=x与曲线y=e x+m(m∈R,e为自然对数的底数)相切,则m=()A. 1B. 2C. −1D. −22.(5分)与曲线y=x3−5x相切且过原点的直线的斜率为()A. 2B. −5C. −1D. −23.(5分)曲线y=ax2在点P(1,a)处的切线平行于直线y=2x+1,则a=()A. 1B. 12C. −12D. −14.(5分)在曲线y=x3+x-2的切线中,与直线4x-y=1平行的切线方程是( )A. 4x-y=0B. 4x-y-4=0C. 2x-y-2=0D. 4x-y=0或4x-y-4=05.(5分)若函数f(x)=1x−3ax的图象在x=1处的切线与直线x+4y=0垂直,则a= ()A. −1B. 1C. −712D. −536.(5分)函数f(x)=−x2+3ln x的图象在x=1处的切线倾斜角为α,则cos2α=()A. 13B. 12C. 23D. 347.(5分)已知函数y=3x在x=2处的自变量的增量为Δx=0.1,则Δy为( )A. -0.3B. 0.6C. -0.6D. 0.38.(5分)曲线在点(1,2)处的切线方程为A. B. C. D.9.(5分)曲线y=12x2−2x在点(1,−32)处的切线的倾斜角为()A. −135°B. 45°C. −45°D. 135°10.(5分)已知曲线C:x2−2x+y2+b=0,且曲线C上一点P(2,2)处的切线与直线ax−y+1=0垂直,则a=()A. 2B. 12C. −12D. −211.(5分)设f(x)=x3+(a−1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0 ,0)处的切线方程为()A. y=xB. y=−xC. y=2xD. y=−2x12.(5分)物体运动方程为s=14t4−3,则t=5时的瞬时速率为()A. 5m/sB. 25m/sC. 125m/sD. 625m/s二、填空题(本大题共5小题,共25分)13.(5分)曲线y=x+lnx−1往点(1,0)处的切线方程为______.14.(5分)已知定义在R上的函数f(x)满足f′(x)>0,且f(f(x)−e x)=e+1,若f(x)⩾ax−a+1恒成立,则实数的取值范围是____________.15.(5分)如果质点A的位移s与时间t满足方程s=2t3,则在t=3时的瞬时速度为____.16.(5分)已知函数f(x)={1x,x∈(0,2]f(x−2),x∈(2,+∞),则f(x)在x=3处的切线方程为______.17.(5分)若函数f(x)=−x2+x在[2,2+Δx](Δx>0)上的平均变化率不大于−1,则Δx的取值范围是____________.三、解答题(本大题共6小题,共72分)18.(12分)已知函数f(x)=x2−2x−alnx+ax,a∈R.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)设f(x)的极小值点为x0,且f(x0)<a−a24,求a的取值范围.19.(12分)已知函数f(x)=ln x−ax,其中a为非零常数.(1)当a=1时,求f(x)的单调区间;(2)若函数f(x)在x=1处的切线斜率为−1,求f(x)的极值.20.(12分)已知函数f(x)=−x2+x图像上两点A(2,f(2))、B(2+Δx,f(2+Δx)).(1)若割线AB的斜率不大于−1,求Δx的范围;(2)用导数的定义求函数f(x)=−x2+x在x=2处的导数f′(2),并求在点A处的切线方程.21.(12分)已知函数y=23x3−2x2+3,(1)求在点(1,53)处的切线方程,(2)求函数在[−1,3]的最值.22.(12分)已知函数f(x)=e x ln x−ae x(a∈R).(1)若f(x)在点(1,f(1))处的切线与直线y=−e x+1平行,求a的值;(2)若f(x)在(0,+∞)上是单调函数,求实数a的取值范围.23.(12分)已知函数f(x)=ae x,g(x)=ln(ax)+52,a>0.(Ⅰ)若y=f(x)的图象在x=1处的切线过点(3,3),求a的值并讨论ℎ(x)=xf(x)+m(x2+2x−1)(m∈R)在(0,+∞)上的单调增区间;(Ⅱ)定义:若直线l:y=kx+b与曲线C1:f1(x,y)=0、C2:f2(x,y)=0都相切,则我们称直线l为曲线C1、C2的公切线.若曲线y=f(x)与y=g(x)存在公切线,试求实数a的取值范围.四、多选题(本大题共5小题,共25分)24.(5分)已知函数f(x)=√x−ln x,若f(x)在x=x1和x=x2(x1≠x2)处切线平行,则()A.√x1√x2=12B. x1x2<128C. x1+x2<32D. x12+x22>51225.(5分)函数f(x)的导函数为f′(x),若已知f′(x)的图像如图,则下列说法不正确的是()A. f(x)存在极大值点B. f(x)在(0,+∞)单调递增C. f(x)一定有最小值D. 不等式f(x)<0一定有解26.(5分)关于函数f(x)=a ln x+2x,下列判断正确的是()A. 函数f(x)的图象在点x=1处的切线方程为(a−2)x−y−a+4=0B. x=2a是函数f(x)的一个极值点C. 当a=1时,f(x)⩾ln2+1D. 当a=−1时,不等式f(2x−1)−f(x)>0的解集为(12,1)27.(5分)已知函数f(x)=ax3+x2+axe x,则()A. 若曲线y=f(x)在(0,f(0))处的切线与x+5y=0相互垂直,则a=5B. 若a=0,则函数f(x)的单调递减区间为(−∞,0)∪(2,+∞)C. 若a=0,则函数f(x)有2个极值点D. 若关于x的不等式函数x2+1⩾f(x)在(0,+∞)上恒成立,则实数a的取值范围为(−∞,e-12]28.(5分)函数f(x)={e x−1,x⩽1,ln(x−1),x>1,若函数g(x)=f(x)−x+a只有一个零点,则a的值可以为()A. 2B. −2C. 0D. 1答案和解析1.【答案】C;【解析】解:设切点为(x,y),则x=y,∵y=e x+m,∴y′=e x+m∴e x+m=1,即x+m=0,又e x+m=x,∴e0=x,∴x=1,∴m=−1,故选:C.先求导函数,利用直线y=x与曲线y=e x+m相切,可知切线的斜率为1,即切点处的函数值为1,再利用切点处的函数值相等,即可求出a的值本题以直线与曲线相切为载体,考查了利用导数研究曲线上过某点切线方程的斜率,解答该题的关键是正确理解导数的几何意义.2.【答案】B;【解析】解:设切点坐标为P(x0,y0),由曲线y=f(x)=x3−5x,得f′(x)=3x2−5,所以过原点的切线斜率为k=f′(x0)=3x02−5,所以切线方程为y−y0=(3x02−5)(x−x0);又切线过原点O(0,0),所以−x03+5x0=−3x03+5x0,解得x0=0,所以y0=0,则P(0,0);所以与曲线y=x3−5x相切且过原点的直线的斜率为k=f′(0)=−5.故选:B.设切点为(x0,y0),求出切线l的斜率为f′(x0),写出切线l的方程,根据且线1过原点求出切点坐标和斜率.该题考查了导数的几何意义与应用问题,也考查了运算求解能力,是基础题.3.【答案】A;【解析】解:y=ax2的导数为y′=2ax,可得曲线在点P(1,a)处的切线斜率为k=2a,由切线平行于直线y=2x+1,可得k=2,即2a=2,解得a=1,故选:A.求得y=ax2的导数,可得切线的斜率,由两直线平行的条件可得a的方程,解方程可得a的值.该题考查导数的几何意义,考查两直线平行的条件,考查方程思想和运算能力,属于基础题.4.【答案】D;【解析】曲线y=x 3+x-2求导可得y′=3x 2+1 设切点为(a ,b)则3a 2+1=4,解得a=1或a=-1 切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x 3+x-2相切的 直线方程是:4x-y-4=0和4x-y=0 故选D 。
(六)不等式选讲1.(2017·唐山月考)已知函数f (x )=|x +1|+|mx -1|.(1)若m =1,求f (x )的最小值,并指出此时x 的取值范围;(2)若f (x )≥2x ,求m 的取值范围.解 (1)当m =1时,f (x )=|x +1|+|x -1|≥|(x +1)-(x -1)|=2,当且仅当(x +1)(x -1)≤0时取等号,故f (x )的最小值为2,此时x 的取值范围是[-1,1].(2)当x ≤0时,f (x )≥2x 显然成立,所以此时m ∈R ;当x >0时,由f (x )=x +1+|mx -1|≥2x ,得|mx -1|≥x -1.由y =|mx -1|及y =x -1的图象,可得|m |≥1且1m≤1, 解得m ≥1或m ≤-1.综上所述,m 的取值范围是(-∞,-1]∪[1,+∞).2.已知函数f (x )=|x -2|-|x +1|.(1)解不等式f (x )>1;(2)当x >0时,函数g (x )=ax 2-x +1x(a >0)的最小值大于函数f (x ),试求实数a 的取值范围. 解 (1)当x >2时,原不等式可化为x -2-x -1>1,此时不成立;当-1≤x ≤2时,原不等式可化为2-x -x -1>1,解得x <0,即-1≤x <0;当x <-1时,原不等式可化为2-x +x +1>1,解得x <-1.综上,原不等式的解集是{x |x <0}.(2)因为g (x )=ax +1x-1≥2a -1, 当且仅当x =a a时等号成立, 所以g (x )min =g ⎝⎛⎭⎫a a =2a -1. 当x >0时,f (x )=⎩⎪⎨⎪⎧1-2x ,0<x ≤2,-3,x >2,所以f (x )∈[-3,1).所以2a -1≥1,解得a ≥1.所以实数a 的取值范围为[1,+∞).3.设f (x )=|ax -1|.(1)若f (x )≤2的解集为[-6,2],求实数a 的值;(2)当a =2时,若存在x ∈R ,使得不等式f (2x +1)-f (x -1)≤7-3m 成立,求实数m 的取值范围.解 (1)显然a ≠0.f (x )≤2可化为-1≤ax ≤3,当a >0时,解集为⎣⎡⎦⎤-1a ,3a ,易知-1a =-6,3a=2,无解; 当a <0时,解集为⎣⎡⎦⎤3a ,-1a ,易知-1a=2, 3a =-6,解得a =-12. 综上所述,a =-12. (2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎨⎪⎧ -2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32,由此可知,h (x )在⎝⎛⎭⎫-∞,-14上单调递减, 在⎝⎛⎭⎫-14,32上单调递增,在⎝⎛⎭⎫32,+∞上单调递增, 则当x =-14时,h (x )取得最小值-72, 由题意知7-3m ≥-72,解得m ≤72. 所以实数m 的取值范围是⎝⎛⎦⎤-∞,72. 4.设f (x )=|x -1|+|x +1|.(1)求f (x )≤x +2的解集;(2)若不等式f (x )≥|a +1|-|2a -1||a |对任意实数a ≠0恒成立,求实数x 的取值范围. 解 (1)由f (x )≤x +2,有⎩⎪⎨⎪⎧ x +2≥0,x ≤-1,1-x -x -1≤x +2或⎩⎪⎨⎪⎧ x +2≥0,-1<x <1,1-x +x +1≤x +2或⎩⎪⎨⎪⎧x +2≥0,x ≥1,x -1+x +1≤x +2,解得0≤x ≤2,所以所求的解集为[0,2].(2)⎪⎪⎪⎪|a +1|-|2a -1||a |=⎪⎪⎪⎪⎪⎪⎪⎪1+1a -⎪⎪⎪⎪2-1a ≤⎪⎪⎪⎪1+1a+2-1a =3, 当且仅当⎝⎛⎭⎫1+1a ⎝⎛⎭⎫2-1a ≤0时取等号. 由不等式f (x )≥|a +1|-|2a -1||a |对任意实数a ≠0恒成立,可得|x -1|+|x +1|≥3, 即⎩⎪⎨⎪⎧ x ≤-1,1-x -x -1≥3或⎩⎪⎨⎪⎧ -1<x <1,1-x +x +1≥3或⎩⎪⎨⎪⎧x ≥1,x -1+x +1≥3, 解得x ≤-32或x ≥32. 所以所求x 的取值范围为⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞. 5.不等式|x 2+3x -18|<6-2x 的解集为{x |a <x <b }.(1)求a ,b 的值;(2)已知p ,q ∈(-1,1),且pq =b a ,求u =a 8(p 2-1)+b 4(q 2-1)的最小值. 解 (1)由|x 2+3x -18|<6-2x ,可得⎩⎪⎨⎪⎧ 6-2x >0,|x 2+3x -18|2<4(x -3)2, 即⎩⎪⎨⎪⎧x <3,(x -3)2(x +8)(x +4)<0, 解得-8<x <-4,从而a =-8,b =-4.(2)由(1)知u =-88(p 2-1)+-44(q 2-1)=11-p 2+11-q 2,pq =b a =12, 故p 2+q 2≥2pq =1,当且仅当p =q =±22时取等号. 而u =11-p 2+11-q 2≥211-p 2·11-q 2 =2154-p 2-q 2≥2154-1=4, 或u =11-p 2+11-q 2=2-p 2-q 254-p 2-q 2 =1+3454-(p 2+q 2) ≥1+3454-1=4.。
中档大题(六)1.(2013·高考辽宁卷)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈[0,π2]. (1)若|a |=|b |,求x 的值; (2)设函数f (x )=a ·b ,求f (x )的最大值.2.(2013·高考陕西卷)如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 是底面中心,A 1O ⊥底面ABCD ,AB =AA 1= 2.(1)证明:平面A 1BD ∥平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.3.(2013·广东省广州市高三年级调研测试)某中学高三年级从甲、乙两个班级各选出七名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x 和y 的值;(2)计算甲班七名学生成绩的方差;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.参考公式:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x =x 1+x 2+…+x n n.4.(2013·江西省南昌市高三第一次模拟测试)设正项数列{a n }的前n 项和是S n ,若{a n }和{S n }都是等差数列,且公差相等.(1)求{a n }的通项公式;(2)若a 1,a 2,a 5恰为等比数列{b n }的前三项,记数列c n =1log 34b n +1·log 34b n +2,数列{c n }的前n 项和为T n ,求T n .5.已知定义在区间[-π,3π2]上的函数y =f (x )的图象关于直线x =π4对称,当x ≥π4时,f (x )=-sin x .(1)作出y =f (x )的图象;(2)求y =f (x )的解析式;(3)若关于x 的方程f (x )=-910有解,将方程所有解的和记为M ,结合(1)中函数图象,求M 的值.6.(2013·高考福建卷)如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,BC =5,DC =3,AD =4,∠P AD =60°.(1)当正视方向与向量AD →的方向相同时,画出四棱锥P -ABCD 的正视图(要求标出尺寸,并写出演算过程);(2)若M 为P A 的中点,求证:DM ∥平面PBC ;(3)求三棱锥D -PBC 的体积.答案:1.【解】(1)由|a |2=(3sin x )2+sin 2x =4sin 2x ,|b |2=cos 2x +sin 2x =1,及|a |=|b |,得4sin 2x =1.又x ∈[0,π2],从而sin x =12,所以x =π6. (2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin(2x -π6)+12, 当x =π3∈[0,π2]时,sin(2x -π6)取最大值1. 所以f (x )的最大值为32. 2.【解】(1)证明:由题设知,BB 1DD 1,∴四边形BB 1D 1D 是平行四边形,∴BD ∥B 1D 1.又BD ⊄平面CD 1B 1,∴BD ∥平面CD 1B 1.∵A 1D 1B 1C 1BC ,∴四边形A 1BCD 1是平行四边形,∴A 1B ∥D 1C .又A 1B ⊄平面CD 1B 1,∴A 1B ∥平面CD 1B 1.又BD ∩A 1B =B ,∴平面A 1BD ∥平面CD 1B 1.(2)∵A 1O ⊥平面ABCD ,∴A 1O 是三棱柱ABD -A 1B 1D 1的高.又AO =12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1. 又S △ABD =12×2×2=1, ∴V 三棱柱ABD -A 1B 1D 1=S △ABD ·A 1O =1.3.【解】(1)∵甲班学生的平均分是85,∴92+96+80+80+x +85+79+787=85, ∴x =5.∵乙班学生成绩的中位数是83,∴y =3.(2)甲班七名学生成绩的方差为s 2=17[(-6)2+(-7)2+(-5)2+02+02+72+112]=40. (3)甲班成绩在90分以上的学生有两名,分别记为A ,B ,乙班成绩在90分以上的学生有三名,分别记为C ,D ,E .从这五名学生中任意抽取两名学生共有10种情况:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ).其中甲班至少有一名学生共有7种情况:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ).记“从成绩在90分以上的学生中随机抽取两名学生,甲班至少有一名学生”为事件M ,则P (M )=710. 故从成绩在90分以上的学生中随机抽取两名学生,甲班至少有一名学生的概率为710. 4.【解】(1)设{a n }的公差为d ,则S n =na 1+n (n -1)d 2,即S n =d 2n 2+(a 1-d 2)n ,由S n是等差数列得到:⎩⎨⎧a 1-d 2=0S n =d 2n , 则d =d 2且d =2a 1>0,所以d =12, 所以a 1=d 2=14, a n =14+(n -1)·12=2n -14. (2)由b 1=a 1=14,b 2=a 2=34,b 3=a 5=94,得等比数列{b n }的公比q =3, 所以b n =14×3n -1 所以c n =1log 33n ·log 33n 1=1n (n +1)=1n -1n +1, T n =1-12+12-13+…+1n -1n +1=1-1n +1. 5.【解】(1)y =f (x )的图象如图所示:(2)任取x ∈[-π,π4],则π2-x ∈[π4,3π2], 由于函数f (x )的图象关于直线x =π4对称, 所以f (x )=f (π2-x ). 又当x ≥π4时,f (x )=-sin x , 所以f (x )=f (π2-x )=-sin(π2-x )=-cos x , 则f (x )=⎩⎨⎧-cos x ,x ∈[-π,π4)-sin x ,x ∈[π4,3π2]. (3)因为-910∈[-1,-22], 所以f (x )=-910有4个根满足x 1<x 2<π4<x 3<x 4, 由对称性得,x 1+x 2=0,x 3+x 4=π,则M =x 1+x 2+x 3+x 4=π.6.【解】图(1)(1)在梯形ABCD 中,如图(1),过点C 作CE ⊥AB ,垂足为E .由已知得,四边形ADCE 为矩形,AE =CD =3.在Rt △BEC 中,由BC =5,CE =4,依勾股定理得BE =3,从而AB =6.又由PD ⊥平面ABCD ,得PD ⊥AD ,从而在Rt △PDA 中,由AD =4,∠P AD =60°,得PD =4 3.正视图如图(2)所示.图(2) 图(3)(2)证明:法一:如图(3),取PB 的中点N ,连接MN ,CN .在△P AB 中,∵M 是P A 的中点,∴MN ∥AB ,MN =12AB =3. 又CD ∥AB ,CD =3,∴MN ∥CD ,MN =CD ,∴四边形MNCD 为平行四边形,∴DM ∥CN .又DM ⊄平面PBC ,CN ⊂平面PBC ,∴DM ∥平面PBC .法二:图(4)如图(4),取AB 的中点E ,连接ME ,DE .在梯形ABCD 中,BE ∥CD ,且BE =CD ,∴四边形BCDE 为平行四边形,∴DE ∥BC .又DE ⊄平面PBC ,BC ⊂平面PBC ,∴DE ∥平面PBC .又在△P AB 中,ME ∥PB ,ME ⊄平面PBC ,PB ⊂平面PBC ,∴ME ∥平面PBC . 又DE ∩ME =E ,∴平面DME ∥平面PBC .又DM ⊂平面DME ,∴DM ∥平面PBC .(3)V D PBC =V P DBC =13S △DBC ·PD . 又S △DBC =6,PD =43,∴V D PBC =8 3.。
2023高考数学二轮复习专项训练《一次函数与二次函数》一 、单选题(本大题共12小题,共60分) 1.(5分)关于x 的不等式1x +4x a⩾4在区间[1,2]上恒成立,则实数a 的取值范围为( )A. (0,43] B. (1,43] C. [1,43] D. [167,43] 2.(5分)若函数f(x)=x 2+2x +m ,x ∈R 的最小值为0,则实数m 的值是()A. 9B. 5C. 3D. 13.(5分)函数y=x2-2x ,x ∈[0,3]的值域为( )A. [0,3]B. [1,3]C. [-1,0]D. [-1,3]4.(5分)函数y =x 2−8x +2的增区间是()A. (−∞,−4]B. [−4,+∞)C. (−∞,4]D. [4,+∞)5.(5分)二次函数y =x 2−2x −3在x ∈[−1,2]上的最小值为( )A. 0B. −3C. −4D. −56.(5分)某工厂生产的A 种产品进入某商场销售,商场为吸引厂家第一年免收管理费,因此第一年A 种产品定价为每件70元,年销售量为11.8万件,从第二年开始,商场对A 种产品征收销售额的x%的管理费(即销售100元要征收x 元),于是该产品定价每件比第一年增加了70.x%1−x%元,预计年销售量减少x 万件,要使第二年商场在A 种产品经营中收取的管理费不少于万元,则x 的最大值是( )A. 2B. 6.5C. 8.8D. 107.(5分)函数y =−x 2+2x −3在闭区间[0,3]上的最大值、最小值分别为()A. 0,−2B. −2,−6C. −2,−3D. −3,−68.(5分) 函数f(x)=|x 2−3x +2|的单调递增区间是( )A. [1,32]和[2,+∞)B. [32,+∞)C. (−∞,1]和[32,2]D. (−∞,32]和[2,+∞)9.(5分)下列命题正确的是( )A. 命题“∃x ∈R ,使得2x <x 2”的否定是“∃x ∈R ,使得2x ⩾x 2”B. 若a >b ,c <0,则ca >cbC. 若函数f(x)=x 2−kx −8(k ∈R)在[1,4]上具有单调性,则k ⩽2D. “x >3”是“x 2−5x +6>0”的充分不必要条件10.(5分)已知函数y=b+a x2+2x(a,b是常数,且0<a<1)在区间[−32,0]上有最大值3,最小值52,则ab的值是()A. 1B. 2C. 3D. 411.(5分)已知f(x)=x2+2(a−2)x+5在区间[4,+∞)上是增函数,则实数a的范围是()A. (−∞,−2]B. [−2,+∞)C. [−6,+∞)D. (−∞,−6]12.(5分)函数f(x)=ln x+12x2−ax(x>0)在区间[12,3]上有且仅有一个极值点,则实数a的取值范围是()A. (52,3] B. [52,103)C. (52,103] D. [2,103]二、填空题(本大题共6小题,共30分)13.(5分)设b>0,二次函数y=ax2+bx+a2−1的图象为下列图象之一:则a的值为______.14.(5分)已知f(x)=m(x−2m)(x+m+3),g(x)=2x−2,若对任意x∈R有f(x)<0或g(x)<0,则m的取值范围是____.15.(5分)函数y=x2+2ax+1在区间[2,+∞)上是增函数,那么实数a的取值范围是______ .16.(5分)函数f(x)=log2(4−x2)的值域为__________________.17.(5分)若不等式−1<ax2+bx+c<1的解集为(−1,3),则实数a的取值范围为_______.18.(5分)f(x)=x2−ax+3a−1在(3,+∞)上是增函数,实数a的范围是 ______ .三、解答题(本大题共6小题,共72分)19.(12分)求函数f(x)=x2+2ax+3在[-5,5]上的最大值和最小值.20.(12分)已知关于x的一元二次方程(m2−1)x2+(2m−1)x+1=0(m∈R)的两个实根是x1、x2.(1)求1x1+1x2的取值范围;(2)是否存在m,使得|x1−x2|=11−m2若存在,求m的值;若不存在,说明理由.21.(12分)已知函数f(x)=x2+bx+c,且f(1)=0.(1)若函数f(x)是偶函数,求f(x)的解析式;(2)在(1)的条件下,求函数f(x)在区间[t,t+1]上的最小值.22.(12分)已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求函数f(x)的最大值和最小值.(2)当a∈R时,求函数f(x)在区间[-5,5]上的最值.23.(12分)某军工企业生产一种精密电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)={400x−12x2,0⩽x⩽400 80000,x>400,其中x是仪器的月产量.(总收益=总成本+利润.)(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?24.(12分)平阳木偶戏又称傀偏戏、木头戏,是浙江省温州市的传统民间艺术之一.平阳木偶戏是以提线木偶为主,活跃于集镇乡村、广场庙会,演绎着古今生活百态.其表演形式独特,活泼多样,具有浓厚的地方色彩和很高的观赏性与研究价值.现有一位木偶制作传人想要把一块长为4dm(dm是分米符号),宽为3dm的矩形木料沿一条直线MN切割成两部分来制作不同的木偶部位.若割痕MN(线段)将木料分为面积比为1:λ的两部分(含点A的部分面积不大于含点C的部分面积,M,N可以和矩形顶点重合),有如下三种切割方式如图:①M点在线段AB上,N点在线段AD上;②M点在线段AB上,N点在线段DC上;③M点在线段AD上;N点在线段BC上.设AM=xdm,割痕MN(线段)的长度为ydm,(1)当λ=1时,请从以上三种方式中任意选择一种,写出割痕MN的取值范围(无需求解过程,若写出多种以第一个答案为准);(2)当λ=2时,判断以上三种方式中哪一种割痕MN的最大值较小,并说明理由.四、多选题(本大题共6小题,共30分)25.(5分)已知函数f(x)={ln(x+1),x⩾0x2−2ax+1,x<0,其中实数a∈R,则下列关于x的方程f2(x)−(1+a)⋅f(x)+a=0的实数根的情况,说法正确的有()A. a取任意实数时,方程最多有5个根B. 当−1−√52<a<1+√52时,方程有2个根C. 当a=−1−√52时,方程有3个根D. 当a⩽−4时,方程有4个根26.(5分)若二次函数f(x)=ax2+bx+c满足f(2+x)=f(2-x),则下列结论错误的是()A. b=cB. 2a+b=0C. 4a=-bD. a+b=027.(5分)已知函数f(x)=e2x-2e x-3,则()A. f(ln3)=0B. 函数f(x)的图象与x轴有两个交点C. 函数f(x)的最小值为-4D. 函数f(x)的单调增区间是[0,+∞)28.(5分)设a,b均为正数,且2a+b=1,则下列结论正确的是()A. ab有最大值18B. √2a+√b有最小值√2C. a2+b2有最小值15D. a−12a−1−4bb有最大值1229.(5分)已知函数f(x)=x,g(x)=√x,则下列说法正确的是()A. 函数y=1f(x)+g(x)在(0,+∞)上单调递增B. 函数y=1f(x)−g(x)在(0,+∞)上单调递减C. 函数y=f(x)+g(x)的最小值为0D. 函数y=f(x)−g(x)的最小值为−1430.(5分)已知f(x)是定义域为R的奇函数,x>0时,f(x)=x(1−x),若关于x的方程f[f(x)]=a有5个不相等的实数根,则实数a的可能取值是()A. 132B. 116C. 18D. 14答案和解析1.【答案】A;【解析】由1x +4xa⩾4,分离变量a得1a⩾−14(1x−2)2+1,由x∈[1,2]求得1x∈[12,1],则−14(1x−2)2+1∈[716,3 4 ].∴1a ⩾34,由此求得实数a的取值范围.该题考查了函数恒成立问题,考查了数学转化思想方法,属于中档题.解:由1x +4xa⩾4,得4xa⩾4−1x=4x−1x,即1a⩾4x−14x2=−14(1x)2+1x=−14(1x−2)2+1,∵x∈[1,2],∴1x ∈[12,1],则−14(1x−2)2+1∈[716,34].∴1a ⩾34,则0<a⩽43.∴实数a的取值范围为(0,43].故选:A.2.【答案】D;【解析】解:由题知y=(x+1)2+m−1,易知当x=−1时,f(x)min=m−1=0,故m=1即为所求.故选:D.将二次函数配方,易求得最小值,据此求解.此题主要考查利用配方法求二次函数的最值.3.【答案】D;【解析】解:∵函数y=x2-2x=(x-1)2-1,x∈[0,3],∴当x=1时,函数y取得最小值为-1,当x=3时,函数取得最大值为 3,故函数的值域为[-1,3],故选D.4.【答案】D;【解析】解:函数y=x2−8x+2=(x−4)2−14,对称轴为x=4,则函数的增区间为[4,+∞).故选:D.求出二次函数的对称轴,结合二次函数的图象和性质,即可得到所求增区间.此题主要考查二次函数的单调区间的求法,注意结合二次函数的对称轴,属于基础题.5.【答案】C;【解析】此题主要考查了二次函数在闭区间上的最值,属于基础题.解:∵y=x2−2x−3=(x−1)2−4,x∈[−1,2],∴x=1时,函数取得最小值为−4.故选C.6.【答案】D;【解析】由已知有,第二年的年销售收入为(%2070%20+%2070x%%20%20)(11.8%20−%20x)万元,商场对该商品征收1%20−%20x%%20的管理费记为y,y%20=%20(%2070%20+%2070x%%20%20)(11.8%20−%20x)x%%20(x%20%3E%200)1%20−%20x%%20,则y⩾14,所以(%2070%20+%2070x%%20%20)(11.8%20−%20x)x%%20%20⩾%2014,1%20−%20x%%20化简得x2−12x+20⩽0,所以2⩽x⩽10,故x得最大值为10,选D.7.【答案】B;【解析】此题主要考查二次函数的最值的求法,属于简单题.解:函数y=−x2+2x−3的开口向下,对称轴为x=1,结合图象可得当x=3是y有最小值−6,当x=1时,y有最大值−2,所以本题选B.8.【答案】A; 【解析】此题主要考查函数的单调性和函数的单调区间,考查函数图象的应用,考查数形结合思想,属于基础题.由题函数f(x)=|x 2−3x +2|={x 2−3x +2,x ⩽1或x ⩾2−(x 2−3x +2),1<x <2,利用数形结合即可得到答案.解:由题可知函数f(x)=|x 2−3x +2|, 等价于f(x)={x 2−3x +2,x ⩽1或x ⩾2−(x 2−3x +2),1<x <2,画图可得如下图所示:∴函数的单调递增区间是[1,32]和[2,+∞) ,故选A.9.【答案】D;【解析】解:对于A ,命题“∃x ∈R ,使得2x <x 2”的否定是“∀x ∈R ,使得2x ⩾x 2”,故A 错误;对于B ,由条件知,比如a =2,b =−3,c =−1,则ca=−12<cb=13,故B 错误;对于C ,若函数f(x)=x 2−kx −8(k ∈R)在[1,4]上具有单调性,则k 2⩽1或k2⩾4,故k ⩽2或k ⩾8,故C 错误;对于D ,x 2−5x +6>0的解集为{ x |x <2或x >3},故“x >3”是“x 2−5x +6>0”的充分不必要条件,正确. 故选:D.A 由命题的否命题,既要对条件否定,也要对结论否定,注意否定形式,可判断;B 由条件,注意举反例,即可判断;C 由二次函数的图象,即可判断;D 先求出不等式x 2−5x +6>0的解集,再由充分必要条件的定义,即可判断. 此题主要考查函数的单调性,充分必要条件的判断、命题的否定、不等式的性质,属于基础题.10.【答案】A;【解析】复合指数函数,当0<a<1时,整体指数为减函数,指数部分为二次函数,根据复合函数同增异减原则,对该区间内进行分块讨论,从而得到最值点−1,0本题着重考察求复合函数最值问题,通常利用图象法法讨论函数单调性的最值问题.解:A.令u=x2+2x=(x+1)2−1,当0<a<1时,整体指数为减函数,则借助二次函数图象,再由复合函数同增异减原则,在已知区间内,x=0取得最大值,x=−1取得最小值时.即{b+a−1=3b+a0=52,解得{a=23b=32,有ab=1.故选:A.11.【答案】B;【解析】解:∵函数f(x)=x2+2(a−2)x+5的图象是开口方向朝上,以x=2−a为对称轴的抛物线若函数f(x)=x2+2(a−2)x+5在区间[4,+∞)上是增函数,则2−a⩽4,解得a⩾−2.故答案为:B.由函数f(x)=x2+2(a−2)x+5的解析式,根据二次函数的性质,判断出其图象是开口方向朝上,以x=2−a为对称轴的抛物线,此时在对称轴右侧的区间为函数的递增区间,由此可构造一个关于a的不等式,解不等式即可得到实数a的取值范围.该题考查的知识点是函数单调性的性质,及二次函数的性质,其中根据已知中函数的解析式,分析出函数的图象形状,进而分析函数的性质,是解答此类问题最常用的办法.12.【答案】C;【解析】此题主要考查导数与二次方程根的分布,考查学生分析能力及运算能力,属于中档题. 对f(x)求导,问题转化为f′(x)=0在区间[12,3]上有且只有一解,根据二次方程根的分布建立不等式即解.解:f ′(x )=1x +x −a =x 2−ax +1x,x >0,令g(x)=x 2−ax +1,函数f (x )=ln x +12x 2−ax (x >0)在区间[12,3]上有且仅有一个极值点, 所以g (12).g (3)⩽0,即(14−12a +1)(9−3a +1)⩽0,且Δ≠0; 解得52⩽a ⩽103.当a =52时,令g(x)=x 2−52x +1=0,解得x 1=12,x 2=2,此时f (x )在(0,12]上单调递增,在[12,2]上单调递减,在(2,+∞)上单调递增,故f (x )在x =2处取得极小值,在x =12处取得极大值.不符合题意; 当a =103时,令g(x)=x 2−103x +1=0,解得x 1=13,x 2=3,此时f (x )在(0,13]上单调递增,在[13,3]上单调递减,在(3,+∞)上单调递增, 故f (x )在x =3处取得极小值,在x =13处取得极大值. 此时f (x )在区间[12,3]上有且仅有一个极值点,符合题意; 故选C.13.【答案】-1;【解析】解:若a >0,即图象开口向上,∵b >0,∴对称轴x =−b 2a<0,故排除第2和4两图,若a <0,即图象开口向下,∵b >0∴对称轴x =−b2a >0,故函数图象为第3个图, 由图知函数过点(0,0),∴a 2−1=0, ∴a =−1 故答案为−1先根据二次函数的开口方向和对称轴的位置,选择函数的正确图象,再根据图象性质计算a 值即可该题考查了二次函数的图象和性质,排除法解图象选择题14.【答案】(−4,0); 【解析】此题主要考查了全称命题与特称命题的成立,指数函数与二次函数性质的应用是解答本题的关键.解:∵g(x)=2x −2,当x ⩾1时,g(x)⩾0, 又∵∀x ∈R ,f(x)<0或g(x)<0,∴此时f(x)=m(x −2m )(x +m +3)<0在x ⩾1时恒成立,则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面,则{m<0−m−3<12m<1,∴−4<m<0故答案为(−4,0).15.【答案】[-2,+∞);【解析】解:函数y=x2+2ax+1的对称轴为:x=−a,函数y=x2+2ax+1在区间[2,+∞)上是增函数,可得−a⩽2,解得a⩾−2,即a∈[−2,+∞).故答案为:[−2,+∞).求出二次函数的对称轴,结合函数的单调性,写出不等式求解即可.该题考查二次函数的简单性质的应用,是基础题.16.【答案】(−∞,2];【解析】此题主要考查了复合函数,先求出定义域,再根据复合函数的值域,属基础题. 解:由4−x2>0,得−2<x<2,即函数f(x)的定义域为(−2,2),且0<4−x2⩽4,所以,f(x)⩽log24=2,即函数f(x)的值域为(−∞,2].故答案为(−∞,2].17.【答案】(−12,12);【解析】此题主要考查一元二次不等式得解法,考查二次函数的性质,是中档题. 分a=0,a>0和a<0三类讨论,结合二次函数的性质求解即可.解:当a=0时,b≠0,不等式的解集(−1,3),适当选取b,c可以满足题意.当a>0时,不等式−1<ax2+bx+c<1对应的二次函数的对称轴为x=1,开口向上,所以x=−1时,a−b+c=1,x=3时,9a+3b+c=1,最小值为x=1时,a+b+c>−1,联立解这个不等式组得:a<12,所以0<a<12;当a<0时,不等式−1<ax2+bx+c<1对应的二次函数的对称轴为x=1,开口向下,所以x=−1时,a−b+c=−1,x=3时,9a+3b+c=−1,最大值为x=1时,a+b+c<1,联立解这个不等式组得:a>−12,所以−12<a<0;综上所述得−12<a<12.所以实数a的取值范围为(−12,12).故答案为(−12,12).18.【答案】(-∞,6]; 【解析】解:由题意得:对称轴x=−−a2=a2,∴a2⩽3,∴a⩽6;故答案为:(−∞,6].由已知得,函数图象开口向上,由题意读出对称轴x=a2⩽3,解出即可.本题考察了二次函数的对称轴,单调性,是一道基础题.19.【答案】解:∵函数f(x)=x2+2ax+3=(x+a)2+3-a2的对称轴为x=-a,①当-a<-5,即a>5时,函数y在[-5,5]上是增函数,故当x=-5时,函数y取得最小值为28-10a;当x=5时,函数y取得最大值为28+10a.②当-5≤-a<0,即0<a≤5时,x=-a时,函数y取得最小值为3-a2;当x=5时,函数y取得最大值为28+10a.③当0≤-a≤5,即-5≤a≤0时,x=-a时,函数y取得最小值为3-a2;当x=-5时,函数y取得最大值为28-10a.④当-a>5,即a<-5时,函数y在[-5,5]上是减函数,故当x=-5时,函数y 取得最大值为28-10a ; 当x=5时,函数y 取得最小值为28+10a .;【解析】由于二次函数的对称轴为x=-a ,分①当-a <-5、②当-5≤-a <0、③当0≤-a≤5、④当-a >5四种情况,分别利用二次函数的性质求得函数的最值.20.【答案】解:(1)由题意知,Δ=(2m−1)2−4(m 2−1) =4m 2−4m+1−4m 2+4 =5−4m ⩾0, ∴m ⩽54, ∵m 2−1≠0, ∴m≠±1,∴m 的取值范围是(−∞,−1)∪(−1,1)∪(1,54],由题意x 1+x 2=1−2m m 2−1,x 1x 2=1m 2−1 ∴1x 1+1x 2=x 1+x 2x 1x 2=1−2m ,又m ∈(−∞,−1)∪(−1,1)∪(1,54], ∴2m ∈(−∞,−2)∪(−2,2)∪(2,52],∴1−2m ∈[−32,−1)∪(−1,3)∪(3,+∞),所以1x 1+1x 2的取值范围是[-32,−1)∪(-1,3)∪(3,+∞).(2)(x 1−x 2)2=(x 2+x 2)2−4x 1x 2 =(1−2m )2(m 2−1)2−4m 2−1=5−4m (m 2−1)2,∴|x 1−x 2|=√5−4m |m 2−1|, 若|x 1−x 2|=−1m 2−1, 则m 2−1<0, 即m ∈(−1,1), ∴5−4m=1,即m=1∉(−1,1), 故不存在.; 【解析】(1)由一元二次方程有两个根,则Δ>0,求出m 的范围,再利用韦达定理求解即可, (2)由(1)中结论,对所求式子进行变形,再求解.此题主要考查一元二次方程及韦达定理求参数的范围,属于中档题.21.【答案】解:(1)由f (1)=0,得:1+b+c=0, 由f (x )是偶函数,得:b=0 ∴c=-1,因此f (x )=x 2-1,(2)当t+1<0,即t <-1时,函数f (x )在区间[t ,t+1]上为减函数, 当x=t+1时,取最小值t 2+2t ,当t≤0≤t+1,即-1≤t≤0时,函数f (x )在区间[t ,0]上为减函数,在[0,t+1]上是增函数 当x=0时,取最小值-1,当t >0时,函数f (x )在区间[t ,t+1]上为增函数, 当x=t 时,取最小值t 2-1; 【解析】(1)利用函数的奇偶性,求出b ,利用f(1)=0求出c , (2)分类讨论区间[t,t +1]与对称轴的关系,可得答案.该题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.22.【答案】解:(1)当a=-1时,f (x )=x 2-2x+2=(x-1)2+1,对称轴x=1, 在[-5,5]上,最大值为f (-5)=37,最小值为f (1)=1; (2)函数f (x )的对称轴是:x=-a , ①当-a≤-5,即a≥5时,f (x )在[-5,5]递增,f (x )最小值=f (-5)=-10a+27,f (x )最大值=f (5)=10a+27; ②当-5<-a≤0,即0≤a <5时,f (x )在[-5,-a )递减,在(-a ,5]递增,f (x )最小值=f (-a )=-a 2+2,f (x )最大值=f (5)=10a+27; ③当0<-a≤5,即-5≤a <0时,f (x )在[-5,-a )递减,在(-a ,5]递增,f (x )最小值=f (-a )=-a 2+2,f (x )最大值=f (-5)=-10a+27; ④-a≥5,即a≤-5时,f (x )在[-5,5]递减,f (x )最小值=f (5)=10a+27,f (x )最大值=f (-5)=-10a+27.;【解析】(1)直接将a=-1代入函数解析式,求出最大最小值,(2)先求出函数的对称轴,通过讨论对称轴的位置,得到函数的单调性,从而求出函数的最值.23.【答案】解:(1)设月产量为x 台,则总成本为20000+100x , 从而利润f(x)={−12x 2+300x −20000,0⩽x ⩽40060000−100x ,x >400.(2)当0⩽x ⩽400时,f(x)=−12(x −300)2+25000, 所以当x =300时,有最大值25000;当x >400时,f(x)=60000−100x 是减函数,所以f(x)<60000−100×400<25000. 所以当x =300时,有最大值25000,即当月产量为300台时,公司所获利润最大,最大利润是25000元.;【解析】该题考查了一次函数与二次函数的单调性、函数的应用,考查了推理能力与计算能力,属于中档题.(1)设月产量为x 台,则总成本为20000+100x ,即可得出利润f(x).(2)当0⩽x ⩽400时,f(x)=−12(x −300)2+25000,利用二次函数的单调性即可最大值.当x >400时,f(x)=60000−100x 是减函数,利用一次函数的单调性即可得出最大值.24.【答案】解:(1)选①y =5, 选②y ∈[3,5], 选③y ∈[4,5], (2)选①令AN =z ,则S =12xz =4,z =8x,y =√x 2+z 2=√x 2+64x 2,∵{0<x ⩽40<z ⩽3z =8x∴83⩽x ⩽4,∴x ∈[83,2√2]时,y =f(x)为减函数,∴x ∈[2√2,4]时,y =f(x)为增函数, 当x =83时,y =√1453,当x =4时,y =2√5,∴y max =2√5;选②令DN =z ,则S =12(x +z)×3=4,z =83−x ,y =√(x −z)2+9=√(2x −83)2+9,∵{0<x ⩽40⩽z ⩽4,∴0⩽x ⩽83,z =83−x∴x ∈[0,43]时,y =f(x)为减函数,∴x ∈[43,83]时,y =f(x)为增函数, 当∴x =0或x =83时,y max =√1453; 选③令BN =z ,则S =12(x +z)×4=4,z =2−x ,y =√(x −z)2+16=2√(x −1)2+4,∵{0⩽x⩽30⩽z⩽3,∴0⩽x⩽2z=2−x∴x∈[0,1]时,y=f(x)为减函数,∴x∈[1,2]时,y=f(x)为增函数,当∴x=0或x=2时,y max=2√5,综上所述,方式②割痕MN的最大值较小,值为√1453.;【解析】此题主要考查了函数最值的综合应用,属于中档题.25.【答案】CD;【解析】此题主要考查分段函数,二次函数及对数函数的性质,函数图象的应用,函数与方程的综合应用,属难题.求解方程f2(x)−(1+a)⋅f(x)+a=0,可得f(x)=1或f(x)=a,即可得原方程的实数根的个数,即为f(x)=1和f(x)=a的根的个数之和.分别对0⩽a⩽1,a>1,−1−√52<a<0,a=−1−√52和a<−1−√52时讨论画图即可判定.解:对于方程f2(x)−(1+a)⋅f(x)+a=0,解得f(x)=1或f(x)=a.所以原方程的实数根的个数,即为f(x)=1和f(x)=a的根的个数之和.对于函数f(x)={ln(x+1),x⩾0x2−2ax+1,x<0,若a⩾0,当x∈[0,+∞)时,f(x)单调递增,且f(x)⩾0,当x∈(−∞,0)时,f(x)单调递减,且f(x)>1.如图:,由f(x)=1可得x=e−1,方程有1个根;又由f(x)=a可得,当0⩽a⩽1时,方程有1个根;当a>1时,方程有2个根.所以当0⩽a⩽1时,原方程共有2个根;当a>1时,原方程共有3个根.若a<0,当x∈[0,+∞)时,f(x)单调递增,且f(x)⩾0,当x∈(−∞,0)时,f(x)在(−∞,a)单调递减,在(a,0)单调递增,且f(x)⩾1−a2.又由{1−a2=aa<0,可得a=−1−√52.所以当−1−√52<a<0时,1−a2>a,如图:,由f (x)=1可得,方程有2个根;又由f(x)=a可得,方程无解.所以此时原方程有2个根;当a=−1−√52时,1−a2=a,如图:,由f(x)=1可得,方程有2个根;又由f(x)=a可得,方程有1个根.所以此时原方程有3个根;当a<−1−√52时,1−a2<a,如图:,由f(x)=1可得,方程有2个根;又由f(x)=a可得,方程有2个根.所以此时原方程有4个根;综上所述,当0⩽a⩽1或−1−√52<a<0时,原方程有2个根;当a>1或a=−1−√52时,原方程有3个根;当a<−1−√52时,原方程有4个根.对于A,对于a∈R,方程最多有4个根,故A错误;对于B,当1<a<1+√52时,方程有3个根,故B错误;对于C,当a=−1−√52时,方程有3个根,故C正确;对于D,当a<−1−√52时,方程有4个根,所以a⩽−4时,方程有4个根成立,故D正确. 故选:CD.26.【答案】ABD;【解析】【解析】此题主要考查二次函数性质,属于基础题.由f(2+x)=f(2−x)可知对称轴x=2,即−b2a=2,即可得到答案.解:由f(2+x)=f(2−x)可知对称轴x =2,即−b 2a=2,得4a =−b ,只有C 正确.故选A 、B 、D.27.【答案】ACD; 【解析】此题主要考查了函数定义域与值域,二次函数的最值,复合函数的单调性以及函数零点与方程根的关系,属于基础题.A 选项,将x =ln 3代入f(x)求解即可;B 选项,令f(x)=0,根据方程根的个数判断f(x)的图象与x 轴有几个交点;C 选项,求二次函数f(x)=(e x -1)2-4的最值即可;D 选项,利用复合函数的单调性判断即可.解:A 选项,f(ln 3)=e 2ln 3-2e ln 3-3=9-6-3=0,正确;B 选项,令f(x)=0,得(e x -3)(e x +1)=0,得e x =3或e x =-1(舍),所以x =ln 3, 即函数f(x)的图象与x 轴只有1个交点,错误;C 选项,f(x)=(e x -1)2-4,当e x =1,即x =0时,f(x)min =-4,正确;D 选项,因为函数y =e x 在[0,+∞)上单调递增且值域为[1,+∞),函数y =x 2-2x -3在[1,+∞)上单调递增,所以函数f(x)在[0,+∞)上单调递增,正确. 故选ACD .28.【答案】ACD; 【解析】此题主要考查基本不等式的应用和函数的最值,注意检验等号成立的条件,式子的变形是解答该题的关键,属于中档题.利用基本不等式分别判断选项A ,B ,D 的对错,对于C ,由b =1−2a ,且0<a <12,转化为关于a 的二次函数,由函数的性质可得最值,可判断对错.解:∵正实数a ,b 满足2a +b =1,由基本不等式可得2a +b =1⩾2√2ab , ∴ab ⩽18,当2a =b =12时等号成立,故ab 有最大值18,故A 正确; 由于(√2a +√b)2=2a +b +2√2ab =1+2√2ab ⩽2 , ∴√2a +√b ⩽√2,当且仅当2a =b =12时等号成立, 故√2a +√b 有最大值为√2,故B 错误;由a ,b 均为正数,且2a +b =1,则b =1−2a ,且0<a <12,则a 2+b 2=a 2+(1−2a )2=5a 2−4a +1,当a =25∈(0,12)时,a 2+b 2有最小值15,故C 正确; b2a+2a b⩾2√b 2a =2,当且仅当2a =b =12时等号成立,a−12a −1−4b b=−a−b 2a −2a −3b b=52−b 2a−2a b⩽52−2=12,当且仅当b2a =2ab 时等号成立, 所以a−12a−1−4b b有最大值12,故D 正确,故选ACD .29.【答案】BCD; 【解析】此题主要考查函数的单调性、最值,属中档题.对于A ,求x =12和x =1时的函数值,即可判断不为单调递增,对于BC ,根据常见函数的单调性即可判断组合函数单调性、最值,对于D ,利用配方法求最值即可得解. 解:对于A:函数y =1f(x)+g(x)=1x+√x ,当x =12时,y =2+√22,当x =1时, y =2,所以函数y =1f(x)+g(x)在(0,+∞)上不单调递增,A 错误. 对于B:函数y =1f(x)−g(x)=1x −√x ,因为函数y =1x 和函数y =−√x 在(0,+∞)上单调递减, 所以y =1f(x)−g(x)在(0,+∞)上单调递减,B 正确.对于C:因为函数y =f(x)+g(x)=x +√x 在[0,+∞)上单调递增, 且当x =0时,y =0,所以y =f(x)+g(x)的最小值为0,C 正确. 对于D:函数y =f(x)−g(x)=x −√x =(√x −12)2−14,当√x =12时,函数y =f(x)−g(x)取得最小值,且最小值为−14,D 正确. 故选BCD.30.【答案】ABC; 【解析】根据函数的奇偶性,由已知区间的解析式,画出函数图象,令f(x)=t ,分别讨论a >14,a =14,316⩽a <14,0⩽a <316,四种情况,得出0⩽a <316满足题意,再根据对称性,得a <0时,−316<a <0满足题意,最后结合选项,即可得出结果.此题主要考查数形结合解决函数的零点个数,考查转化思想以及计算能力,是中档题.解:因为f(x)是定义域为R 的奇函数,x >0时,f(x)=x(1−x)=−(x −12)2+14⩽14,且f(12)=14,画出函数f(x)的图象如下:令f(x)=t ,f(14)=316,当a >14时,由图象可得y =a 与y =f(t)有一个交点,且t <−1, 由图象可得f(x)=t 只有一个根,不满足题意,当a =14时,由图象可得y =a 与y =f(t)有两个不同交点,交点的横坐标分别记作t 1,t 2,则t 1<−1,t 2=12, 则f(x)=t 1与f(x)=t 2共有两个根,不满足题意,当316⩽a <14时,由图象可得y =a 与y =f(t)有三个不同的交点, 记作t 1,t 2,t 3,不妨令t 1<t 2<t 3, 由图象可得,t 1<−1<14⩽t 2<12<t 3<1,则f(x)=t 1与f(x)=t 3各有一个根,而f(x)=t 2有一个或两个根,共三个或四个根,不满足题意,当0⩽a <316时,由图象可得y =a 与y =f(t)有三个不同的交点, 记作t 1,t 2,t 3,不妨令t 1<t 2<t 3,由图象可得,t 1⩽−1<0⩽t 2<14<12<t 3⩽1,则f(x)=t 1与f(x)=t 3以及f(x)=t 2共有5个根,满足题意,根据函数图象的对称性,当a <0时,为使关于x 的方程f[f(x)]=a 有5个不相等的实数根,只需要−316<a <0,综上,满足条件的a 的取值范围是(−316,316). 故选:ABC .。
[A 组 夯基保分专练]一、选择题1.(2018·惠州第二次调研)设随机变量ξ服从正态分布N (4,3),若P (ξ<a -5)=P (ξ>a +1),则实数a 等于( )A .7B .6C .5D .4解析:选B.由随机变量ξ服从正态分布N (4,3)可得正态分布密度曲线的对称轴为直线x =4,又P (ξ<a -5)=P (ξ>a +1),所以x =a -5与x =a +1关于直线x =4对称,所以a -5+a +1=8,即a =6.故选B.2.(2018·武汉调研)将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球,那么甲盒中恰好有3个小球的概率为( )A.310B.25C.320D.14解析:选C.将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球有C 36种放法,甲盒中恰好有3个小球有C 23种放法,结合古典概型的概率计算公式得所求概率为C 23C 36=320.故选C.3.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则P (A |B )=( )A.29B.13C.49D.59解析:选A .小赵独自去一个景点共有4×3×3×3=108种可能性,4个人去的景点不同的可能性有A 44=4×3×2×1=24种,所以P (A |B )=24108=29. 4.用1,2,3,4,5组成无重复数字的五位数,若用a 1,a 2,a 3,a 4,a 5分别表示五位数的万位、千位、百位、十位、个位,则出现a 1<a 2<a 3>a 4>a 5特征的五位数的概率为( )A.110B.120C.124D.310解析:选B .1,2,3,4,5可组成A 55=120个不同的五位数,其中满足题目条件的五位数中,最大的5必须排在中间,左、右各两个数字只要选出,则排列位置就随之而定,满足条件的五位数有C 24C 22=6个,故出现a 1<a 2<a 3>a 4>a 5特征的五位数的概率为6120=120. 5.(2018·高考全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p , 各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX =2.4,P (X =4)<P (X =6),则p =( )A .0.7B .0.6C .0.4D .0.3解析:选B.由题意知,该群体的10位成员使用移动支付的概率分布符合二项分布,所以DX =10p (1-p )=2.4,所以p =0.6或p =0.4.由P (X =4)<P (X =6),得C 410p 4(1-p )6<C 610p 6(1-p )4,即(1-p )2<p 2,所以p >0.5,所以p =0.6.6.(2018·贵阳模拟)点集Ω={(x ,y )|0≤x ≤e ,0≤y ≤e },A ={(x ,y )|y ≥e x ,(x ,y )∈Ω},在点集Ω中任取一个元素a ,则a ∈A 的概率为( )A.1e B.1e 2 C.e -1eD.e 2-1e2解析:选B.如图,根据题意可知Ω表示的平面区域为正方形BCDO ,面积为e 2,A 表示的区域为图中阴影部分,面积为⎠⎛01(e -e x )dx =(e x -e x )|10=(e -e)-(-1)=1,根据几何概型可知a ∈A 的概率P =1e2.故选B.二、填空题7.某人在微信群中发了一个7元的“拼手气”红包,被甲、乙、丙三人抢完,若三人均领到整数元,且每人至少领到1元,则甲领到的钱数不少于乙、丙分别领到的钱数的概率是________.解析:利用隔板法将7元分成3个红包,共有C 26=15种领法.甲领3元不少于乙、丙分别领到的钱数的分法有3元,3元,1元与3元,2元,2元两种情况,共有A 22+1=3种领法;甲领4元不少于乙、丙分别领到的钱数的分法有4元,2元,1元一种情况,共有A 22=2种领法;甲领5元不少于乙、丙分别领到的钱数的分法有5元,1元,1元一种情况,共有1种领法,所以甲领到的钱数不少于乙、丙分别领到的钱数的概率是3+2+115=25.答案:258.(2018·唐山模拟)向圆(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率为________.解析:如图,连接CA ,CB ,依题意,圆心C 到x 轴的距离为3,所以弦AB 的长为2. 又圆的半径为2,所以弓形ADB 的面积为12×23π×2-12×2×3=23π-3,所以向圆(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率P =16-34π.答案:16-34π9.某商场在儿童节举行回馈顾客活动,凡在商场消费满100元者即可参加射击赢玩具活动,具体规则如下:每人最多可射击3次,一旦击中,则可获奖且不再继续射击,否则一直射满3次为止.设甲每次击中的概率为p (p ≠0),射击次数为η,若η的均值E (η)>74,则p的取值范围是________.解析:由已知得P (η=1)=p ,P (η=2)=(1-p )p ,P (η=3)=(1-p )2,则E (η)=p +2(1-p )p +3(1-p )2=p 2-3p +3>74,解得p >52或p <12,又p ∈(0,1),所以p ∈⎝⎛⎭⎫0,12. 答案:⎝⎛⎭⎫0,12 三、解答题10.(2018·贵阳模拟)某高校通过自主招生方式在贵阳招收一名优秀的高三毕业生,经过层层筛选,甲、乙两名学生进入最后测试,该校设计了一个测试方案:甲、乙两名学生各自从6个问题中随机抽3个问题.已知这6个问题中,学生甲能正确回答其中的4个问题,而学生乙能正确回答每个问题的概率均为23,甲、乙两名学生对每个问题的回答都是相互独立、互不影响的.(1)求甲、乙两名学生共答对2个问题的概率;(2)请从期望和方差的角度分析,甲、乙两名学生哪位被录取的可能性更大? 解:(1)由题意可得,所求概率为P =C 14C 22C 36×C 13×23×⎝⎛⎭⎫132+C 24C 12C 36×C 03×⎝⎛⎭⎫230×⎝⎛⎭⎫133=115.(2)设学生甲答对的题数为X ,则X 的所有可能取值为1,2,3.P (X =1)=C 14C 22C 36=15,P (X =2)=C 24C 12C 36=35,P (X =3)=C 34C 02C 36=15,E (X )=1×15+2×35+3×15=2,D (X )=(1-2)2×15+(2-2)2×35+(3-2)×15=25.设学生乙答对的题数为Y ,则Y 的所有可能取值为0,1,2,3. 由题意可知Y ~B ⎝⎛⎭⎫3,23, 所以E (Y )=3×23=2,D (Y )=3×23×13=23.因为E (X )=E (Y ),D (X )<D (Y ) , 所以甲被录取的可能性更大.11.(2018·西安模拟)一个盒子中装有大量形状、大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的质量(单位:克),质量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的质量频率分布直方图(如图).(1)求a 的值,并根据样本的数据,试估计盒子中小球质量的众数与平均值;(2)从盒子中随机抽取3个小球,其中质量在[5,15]内的小球个数为X ,求X 的分布列和数学期望.(以直方图中的频率作为概率)解:(1)由题意,得(0.02+0.032+a +0.018)×10=1,解得a =0.03. 由频率分布直方图可估计盒子中小球质量的众数为20克,而50个样本中小球质量的平均数为x -=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克).故由样本估计总体,可估计盒子中小球质量的平均数为24.6克. (2)该盒子中小球质量在[5,15]内的概率为15,则X ~B ⎝⎛⎭⎫3,15.X 的可能取值为0,1,2,3, P (X =0)=C 03⎝⎛⎭⎫150⎝⎛⎭⎫453=64125,P (X =1)=C 13⎝⎛⎭⎫15×⎝⎛⎭⎫452=48125,P (X =2)=C 23⎝⎛⎭⎫152×45=12125,P (X =3)=C 33⎝⎛⎭⎫153⎝⎛⎭⎫450=1125. 所以X 的分布列为所以E (X )=0×64125+1×48125+2×12125+3×1125=35.⎝⎛⎭⎫或者E (X )=3×15=35. 12.(2018·长春质量监测(二))某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在[100,150),[150,200),[200,250),[250,300),[300,350),[350,400](单位:克)中,经统计得频率分布直方图如图所示.(1)现按分层抽样的方法,从质量为[250,300),[300,350)的芒果中随机抽取9个,再从这9个中随机抽取3个,记随机变量X 表示质量在[300,350)内的芒果个数,求X 的分布列及数学期望;(2)以各组数据的中间数代表这组数据的平均值,将频率视为概率,某经销商来收购芒果,该种植园中还未摘下的芒果大约还有10 000个,经销商提出如下两种收购方案:A :所有芒果以10元/千克收购;B :对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购. 通过计算确定种植园选择哪种方案获利更多?解:(1)9个芒果中,质量在[250,300)和[300,350)内的分别有6个和3个.则X 的可能取值为0,1,2,3.P (X =0)=C 36C 39=2084,P (X =1)=C 26C 13C 39=4584,P (X =2)=C 16C 23C 39=1884,P (X =3)=C 33C 39=184.所以X 的分布列为X 的数学期望E (X )=0×2084+1×4584+2×1884+3×184=1.(2)设选择方案A 可获利y 1元,则y 1=(125×0.002+175×0.002+225×0.003+275×0.008+325×0.004+375×0.001)×50×10 000×10×0.001=25 750.设选择方案B ,从质量低于250克的芒果中获利y 2元,从质量高于或等于250克的芒果中获利y 3元,则y 2=(0.002+0.002+0.003)×50×10 000×2=7 000. y 3=(0.008+0.004+0.001)×50×10 000×3=19 500. y 2+y 3=7 000+19 500=26 500.由于25 750<26 500,故B 方案获利更多,应选B 方案.[B 组 大题增分专练]1.(2018·合肥第一次质量检测)2014年9月,国务院发布了《关于深化考试招生制度改革的实施意见》.某地作为高考改革试点地区,从当年秋季新入学的高一学生开始,高考不再分文理科,语文、数学、英语三科为必考科目,考生从物理、化学、生物、思想政治、历史、地理六个科目中任选三个科目参加高考,其中物理、化学、生物为自然科学科目,思想政治、历史、地理为社会科学科目,假设某位考生选考这六个科目的可能性相等.(1)求这位考生所选考的三个科目中至少有一个自然科学科目的概率;(2)已知该考生选考的三个科目中有一个科目属于社会科学科目,两个科目属于自然科学科目,若该考生所选的社会科学科目考试的成绩获A 等的概率都是45,所选的自然科学科目考试的成绩获A 等的概率都是34,且所选的各个科目的考试成绩相互独立,用随机变量X表示他所选的三个科目中考试成绩获A 等的科目数,求X 的分布列和数学期望.解:(1)记“这位考生选考的三个科目中至少有一个科目是自然科学科目”为事件M , 则P (M )=1-C 33C 36=1-120=1920,所以这位考生选考的三个科目中至少有一个自然科学科目的概率为1920.(2)随机变量X 的所有可能取值为0,1,2,3. 因为P (X =0)=15×⎝⎛⎭⎫142=180,P (X =1)=45×⎝⎛⎭⎫142+15×C 12×14×34=18, P (X =2)=45×C 12×14×34+15×⎝⎛⎭⎫342=3380,P (X =3)=45×⎝⎛⎭⎫342=920,所以X 的分布列为所以E (X )=0×180+1×1080+2×3380+3×3680=2.3.2.(2018·高考全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p (0<p <1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f (p ),求f (p )的最大值点p 0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值,已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?解:(1)20件产品中恰有2件不合格品的概率为f (p )=C 220p 2(1-p )18.因此f ′(p )=C 220[2p (1-p )18-18p 2(1-p )17]=2C 220p (1-p )17(1-10p ).令f ′(p )=0,得p =0.1.当p ∈(0,0.1)时,f ′(p )>0;当p ∈(0.1,1)时,f ′(p )<0.所以f (p )的最大值点为p 0=0.1. (2)由(1)知,p =0.1.(i)令Y 表示余下的180件产品中的不合格品件数,依题意知Y ~B (180,0.1), X =20×2+25Y ,即X =40+25Y . 所以EX =E (40+25Y )=40+25EY =490.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于EX >400,故应该对余下的产品作检验.3.2017年央视3·15晚会曝光了一些饲料企业瞒天过海地往饲料中非法添加各种“禁药”,包括“人用西药”,让所有人惊出一身冷汗.某地区质量监督部门对该地甲、乙两家畜牧用品生产企业进行了突击抽查,若已知在甲企业抽查了一次,抽中某种动物饲料的概率为34,用数字1表示抽中该动物饲料产品,用数字0来表示没有抽中;在乙企业抽查了两次,每次抽中该动物饲料的概率为23,用数字2表示抽中该动物饲料产品,用数字0来表示没有抽中.该部门每次抽查的结果相互独立.假设该部门完成以上三次抽查.(1)求该部门恰好有一次抽中动物饲料这一产品的概率;(2)设X 表示三次抽查所记的数字之和,求随机变量X 的分布列和数学期望. 解:记“恰好抽中一次动物饲料这一产品”为事件A ,“在甲企业抽中”为事件B ,“在乙企业第一次抽中”为事件C ,“在乙企业第二次抽中”为事件D ,则由题意知P (B )=34,P (C )=P (D )=23.(1)因为A =B C -D -+B -C D -+B -C -D ,所以P (A )=P (B C -D -+B -C D -+B -C -D )=P (B C -D -)+P (B -C D -)+P (B -C -D )=P (B )P (C -)P (D -)+P (B -)P (C )P (D -)+P (B -)P (C -)P (D )=34×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-34×23×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23×23=736. (2)根据题意,X 的所有可能取值为0,1,2,3,4,5.所以P (X =0)=P (B -C -D -)=[1-P (B )][1-P (C )][1-P (D )]=⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-23=136, P (X =1)=P (B C -D -)=P (B )[1-P (C )][1-P (D )]=34×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-23=112, P (X =2)=P (B -C D -+B -C -D )=P (B CD )+P (B -C -D )=⎝⎛⎭⎫1-34×23×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23×23=19, P (X =3)=P (BC D -+B C -D )=P (BC D -)+P (B C -D )=34×23×⎝⎛⎭⎫1-23+34×⎝⎛⎭⎫1-23×23=13, P (X =4)=P (BCD )=[1-P (B )]P (C )P (D )=⎝⎛⎭⎫1-34×23×23=19, P (X =5)=P (BCD )=P (B )P (C )P (D )=34×23×23=13.故X 的分布列为 所以E (X )=0×136+1×112+2×19+3×13+4×19+5×13=4112.4.交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a 元,在下一年续保时,实行的是费率浮动机制,保费与车辆发生有责任道路交通事故的情况相联系,发生有责任交通事故的次数越多,费率也就越高,具体浮动情况如下表:某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车在下一年续保时的情况,统计得到下面的表格:以这60率,完成下列问题:(1)按照我国《机动车交通事故责任强制保险条例》中汽车交强险价格的规定,a =950.某同学家里有一辆该品牌同型号车且车龄刚满三年,记X 为该车在第四年续保时的费用,求X 的分布列与数学期望;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌同型号的二手车,且将下一年的交强险保费高于基准保费的车辆记为事故车.假设购进并销售一辆事故车亏损5 000元,购进并销售一辆非事故车盈利10 000元.①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值. 解:(1)由题意可知,X 的可能取值为0.9a ,0.8a ,0.7a ,a ,1.1a ,1.3a . 由统计数据可知:P (X =0.9a )=16,P (X =0.8a )=112,P (X =0.7a )=112,P (X =a )=13,P (X =1.1a )=14,P (X=1.3a )=112.所以X 的分布列为 所以E (X )=0.9a ×16+0.8a ×112+0.7a ×112+a ×13+1.1a ×14+1.3a ×112=11.9a 12=11 30512≈942(元).(2)①由统计数据可知,任意一辆该品牌车龄已满三年的二手车为事故车的概率为13,则三辆车中至多有一辆事故车的概率P =⎝⎛⎭⎫1-133+C 1313⎝⎛⎭⎫232=2027. ②设Y 为该销售商购进并销售一辆二手车的利润,Y 的可能取值为-5 000,10 000.11 所以Y 的分布列为所以E (Y )=-5 000×13+10 000×23=5 000(元). 故该销售商一次购进并销售100辆(车龄已满三年)该品牌的二手车获得利润的期望值为100×E (Y )=50(万元).。
高考数学中档题精选(6)1.已知函数x x x x x x f cos sin sin 3)3sin(cos 2)(2+-+=π. (1)求函数)(x f 的最小正周期; (2)求函数)(x f 的最大值及最小值;(3)写出函数)(x f 的单调递增区间.解:(1)++=+-⋅-+=)3sin(cos 22sin 2122cos 13)3sin(cos 2)(ππx x x x x x x f 23)2cos 232sin 21(-+x x ),32sin(223)32sin(3sin 3sin )32sin(πππππ+=-+++++=x x x )(x f ∴的最小正周期ππ==22T .(2)当)(122232Z k k x k x ∈+=+=+πππππ即时,f (x )取得最大值2; 当)(12723232Z k k x k x ∈+=+=+πππππ即时,f (x )取得最小值-2. (3)f (x )的单调递增区间为)](12,125[Z k k k ∈+-ππππ。
2.有两个各项都是正数的数列{a n },{b n },若对于任意自然数n 都有a n 、b n 2、 a n+1成等差数列,b n 2、a n+1、b n+12成等比数列,①求证:数列{b n }是等差数列;②如果a 1=1,b 1=2,记数列{n a 1}的前n 项和为S n ,求n n S ∞→lim . ①证明:依题意:a n +a n+1=2b n 2 b n 2b n +12=a n +12 又 a n 〉0 ,b n 〉0∴b n -1b n +b n b n +1=2b n 2 ∴b n -1+b n +1=2b n 即{b n }是等差数列。
②解:由a 1=1,b 1=2得a 2=2×2-1=3, b 2= 错误!,∴b n = 错误!+错误!= 错误!∴a n =b n b n -1= 错误!2)111(2)1113121211(2lim =+-=+-++-+-=∞→n n n S n n 。
中档小题(五)1.(2013·洛阳市统一考试)在△ABC 中,D 为边BC 上任意一点,AD →=λAB →+μAC →,则λμ的最大值为( )A .1 B.12C.13D.14 2.以S n 表示等差数列{a n }的前n 项和,若S 5>S 6,则下列不等关系不一定成立的是( ) A .2a 3>3a 4 B .5a 5>a 1+6a 6 C .a 5+a 4-a 3<0 D .a 3+a 6+a 12<2a 73.(2013·洛阳市统一考试)若函数f (x )=2x -k ·2-x2x +k ·2-x(k 为常数)在定义域内为奇函数,则k的值为( )A .1B .-1C .±1D .0 4.(2013·高考辽宁卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C+c sin B cos A =12b ,且a >b ,则∠B =( )A.π6B.π3C.2π3D.5π6 5.(2013·高考大纲全国卷)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=1 6.(2013·陕西省质量检测试题)如果执行如图所示的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a N 的和 B.12(A +B )为a 1,a 2,…,a N 的算术平均数 C .A 和B 分别是a 1,a 2,…,a N 中的最小数和最大数 D .A 和B 分别是a 1,a 2,…,a N 中的最大数和最小数7.(2013·石家庄市教学质量检测)在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长的概率为( )A.14B.13C.12D.32 8.(2013·江西省七校联考)定义在R 上的偶函数f (x ),当x ≥0时,f (x )=2x ,则满足f (1-2x )<f (3)的x 的取值范围是( )A .(-1,2)B .(-2,1)C .[-1,2]D .(-2,1] 9.(2013·高考山东卷)函数y =x cos x +sin x 的图象大致为( )10.(2013·浙江省名校第一次联考)已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM→|=1,且OM →·PM →=0,则当|PM →|取得最小值时的点P 到双曲线C 的渐近线的距离为( )A.95B.125 C .4 D .5 11.(2013·武汉市武昌区高三年级联合考试)已知|a |=1,|b |=2,a 与b 的夹角为60°,则a +b 在a 方向上的投影为________.12.已知由样本数据点集合{(x i ,y i )|i =1,2,…,n }求得的回归直线方程为y ^=1.5x +0.5,且x =3.现发现两个数据点(2.2,2.9)和(3.8,7.1)误差较大,去除后重新求得的回归直线l 的斜率为1.2,那么,当x =4时,y 的估计值为________.13.(2013·江西省七校联考)已知实数x 、y 满足⎩⎪⎨⎪⎧x -y +1≥0x +2y -8≤0x ≤3,若(3,52)是使ax -y 取得最小值的唯一的可行解,则实数a 的取值范围为________.14.(2013·高考课标全国卷Ⅱ)设θ为第二象限角,若tan(θ+π4)=12,则sin θ+cos θ=________.备选题 1.(2013·石家庄市教学质量检测)如图是两个全等的正三角形,给定下列三个命题:①存在四棱锥,其正视图、侧视图如图;②存在三棱锥,其正视图、侧视图如图;③存在圆锥,其正视图、侧视图如图.其中真命题的个数是( )A .3B .2C .1D .0 2.(2013·浙江省名校第一次联考)设f (x )在(0,+∞)上是单调递增函数,当n ∈N *时,f (n )∈N *,且f [f (n )]=2n +1,则( )A .f (1)=3,f (2)=4B .f (1)=2,f (2)=3C .f (2)=4,f (4)=5D .f (2)=3,f (3)=43.若不等式|2a -1|≤|x +1x|对一切非零实数x 恒成立,则实数a 的取值范围为________.4.(2013·济南市高考模拟考试)下列命题正确的序号为________. ①函数y =ln(3-x )的定义域为(-∞,3];②定义在[a ,b ]上的偶函数f (x )=x 2+(a +5)x +b 的最小值为5;③若命题p :对∀x ∈R ,都有x 2-x +2≥0,则命题綈p :∃x ∈R ,有x 2-x +2<0;④若a >0,b >0,a +b =4,则1a +1b的最小值为1.答案:1.【解析】选D.依题意得,λ+μ=1,λμ=λ(1-λ)≤(λ+1-λ2)2=14,当且仅当λ=1-λ,即λ=12时取等号,因此λμ的最大值是14.2.【解析】选D.由S 5>S 6,得a 6<0,即a 1+5d <0,选项A ,B ,C 都能化成a 1+5d <0,所以D 错.3.【解析】选C.依题意,f (-x )=2-x -k ·2x 2-x +k ·2x =-2x -k ·2-x 2x+k ·2-x ,即(2-x -k ·2x )(2x +k ·2-x )=(2-x +k ·2x )(-2x +k ·2-x ),∴k 2=1,k =±1.4.【解析】选A.由正弦定理可得sin A sin B cos C +sin C ·sin B cos A =12sin B ,又因为sinB ≠0,所以sin A cosC +sin C cos A =12,所以sin(A +C )=sin B =12.因为a >b ,所以∠B =π6.5.【解析】选C.由题意知椭圆焦点在x 轴上,且c =1,可设C 的方程为x 2a 2+y2a 2-1=1(a >1),由过F 2且垂直于x 轴的直线被C 截得的弦长|AB |=3,知点(1,32)必在椭圆上,代入椭圆方程化简得4a 4-17a 2+4=0,所以a 2=4或a 2=14(舍去).故椭圆C 的方程为x 24+y 23=1.6.【解析】选D.由图易知,该程序框图的功能是选择A 的最大数,选择B 的最小数.7.【解析】选C.如图,设圆的半径为r ,圆心为O ,AB 为圆的一条直径,CD 为垂直AB 的一条弦,垂足为M ,若CD 为圆内接正三角形的一条边,则O 到CD 的距离为r2,设EF 为与CD 平行且到圆心O 距离为r2的弦,交直径AB 于点N ,所以当过AB 上的点且垂直AB 的弦的长度超过CD 时,该点在线段MN 上变化,所以所求概率P =r 2r =12.8.【解析】选A.依题意得,函数f (x )在[0,+∞)上是增函数,且f (x )=f (|x |),不等式f (1-2x )<f (3)⇔f (|1-2x |)<f (3)⇔|1-2x |<3⇔-3<1-2x <3⇔-1<x <2.9.【解析】选D.当x =π2时,y =1>0,排除C.当x =-π2时,y =-1,排除B ;或利用y =x cos x +sin x 为奇函数,图象关于原点对称,排除B.当x =π时,y =-π<0,排除A.10.【解析】选B.由OM →·PM →=0,得OM ⊥PM ,根据勾股定理,求|MP |的最小值可以转化为求|OP |的最小值,当|OP |取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125.11.【解析】由题意知a +b 在a 方向上的投影为(a +b )·a |a |=a 2+|a |·|b |cos 60°|a |=2.【答案】212.【解析】回归直线方程为y ^=1.5x +0.5,x =3,故样本点的中心为(3,5),又由于除去(2.2,2.9)和(3.8,7.1)这两个数据点后,x ,y 的值没有改变,所以样本点的中心也没有改变,设新的回归直线l 方程为y ^=1.2x +b ,将样本点的中心(3,5)代入解得b =1.4,当x =4时,y 的估计值为6.2.【答案】6.213.【解析】记z =ax -y ,注意到当x =0时,y =-z ,即直线z =ax -y 在y 轴上的截距是-z .在坐标平面内画出题中的不等式组表示的平面区域,结合图形可知,满足题意的实数a 的取值范围为a <-12.【答案】(-∞,-12)14.【解析】∵tan(θ+π4)=12,∴1+tan θ1-tan θ=12,解得tan θ=-13.∴(sin θ+cos θ)2=sin 2θ+cos 2θ+2sin θ·cos θsin 2θ+cos 2θ=tan 2θ+2tan θ+1tan 2θ+1=19-23+119+1=25. ∵θ为第二象限角,tan θ=-13,∴2k π+3π4<θ<2k π+π,∴sin θ+cos θ<0,∴sin θ+cos θ=-105.【答案】-105备选题 1.【解析】选 A.对于①,存在斜高与底边长相等的正四棱锥,其正视图与侧视图是全等的正三角形.对于②,存在如图所示的三棱锥S -ABC ,底面为等腰三角形,其底边AB 的中点为D ,BC 的中点为E ,侧面SAB 上的斜高为SD ,且CB =AB =SD =SE ,顶点S 在底面上的射影为AC 的中点,则此三棱锥的正视图与侧视图是全等的正三角形.对于③,存在底面直径与母线长相等的圆锥,其正视图与侧视图是全等的正三角形.所以选A.2.【解析】选B.由f [f (n )]=2n +1,得f [f (1)]=3,f [f (2)]=5,∵当n ∈N *时,f (n )∈N *,若f (1)=3,则由f [f (1)]=3得,f (3)=3,与f (x ) 在(0,+∞)上单调递增矛盾,故选项A 错;若f (2)=4,则f (4)=5,4<f (3)<5,与f (3)∈N *矛盾,故选项C 错;若f (2)=3,则由f [f (2)]=5得f (3)=5,故选项D 错,故选项B 正确.3.【解析】|x +1x |=|x |+|1x |≥2,当且仅当|x |=1时,|x +1x|min =2.要使不等式恒成立,只要|2a -1|≤2即可,-2≤2a -1≤2,得-12≤a ≤32.【答案】[-12,32]4.【解析】命题①中,函数的定义域是(-∞,3),故命题①不正确;命题②中,若已知函数是偶函数,则必有a =-5,b =5,即函数f (x )=x 2+5,x ∈[-5,5],其最小值为5,命题②正确;全称命题的否定是特称命题,命题③正确;命题④中,1a +1b =14(a +b )(1a +1b)=14(2+b a +a b )≥14(2+2b a ·a b )=1(当且仅当a =b =2时,等号成立),命题④正确. 【答案】②③④。
中档题专练(六)1.在平面直角坐标系xOy中,设锐角α的始边与x轴的非负半轴重合,终边与单位圆交于点P(x1,y1),将射线OP绕坐标原点O按逆时针方向旋转后与单位圆交于点Q(x2,y2),记f(α)=y1+y2.(1)求函数f(α)的值域;(2)设△ABC的内角A,B,C所对的边分别为a,b,c,若f(C)=,且a=,c=1,求b.2.(2018南京、盐城高三年级第二次模拟考试)调查某地居民每年到商场购物次数m与商场面积S、到商场距离d的关系,得到关系式m=k×(k为常数,k>0),如图,某投资者计划在与商场A相距10km 的新区新建商场B,且商场B的面积与商场A的面积之比为λ(0<λ<1).记“每年居民到商场A购物的次数”与“每年居民到商场B购物的次数”分别为m1、m2,称满足m1<m2的区域为商场B相对于A 的“更强吸引区域”.(1)已知P与A相距15km,且∠PAB=60°,当λ=时,居住在P点处的居民是否在商场B相对于A的“更强吸引区域”内?请说明理由;(2)若要使与商场B相距2km以内的区域(含边界)均为商场B相对于A的“更强吸引区域”,求λ的取值范围.3.(2018江苏南通模拟)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,点P(3,1)在椭圆上,△PF1F2的面积为2.( )①求椭圆C的标准方程;②若∠F1QF2=,求QF1·QF2的值.(2)直线y=x+k与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,求实数k的值.答案精解精析1.解析(1)由题意得y1=sinα,y2=sin=cosα,所以f(α)=sinα+cosα=sin,因为α∈0,所以α+∈,,故f(α)的值域为(1,].(2)因为f(C)=sin C=,且易知C∈0,所以C=,在△ABC中,由余弦定理得c2=a2+b2-2abcosC,即1=2+b2-2 ×b,解得b=1.2.解析设商场A、B的面积分别为S1km2、S2km2,点P到A、B的距离分别为d1km、d2km, 则S2=λS1(0<λ<1),m1=k,m2=k,k为常数,k>0.(1)在△PAB中,AB= 0,PA= 5,∠PAB=60°,由余弦定理,得=PB2=AB2+PA2- AB·PAcos60°= 02+152- × 0× 5×=175.又=PA2=225,则m1-m2=k-k=k-k=kS1-,将λ=,=225,=175代入,得m1-m2=kS15-50.因为kS1>0,所以m1>m2,即居住在P点处的居民不在商场B相对于A的“更强吸引区域”内. (2)以A为原点,AB所在直线为x轴,建立如图所示的平面直角坐标系,则A(0,0),B(10,0),设P(x,y),由m1<m2得k<k,将S2=λS1代入,得<λ.代入坐标,得(x-10)2+y2<λ(x2+y2),化简得(1-λ)x2+(1-λ)y2-20x+100<0,配方得- 0+y2< 0,所以商场B相对于A的“更强吸引区域”是圆心为C 0,0,半径为r1= 0km的圆的内部,与商场B相距2km以内的区域(含边界)是以B(10,0)为圆心,r2=2km为半径的圆的内部及圆周.由题设知圆B内含于圆C,即BC<|r1-r2|.因为0<λ<1,所以 0-10< 0-2,整理得4λ-5+1<0,解得<λ<1.6所以,所求λ的取值范围是, .63.解析( )①由条件可知+=1,c=2,又a2=b2+c2,所以a2=12,b2=4,所以椭圆C的标准方程为+=1.②当∠F1QF2=时,Q ,Q Q·Q c)所以QF1·QF2= 6.得4x2+6kx+3k2-12=0, (2)设A(x1,y1),B(x2,y2),由,则x1+x2=-,x1x2=-,y1y2=-.因为以AB为直径的圆经过坐标原点,则·=x1x2+y1y2=k2-6=0, 解得k=±6,此时Δ=120>0,满足条件,因此k=±6.。
目录第一套:高考数学中档题精选(1)第二套:高考数学中档题精选(2)第三套:高考数学中档题精选(3)第四套:高考数学中档题训练第五套:不等式专练第六套:高考最新模拟试题一套高考数学中档题精选(1)1. 已知函数f(x)=cos x 2+cos 3x 2+cos 5x 2csc x 2 +cos 23x2 .(1) 求函数f(x)的最小正周期和值域; (2)求函数f(x)的单调递增区间.解:(1) y=sin x 2(cos x 2+cos 3x 2+cos 5x 2)+1+cos3x2=12sinx+12(sin2x-sinx)+12(sin3x-sin2x)+12cos3x+12=12sin3x+12cos3x+12 =22sin(3x+π4)+12∴T=2π3 ,值域y ∈[1-22,1+22]. (2)由2k π-π2 ≤3x+π4 ≤2k π+π2 ,k ∈Z.得:2k π3-π4 ≤x ≤2k π3+π12(k ∈Z). 2. 设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n -2n(n-1)(n ∈N)(1)求证数列{a n }为等差数列,并写出其通项公式;(2)是否存在非零常数p 、q 使数列{S npn+q}是等差数列?若存在,试求出p 、q 应满足的关系式,若不存在,请说明理由. 解:(1)当n ≥2时,a n =S n -S n-1=na n -(n-1)a n-1-4(n-1),即a n -a n-1=4(n ≥2) ∴{a n }为等差数列.∵a 1=1,公差d=4,∴a n =4n-3. (2)若{S n pn+q }是等差数列,则对一切n ∈N ,都有S npn+q=An+B, 即S n =(An+B)(pn+q),又S n =12(a 1+a n )n =2n 2-n,∴2n 2-n=Apn 2+(Aq+Bp)n+Bq要使上式恒成立,当且仅当⎪⎩⎪⎨⎧=-=+=012Bq Bp Aq Ap ,∵q ≠0,∴B =0,∴p q=-2,即:p+2q=0.3. 已知正三棱锥A-BCD 的边长为a ,E 、F 分别为AB 、BC 的中点,且AC ⊥DE.(Ⅰ)求此正三棱锥的体积;(Ⅱ)求二面角E-FD-B的正弦值.解:(Ⅰ)作AO⊥平面BCD于O,由正三棱锥的性质可知O为底面中心,连CO,则CO⊥BD,由三垂线定理知AC⊥BD,又AC⊥ED,∴AC⊥平面ABD,∴AC⊥AD, AB⊥AC,AB⊥AD.在Rt△ACD中,由AC2+AD2=2AC2=a2可得:AC=AD=AB=22a .∴V=VB-ACD =13·12·AC·AD·AB=224a3 .(Ⅱ)过E作EG⊥平面BCD于G,过G作GH⊥FD于H,连EH,由三垂线定理知EH⊥FD,即∠EHG为二面角E-FD-B的平面角.∵EG=12AO 而AO=VB-ACD13·S△BCD=66a ,∴EG=612a .又∵ED=AE2+AD2=(24a)2+(22a)2=104a ∵EF∥AC,∴EF⊥DE.∴在Rt△FED中,EH=EF·EDDF=1512a ∴在Rt△EGH中,sin∠EHG=EGEH=105*选做题:定义在区间(-1,1)上的函数f(x)满足:①对任意x、y∈(-1,1)都有f(x)+f(y)=f(x+y1+xy);②当x∈(-1,0)时,f(x)>0.(Ⅰ)求证:f(x)为奇函数;(Ⅱ)试解不等式f(x)+f(x-1)>f(12 ).解:(Ⅰ)令x=y=0,则f(0)+f(0)=f(0),∴f(0)=0.又令x∈(-1,1),则-x∈(-1,1),而f(x)+f(-x)=f(x-x1-x2)=f(0)=0∴f(-x)=-f(x),即f(x)在(-1,1)上是奇函数.(Ⅱ)令-1<x1<x2<1,则x1-x2<0,1-x1x2>0,于是f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x21-x1x2)>0,即f(x1)>f(x2),所以f(x)在定义域ABCDEF OGH上为减函数.从而f(x)+f(x-1)>f(12)等价与不等式⎪⎪⎩⎪⎪⎨⎧>-+-<-<-<<-)21()112(111112f x x x f x x.213503*********111210222-<<⇔⎩⎨⎧+-<<⇔⎩⎨⎧+-<-<<⇔⎪⎩⎪⎨⎧<-+-<<⇔x x x x x x x x x x x x 高考数学中档题精选(2)1. 已知z 是复数,且arg(z-i)=π4,|z|= 5 .求复数z. 解法1.设复数z-i 的模为r(r>0),则z-i=r(cosπ4 +isin π4), ∴i r z )122(22++=,042,5)122()22(,5||222=-+=++∴=r r r r z 即解得r= 2 ,z=1+2i. 解法2.设z=x+yi,则5)1()0(15)01(145222222=++⇒⎩⎨⎧>+==+⇒⎪⎩⎪⎨⎧>--==+x x x x y y x y x y tg y x π 解得x=1或-2(舍去),所以z=1+2i. 解法3.设)sin (cos 5θθi z +=则1sin 5cos 51cos 51sin 54-=⇒=-=θθθθπtg解得:,10103)4cos(,0cos ,1010)4sin(=-∴>=-πθθπθ .21)55255(5554sin )4sin(4cos )4cos(]4)4cos[(cos ,5524sin )4cos(4cos )4sin(]4)4sin[(sin i i z +=+=∴=---=+-==-+-=+-=∴ππθππθππθθππθππθππθθ2. 已知f(x)=sin 2x-2(a-1)sinxcosx+5cos 2x+2-a,若对于任意的实数x 恒有|f(x)|≤6成立,求a 的取值范围.解:f(x)=(1-a)sin2x+2cos2x+5-a=5-2a+a 2 sin(2x+ψ)+5-a.(ψ为一定角,大小与a 有关).∵x ∈R,∴[f(x)]max =5-a+5-2a+a 2 ,[f(x)]min =5-a-5-2a+a 2 .由|f(x)|≤6,得⎪⎩⎪⎨⎧-≤+-+≤+-⇔⎪⎩⎪⎨⎧-≥+---≤+-+-aa a aa a a a a a a a 1125125625562552222 .52915291111)11(25)1(251112222≤≤∴⎪⎪⎩⎪⎪⎨⎧≤≥≤≤-⇔⎪⎩⎪⎨⎧-≤+-+≤+-≤≤-a a a a a a a a a a a 3.斜三棱柱ABC-A 1B 1C 1的底面是边长为2的正三角形,顶点A 1在底面的射影O 是△ABC 的中心,异面直线AB 与CC 1所成的角为45°. (1)求证:AA 1⊥平面A 1BC ;(2)求二面角A 1-BC-A 的平面角的正弦值; (3)求这个斜三棱柱的体积.(1)由已知可得A 1-ABC 为正三棱锥,∠A 1AB=45° ∴∠AA 1B=∠AA 1C=90°即AA 1⊥A 1B,AA 1⊥A 1C∴AA 1⊥平面A 1BC(2)连AO 并延长交BC 于D,则AD ⊥BC ,连A 1D,则∠ADA 1为所求的角。
模块二专练06(限时45分钟)(名校测试卷精选)一、解答题1.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若222sin 2cos 2cos cos 122A B A BA B -+++= (1)求角C 的大小(2)若4,c CA CB =+=u u u r u u u r,求的周长2.如图,四棱锥P ABCD -中,侧面PAB 为等腰直角三角形,BC ⊥平面, ,2,PAB PA PB AB BC AD BD =====(1)求证:PA ⊥平面PBC ;(2)求直线PC 与平面PAD 所成的角的正弦值.3.由甲、乙、丙三个人组成的团队参加某项闯关游戏,第一关解密码锁,3个人依次进行,每人必须在1分钟内完成,否则派下一个人.3个人中只要有一人能解开密码锁,则该团队进入下一关,否则淘汰出局.根据以往100次的测试,分别获得甲、乙解开密码锁所需时间的频率分布直方图.(1)若甲解开密码锁所需时间的中位数为47,求a 、b 的值,并分别求出甲、乙在1分钟内解开密码锁的频率;(2)若以解开密码锁所需时间位于各区间的频率代替解开密码锁所需时间位于该区间的概率,并且丙在1分钟内解开密码锁的概率为0.5,各人是否解开密码锁相互独立. ①求该团队能进入下一关的概率;①该团队以怎样的先后顺序派出人员,可使所需派出的人员数目X 的数学期望达到最小,并说明理由.4.在直角坐标系xOy 中,曲线1C 的参数方程为2cos 2sin x t y t αα=+⎧⎨=+⎩(t 为参数,α为实数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为8sin ρθ=,曲线1C 与曲线2C 交于,A B ,两点,线段AB 的中点为M . (1)求线段AB 长的最小值; (2)求点M 的轨迹方程.一、解答题1.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若222sin 2cos 2cos cos 122A B A BA B -+++= (1)求角C 的大小(2)若4,c CA CB =+=u u u r u u u r,求的周长【答案】(1)60C ︒=(2)11 【解析】 【分析】(1)利用二倍角公式将式子化简成()()1cos 1cos 2cos cos A B A B A B --++++,再利用两角和与差的余弦公式即可求解.(2)利用余弦定理可得22216c a b ab =+-=,再将CA CB +=u u u r u u u r平方,利用向量数量积可得2238a b ab ++=,从而可求周长. 【详解】()1由题222sin 2cos 2cos cos 22A B A BA B -+++ ()()1cos 1cos 2cos cos A B A B A B =--++++ ()22cos 22cos 1A B C =++=-=解得1cos 2C =,所以60C ︒= ()2由余弦定理,22216c a b ab =+-=,再由22238CA CB a b ab +=++=u u u r u u u r解得:2227,11a b ab +== 所以()249,7a b a b +=+= 故ABC ∆的周长为11 【点睛】本题主要考查了余弦定理解三角形、两角和与差的余弦公式、需熟记公式,属于基础题. 2.如图,四棱锥P ABCD -中,侧面PAB 为等腰直角三角形,BC ⊥平面, ,2,PAB PA PB AB BC AD BD =====(1)求证:PA ⊥平面PBC ;(2)求直线PC 与平面PAD 所成的角的正弦值.【答案】(1)见解析(2)9【解析】 【分析】(1)根据BC ⊥平面PAB ,利用线面垂直的定义可得BC PA ⊥,再由PA PB ⊥,根据线面垂直的判定定理即可证出.(2)取AB 的中点O ,连接,OP OD ,以O 为坐标原点,,,OD OB OP 分别为,,x y z 正半轴建立空间直角坐标系,O xyz -求出平面PAD 的一个法向量,利用空间向量法即可求解.【详解】()1因为BC ⊥平面,PAB PA ⊂平面PAB ,所以BC PA ⊥由PAB ∆为等腰直角三角形, 所以PA PB ⊥又PB BC B ⋂=,故PA ⊥平面PAB .()2取AB 的中点O ,连接,OP OD ,因为, PA PB AD BD ==,所以,PO AB DO AB ⊥⊥, 因为BC ⊥平面PAB , 所以PAB ⊥平面ABCD , 所以PO ⊥平面,ABCD PO OD ⊥,如图,以O 为坐标原点,,,OD OB OP 分别为,,x y z 正半轴建立空间直角坐标系,O xyz -则 1AO BO PO ===, 2DO ==,又,BC AB DO PA ⊥⊥,所以//OD BC 且,OD BC =于是()()()(),,0,0,10,1,02,0,02,10,,P A D C - ()()()2,1,10,1,12,,,,10PC AP AD =-==u u u r u u u r u u u r, 设平面PAD 的法向量为(),,n x y z =r,则·0·20n AP y z n AD x y ⎧=+=⎨=+=⎩u u u v v u u uv v 令1x =得平面PAD 的一个法向量()1,2,2n =-r设直线PC 与平面PAD 所成的角为α,则sin cos ,PC n PC n PC nα====u u u r ru u u r r g u u u r r g【点睛】本题考查了线面垂直的定义、判定定理以及空间向量法求线面角,属于中档题. 3.由甲、乙、丙三个人组成的团队参加某项闯关游戏,第一关解密码锁,3个人依次进行,每人必须在1分钟内完成,否则派下一个人.3个人中只要有一人能解开密码锁,则该团队进入下一关,否则淘汰出局.根据以往100次的测试,分别获得甲、乙解开密码锁所需时间的频率分布直方图.(1)若甲解开密码锁所需时间的中位数为47,求a 、b 的值,并分别求出甲、乙在1分钟内解开密码锁的频率;(2)若以解开密码锁所需时间位于各区间的频率代替解开密码锁所需时间位于该区间的概率,并且丙在1分钟内解开密码锁的概率为0.5,各人是否解开密码锁相互独立. ①求该团队能进入下一关的概率;①该团队以怎样的先后顺序派出人员,可使所需派出的人员数目X 的数学期望达到最小,并说明理由.【答案】(1)0.024a =,0.026b =,甲、乙在1分钟内解开密码锁的频率分别是0.9,0.7;(2)①0.985;①先派出甲,再派乙,最后派丙. 【解析】 【分析】(1)根据频率分布直方图中左右两边矩形面积均为0.5计算出中位数,可得出a 、b 的值,再分别计算甲、乙在1分钟内解开密码锁的频率值; (2)①利用独立事件概率的乘法公式可计算出所求事件的概率;①分别求出先派甲和先派乙时随机变量X 的数学期望,比较它们的大小,即可得出结论. 【详解】(1)甲解开密码锁所需时间的中位数为47,()0.0150.014550.03450.0447450.5b ∴⨯+⨯+⨯+⨯+⨯-=,解得0.026b =;0.0430.032550.010100.5a ∴⨯+⨯+⨯+⨯=,解得0.024a =;①甲在1分钟内解开密码锁的频率是10.01100.9f =-⨯=甲;乙在1分钟内解开密码锁的频率是10.03550.02550.7f =-⨯-⨯=乙; (2)由(1)知,甲在1分钟内解开密码锁的频率是0.9,乙是0.7,丙是0.5, 且各人是否解开密码锁相互独立;①令“团队能进入下一关”的事件为A ,“不能进入下一关”的事件为A ,()()()()10.910.710.50.015P A =---=,①该团队能进入下一关的概率为()()110.0150.985P A P A =-=-=; ①设按先后顺序自能完成任务的概率分别p 1,p 2,p 3,且p 1,p 2,p 3互不相等, 根据题意知X 的取值为1,2,3;则()11P X p ==,()()1221P X p p ==-,()()()12311P X p p ==-- ,()()()()1121212122131132E X p p p p p p p p p =+-+--=--+, ()()121213E X p p p p p ∴=-++-,若交换前两个人的派出顺序,则变为()121223p p p p p -++-, 由此可见,当12p p >时,交换前两人的派出顺序可增大均值,应选概率大的甲先开锁; 若保持第一人派出的人选不变,交换后两人的派出顺序,()()()12121112X 3321E p p p p p p p p =-++-=---Q ,①交换后的派出顺序则变为()113321p p p ---, 当23p p >时,交换后的派出顺序可增大均值; 所以先派出甲,再派乙,最后派丙,这样能使所需派出的人员数目的均值(数学期望)达到最小. 【点睛】本题考查频率分布直方图中位数的计算、离散型随机变量分布列与数学期望,在作决策时,可以依据数学期望和方差的大小关系来作出决策,考查分析问题的能力,属于难题.4.在直角坐标系xOy 中,曲线1C 的参数方程为2cos 2sin x t y t αα=+⎧⎨=+⎩(t 为参数,α为实数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为8sin ρθ=,曲线1C 与曲线2C 交于,A B ,两点,线段AB 的中点为M . (1)求线段AB 长的最小值; (2)求点M 的轨迹方程.【答案】(1)2)()()2213 2.x y -+-= 【解析】 【分析】(1)将曲线2C 的方程化成直角坐标方程为228x y y +=,当2PC AB ⊥时,线段AB取得最小值,利用几何法求弦长即可.(2)当点M 与点P 不重合时,设(),M x y ,由2 C M PM ⊥,利用向量的数量积等于0可求解,最后验证当点M 与点P 重合时也满足.【详解】解()1曲线2C 的方程化成直角坐标方程为228x y y +=即()22416,x y +-=圆心()20,4C ,半径4r =,曲线1C 为过定点()2,2P 的直线, 易知()2,2P 在圆2C 内,当2PC AB ⊥时,线段AB 长最小为==()2当点M 与点P 不重合时,设()2,, M x y C M PM ⊥Q ,()()()22420C M PM x x y y ∴=-+--=u u u u u r u u u u rg ,化简得()()223:12x y -+-=, 当点M 与点P 重合时,也满足上式, 故点M 的轨迹方程为()()2213 2.x y -+-= 【点睛】本题考查了极坐标与普通方程的互化、直线与圆的位置关系、列方程求动点的轨迹方程,属于基础题.。
中档小题(六)1.命题p :若a ,b ∈R ,则|a |+|b |>1是|a +b |>1的充分而不必要条件.命题q :函数y =|x -1|-2的定义域是(-∞,-1]∪[3,+∞),则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真 2.(2013·高考山东卷)执行两次如图所示的程序框图,若第一次输入的a 的值为-1.2,第二次输入的a 的值为1.2,则第一次,第二次输出的a 的值分别为( )A .0.2,0.2B .0.2,0.8C .0.8,0.2D .0.8,0.83.(2013·洛阳市高三年级统一考试)函数f (x )=2sin 2(π4+x )-3cos 2x (π4≤x ≤π2)的最大值为( )A .2B .3C .2+ 3D .2- 34.下列函数既是奇函数又在区间[-1,1]上单调递减的是( ) A .f (x )=sin x B .f (x )=-|x +1|C .f (x )=ln 2-x2+xD .f (x )=12(a x +a -x )5.(2013·东北三校联合模拟考试)已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为( )A.14B.12 C .1 D .46.(2013·广东省惠州市第三次调研考试)如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向旋转一周,点P 所转过的弧AP 的长为l ,弦AP 的长度为d ,则函数d =f (l )的图象大致是( )7.(2013·高考重庆卷)设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1,B 1和A 2,B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( )A.⎝⎛⎦⎤233,2B.⎣⎡⎭⎫233,2C.⎝⎛⎭⎫233,+∞D.⎣⎡⎭⎫233,+∞ 8.(2013·高考天津卷)设函数f (x )=e x+x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<09.(2013·荆州市高中毕业班质量检查)已知y =f (x )是定义域为(12,+∞)的可导函数,f (1)=f (3)=1,f (x )的导数为f ′(x ),且x ∈(12,2)时,f ′(x )<0;x ∈(2,+∞)时,f ′(x )>0,则不等式组⎩⎪⎨⎪⎧-2≤x -2y ≤12f (2x +y )≤1所表示的平面区域的面积等于( )A.15B.35 C.12D .1 10.(2013·假设根据上表数据所得线性回归直线方程为y =b x +a . 若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′B.b ^>b ′,a ^<a ′C.b ^<b ′,a ^>a ′D.b ^<b ′,a ^<a ′ 11.(2013·东北三校高三第一次联合模拟考试)已知某几何体的三视图如图,其中正视图中半圆直径为2,则该几何体体积为________.12.(2013·高考辽宁卷)已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.13.(2013·高考天津卷)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.14.(2013·山西省上学期诊断考试)已知a 、b 都是正实数,函数y =2a e x +b 的图象过(0,1)点,则1a +1b 的最小值是________.备选题1.已知直线2ax +by =1(其中a ,b 是实数)与圆x 2+y 2=1相交于A 、B 两点,O 是坐标原点,且△AOB 是直角三角形,则点P (a ,b )与点M (0,1)之间的距离的最大值为( )A.2+1 B .2 C. 2 D.2-1 2.(2013·福建省质量检查)设数集S ={a ,b ,c ,d }满足下列两个条件:(1)∀x ,y ∈S ,xy ∈S ;(2)∀x ,y ,z ∈S 或x ≠y ,则xz ≠yz ,现给出如下论断:①a ,b ,c ,d 中必有一个为0;②a ,b ,c ,d 中必有一个为1;③若x ∈S 且xy =1,则y ∈S ;④存在互不相等的x ,y ,z ∈S ,使得x 2=y ,y 2=z .其中正确论断的个数是( ) A .1 B .2 C .3 D .43.设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6成公差为1的等差数列,则q 的最小值是________.4.(2013·高考广东卷)给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.答案:1.【解析】选D.当a =1,b =-1时,得命题p 假,由|x -1|-2≥0,得x ≥3或x ≤-1,知命题q 真.2.【解析】选C.由程序框图可知:当a =-1.2时, ∵a <0,∴a =-1.2+1=-0.2,a <0,a =-0.2+1=0.8,a >0.∵0.8<1,输出a =0.8. 当a =1.2时,∵a ≥1,∴a =1.2-1=0.2. ∵0.2<1,输出a =0.2.3.【解析】选B.依题意,f (x )=1-cos 2(π4+x )-3cos 2x =sin 2x -3cos 2x +1=2sin(2x-π3)+1,当π4≤x ≤π2时,π6≤2x -π3≤2π3,12≤sin(2x -π3)≤1,此时f (x )的最大值是3. 4.【解析】选C.由奇函数和偶函数的定义可知,f (x )=sin x 是奇函数,f (x )=-|x +1|非奇非偶,f (x )=ln 2-x 2+x是奇函数,f (x )=12(a x +a -x )是偶函数,故排除B ,D.由正弦函数的图象可知,f (x )=sin x 在区间[-1,1]上单调递增,排除A.5.【解析】选A.由题意可知f ′(x )=12x -12,g ′(x )=a x ,由f ′(14)=g ′(14),得12(14)-12=a14,可得a =14,经检验,a =14满足题意.6.【解析】选C.点P 是单位圆上的动点,设∠AOP =α,则α=l ,当α=π2时,弦AP的长度d =2>1,由选项的图可知,故选C.7.【解析】选A.由双曲线的对称性知,满足题意的这一对直线也关于x 轴(或y 轴)对称.又由题意知有且只有一对这样的直线,故该双曲线在第一象限的渐近线的倾斜角范围是大于30°且小于等于60°,即tan 30°<b a ≤tan 60°,∴13<b 2a 2≤3.又e 2=⎝⎛⎭⎫c a 2=c 2a 2=1+b 2a 2,∴43<e 2≤4,∴233<e ≤2,故选A.8.【解析】选A.∵f ′(x )=e x +1>0,∴f (x )是增函数.∵g (x )的定义域是(0,+∞),∴g ′(x )=1x+2x >0,∴g (x )是(0,+∞)上的增函数.∵f (0)=-1<0,f (1)=e -1>0, ∴0<a <1.∵g (1)=-2<0,g (2)=ln 2+1>0,∴1<b <2, ∴f (b )>0,g (a )<0.9.【解析】选D.依题意可知f (x )在(12,2)上为减函数,在(2,+∞)上为增函数,f (2x +y )≤1,而f (1)=f (3)=1,则1≤2x +y ≤3,从而(x ,y )满足⎩⎪⎨⎪⎧-2≤x -2y ≤121≤2x +y ≤3,不等式组所表示的平面区域是一个矩形,从而其面积S =1.10.【解析】选C.由(1,0),(2,2)求b ′,a ′.b ′=2-02-1=2,a ′=0-2×1=-2. 求b ^,a ^时,∑i =16x i y i =0+4+3+12+15+24=58,x =3.5,y =136,∑i =16x 2i =1+4+9+16+25+36=91,∴b ^=58-6×3.5×13691-6×3.52=57,a ^=136-57×3.5=136-52=-13,∴b ^<b ′,a ^>a ′. 11.【解析】由所给的几何体的三视图可知,该几何体为长方体上挖去一个圆柱体的一半,这样由所给的数据可知所求几何体体积为2×4×3-12×π×12×3=24-3π2.【答案】24-3π212.【解析】由双曲线方程知,b =4,a =3,c =5,则虚轴长为8,则|PQ |=16.由左焦点F (-5,0),且A (5,0)恰为右焦点,知线段PQ 过双曲线的右焦点,则P ,Q 都在双曲线的右支上.由双曲线的定义可知|PF |-|P A |=2a ,|QF |-|QA |=2a ,两式相加得,|PF |+|QF |-(|P A |+|QA |)=4a ,则|PF |+|QF |=4a +|PQ |=4×3+16=28,故△PQF 的周长为28+16=44.【答案】44 13.【解析】由已知得AC →=AD →+AB →,BE →=AD →-12AB →,∴AC →·BE →=AD →2-12AB →·AD →+AB →·AD →-12AB →2=1+12AB →·AD →-12|AB →|2=1+12|AB →|·|AD →|cos60°-12|AB →|2=1,∴|AB →|=12.【答案】1214.【解析】依题意得2a e 0+b =2a +b =1,1a +1b =(1a +1b )(2a +b )=3+(b a +2ab)≥3+2b a ×2a b =3+22,当且仅当b a =2a b ,即a =1-22,b =2-1时取等号,因此1a +1b 的最小值为3+2 2.【答案】3+2 2 备选题 1.【解析】选A.直线2ax +by =1(其中a ,b 是实数)与圆x 2+y 2=1相交于A ,B 两点,则依题意可知,△AOB 是等腰直角三角形,坐标原点O 到直线2ax +by =1的距离d =12a 2+b2=22,即2a 2+b 2=2, ∴a 2=2-b 22(-2≤b ≤2),则|PM |=a 2+(b -1)2=b 22-2b +2=2|b -2|2,∴当b =-2时,|PM |max =2×|-2-2|2=2+1.2.【解析】选C.取满足题设条件的集合S ={1,-1,i ,-i},即可迅速判断②③④是正确的论断.3.【解析】由题意1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6成公差为1的等差数列,则1≤a 2≤q ≤a 2+1≤q 2≤a 2+2≤q 3,所以1≤a 2≤q 3-2,即q 3-2≥1,解得q ≥33,所以q 的最小值是33.【答案】33 4.【解析】画出平面区域D (图中阴影部分),z =x +y 取得最小值时的最优整数解为(0,1),取得最大值时的最优整数解为(0,4),(1,3),(2,2),(3,1),(4,0).点(0,1)与(0,4),(1,3),(2,2),(3,1),(4,0)中的任何一个点都可以构成一条直线,共有5条,又(0,4),(1,3),(2,2),(3,1),(4,0)都在直线x +y =4上,故T 中的点共确定6条不同的直线.【答案】6。