弹塑性力学 4 平衡微分方程和边界条件汇总
- 格式:ppt
- 大小:227.00 KB
- 文档页数:10
弹塑性力学总结(精华)第一篇:弹塑性力学总结(精华)(一)弹塑性力学绪论:1、定义:是固体力学的一个重要分支学科,是研究可变形固体受到外荷载或温度变化等因素的影响而发生的应力、应变和位移及其分布规律的一门科学,是研究固体在受载过程中产生的弹性变形和塑性变形阶段这两个紧密相连的变形阶段力学响应的一门科学。
2、研究对象:也是固体,是不受几何尺寸与形态限制的能适应各种工程技术问题需求的物体。
3、分析问题的基本思路:受力分析及静力平衡条件(力的分析);变形分析及几何相容条件(几何分析);力与变形间的本构关系(物理分析)。
4、研究问题的基本方法:以受力物体内某一点(单元体)为研究对象→单元体的受力—应力理论;单元体的变形——变形几何理论;单元体受力与变形间的关系——本构理论;(特点:1、涉及数学理论较复杂,并以其理论与解法的严密性和普遍适用性为特点;弹塑性力学的工程解答一般认为是精确的;可对初等力学理论解答的精确度和可靠进行度量。
)5、基本假设:物理假设:(连续性假设:假定物质充满了物体所占有的全部空间,不留下任何空隙;均匀性与各向同性的假设:假定物体内部各处,以及每一点处各个方向上的物理性质相同。
力学模型的简化假设:(A)完全弹性假设;(B)弹塑性假设)。
几何假设——小变形条件(假定物体在受力以后,体内的位移和变形是微小的,即体内各点位移都远远小于物体的原始尺寸,而且应变(包括线应变与角应变)均远远小于1。
在弹塑性体产生变形后建立平衡方程时,可以不考虑因变形而引起的力作用线方向的改变;在研究问题的过程中可以略去相关的二次及二次以上的高阶微量;从而使得平衡条件与几何变形条件线性化。
)6、解题方法(1)静力平衡条件分析;(2)几何变形协调条件分析;(3)物理条件分析。
从而获得三类基本方程,联立求解,再满足具体问题的边界条件,即可使静不定问题得到解决7、应力的概念: 受力物体内某点某截面上内力的分布集度σ=limFn∆A∆A→O=dFndA=σnσ=limFn∆A∆A→O=dFndA=σnt。
弹性力学基本方程平衡微分方程:0⋅+=σ∇f指标符号写为,0ji j i f σ+=在直角坐标系中分量形式311121112332122221231323333123000f x x x f x x x f x x x σσσσσσσσσ⎧∂∂∂+++=⎪∂∂∂⎪⎪∂∂∂+++=⎨∂∂∂⎪⎪∂∂∂+++=⎪∂∂∂⎩在柱坐标系中分量形式1012010r r r rz r r zr z zr z rzz f r r z rf r r z r f r r z r θθθθθθθθτσσστθτσττθττστθ∂-∂∂⎧++++=⎪∂∂∂⎪∂∂∂⎪++++=⎨∂∂∂⎪∂∂∂⎪++++=⎪∂∂∂⎩在球坐标系中分量形式211cot 0sin 113cot 0sin 1132cot 0sin r r r r r r r r r r f r r r r r f rr r r r f r r r r r ϕθϕθθθϕθϕθθθθϕϕθϕϕϕθϕτσσσττσθθθϕτσστστθθθϕττσττθθθϕ∂--⎧∂∂+++++=⎪∂∂∂⎪⎪∂-∂∂⎪+++++=⎨∂∂∂⎪⎪∂∂∂+++++=⎪∂∂∂⎪⎩几何方程:1()2=+ε∇∇u u指标符号写为,,1()2ij i j j i u u ε=+在直角坐标系中分量形式1211221112113222223322333313331133131()21()21()2u u u x x x u u u x x x u u u x x x εεεεεεεεε⎧⎧∂∂∂==+=⎪⎪∂∂∂⎪⎪⎪⎪∂∂∂===+⎨⎨∂∂∂⎪⎪⎪⎪∂∂∂===+⎪⎪∂∂∂⎩⎩在柱坐标系中分量形式111r r z z zr u u v v r r r r v u v w r r z r w w u z r z θθθεγθεγθθεγ∂∂∂⎧⎧==+-⎪⎪∂∂∂⎪⎪∂∂∂⎪⎪=+=+⎨⎨∂∂∂⎪⎪∂∂∂⎪⎪==+⎪⎪∂∂∂⎩⎩在球坐标系中分量形式1111sin 11sin sin r rr r r r r r u u u u r r r r u u u u ctg u r r r r r u u ctg u u u u r r r r r r θθθϕθθθθϕϕϕϕϕϕθϕγεθθεγθθϕθθεγθϕθϕ⎧⎧∂∂∂=+-=⎪⎪∂∂∂⎪⎪⎪∂∂∂⎪=+=+-⎨⎨∂∂∂⎪⎪∂⎪⎪∂∂=++=+-⎪⎪∂∂∂⎩⎩应变协调方程:0⨯⨯=ε∇∇指标符号写为,0mjk nil ij kl e e ε=在直角坐标系中常用形式222112212222112222332322223223222331311221313223311112231123231232212312231233120001()21()21x x x x x x x x x x x x x x x x x x x x x x x x x x εεγεγεεγεγγεγγγεγε∂∂∂+-=∂∂∂∂∂∂∂+-=∂∂∂∂∂∂∂+-=∂∂∂∂∂∂∂∂∂=-++∂∂∂∂∂∂∂∂∂∂∂=-++∂∂∂∂∂∂∂=∂∂2331123312()2x x x x γγγ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪∂∂∂∂-++⎪∂∂∂∂⎩本构方程::=σεC指标符号写为ij ijkl klC σε=对各向同性弹性体的线弹性本构关系的指标符号写为2ij ij kk ijG σελεδ=+在直角坐标系中分量形式222x x yy z z xy xy yz yz zx zxG G G G G G σελθσελθσελθτγτγτγ=+⎧⎪=+⎪⎪=+⎪⎨=⎪⎪=⎪=⎪⎩边界条件:力边界条件指标形式写为 j i ijp νσ=在指标坐标系分量形式x yx zx xy y zy xz yz z X l m n Y l m n Z l m n στττστττσ⎧=++⎪⎪=++⎨⎪=++⎪⎩位移边界条件指标形式写为 i iu u =在直角坐标系分量形式112233u u u u u u ⎧=⎪⎪=⎨⎪=⎪⎩位移解法:L-N 方程及力边界条件指标形式,,,,,()0[()]i jj j ji i i j j i k k ij j iGu G u f G u u u X λλδν+++=++=在直角坐标系中分量形式212223()0()0()0(2)()()()(2)()()()(2)G u G f x G v G f y G w G f z u v u w uG l G m G n X x x y x z u v v w vG l G m G n Yy xy y z u w v w wG l G m G n Zz xz y z θλθλθλλθλθλθ⎧∂∇+++=⎪∂⎪∂⎪∇+++=⎨∂⎪⎪∂∇+++=⎪∂⎩⎧∂∂∂∂∂+++++=⎪∂∂∂∂∂⎪⎪∂∂∂∂∂+++++=⎨∂∂∂∂∂⎪⎪∂∂∂∂∂+++++=∂∂∂∂∂⎩⎪应力解法:B-M 方程指标形式2,,,,1()11ij ij i j j i ij k kf f f νσδνν∇+Θ=-+-+-平面问题本构方程平面应变平面应力平面应力(极坐标系)αβαβαβδλεεσkk G +=2, 平面应力→平面应变:21υ-→E E 、υυυ-→1xyxyx y y y x x G G G γτευυευυσευυευυσ=-+--=-+--=)1(21)1(2)1(21)1(2 xyxyx y y y x x G G Gγτυεευσυεευσ=+-=+-=)(12)(12 θθθθθγτυεευσυεευσr r r r r G G G=+-=+-=)(12)(12 0)()(==+=+=zx zx y x y x z ττεελσσυσ===zx zx z ττσ0=z σ 0==θττz zrαβαβαβδσυσυεkk EE -+=1 xyxy xy x y y y x x GE E τεγσυυσυεσυυσυε12)1(1)1(122==---=---= xyxy xy x y y y x x GEEτεγυσσευσσε12)(1)(1==-=-=θθθθθτγυσσευσσεr r r r r GE E1)(1)(1=-=-====zy zx z γγε)(==+-=zy zx y x z Eγγσσυε)(θσσυε+-=r z E0==θγγz z r协调方程:y x yx xy x y ∂∂∂=∂∂+∂∂γεε22222,0112112222222=∂∂-∂∂-∂∂+∂∂∂-∂∂+∂∂θγεεθγθεεθθθθr r r r r r r r r r r r r))(1()(,,2y y x x y x f f ++-=+∇νσσ,如x x V f ,-=,y y V f ,-=,引入Airy 应力函数:V yy x +=,φσ V xx y +=,φσ,xy xy,φτ-=→V 222)1(∇--=∇∇νφ;22222yx ∂∂+∂∂=∇,4422444222yy x x ∂∂+∂∂∂+∂∂=∇∇极坐标系:02101=++∂∂+∂∂=+-+∂∂+∂∂θθθθθθτθστσσθτσf rr r f r r r r r r r r rrv r v u r ru v r r u r r rr r θθθθθθγθεε-∂∂+∂∂=+∂∂=∂∂=11 ,⎪⎭⎫ ⎝⎛∂∂∂∂-=∂∂=∂∂+∂∂=θφτφσθφφσθθr r rr r r r r 1 ,1122222V222)1(∇--=∇∇νφ,22222211θ∂∂+∂∂+∂∂=∇r r r r,⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛θθθθσττσθθθθσττσθθθcos sin sin cos cos sin sin cos r r ry xyxy x塑性力学基本公式:一维随动强化模型材料后继屈服限与先期拉(压)塑性应变的关系**p s ps h d h d σσεσσε+-=+=-+⎰⎰一维等向强化模型材料后继屈服限与先期拉(压)塑性应变的关系***||p s h d σσεσσ+-+=+=-⎰应力偏量的第二不变量22222222112222333311122331221'21'[()()()6()]6'3'ij ij ijij J S S J J S J σσσσσστττσσ==-+-+-+++∂=∂=应变偏量的第二不变量2222222211222233331112233121'213'[()()()()]624'3ij ijI e e I I εεεεεεγγγε==-+-+-+++=金属材料的屈服条件:Mises 屈服条件2()03'ij s J σσσσ-==其中Tresca 屈服条件max ()02sij στσ-=三维随动强化模型后继屈服条件(,)()0p p pij ij ij s ij ij K c d σσσεσεεΦ=--==⎰其中三维等向强化模型后继屈服条件41(,)()()0032p p p pij ij s ij ij K h d d d d σσσσεεεεΦ=-+==⋅≥⎰其中全量形式的应力-应变关系2()1()33ij kk ij ij kk ij K σεσεδεεδε=+-全量形式的应变-应力方程13()1()923ij kk ij ij kk ij K εσεσδσσδσ=+-σε-关系为**3,3(),33',122(1)'3s s ss G GE G G E EE G E E E σεεσσσσεενν⎧⋅<⎪⎪=⎨⎪+->⎪⎩==-+-增量形式的应变-应力方程(指标符号)()011ij ij kk ij ij d d d d S E ευσυσδλ⎡⎤=+-+⎣⎦增量形式的应力-应变方程(矩阵形式)0000T e e e ep T e D D d D d D d D ασσασεεσαασ⎛⎫=-= ⎪⎝⎭线性等向强化材料加载时的增量本构关系(指标符号)()()0020191114ij ij kk ij kl kl ij d d d S d S E h ευσυσδσσ⎡⎤=+-+⎣⎦线性等向强化材料加载时的增量本构关系(矩阵形式)()()000209114T e ep d F d d F d hεσασσασσσσ=+=。