弹塑性力学讲义本构关系
- 格式:ppt
- 大小:360.00 KB
- 文档页数:26
弹塑性力学讲义弹塑性力学1 弹塑性的概念所谓弹塑性指的是物体在外力作用下发生变形而外力除去后变形不能完全恢复的性质。
变形中可回复的部分称为弹性变形,变形中不可回复的部分称为塑性变形。
塑性变形总是在外力的作用超过一定的限度后出现。
2 简单拉压状态下金属材料弹塑性行为及其数学模型(1)理想塑性材料的弹塑性行为σs主要特点:屈服后加载,表现出一种流动变形现象,材料失去进一步承载的能力;屈服后卸载,应力应变增量大致与弹性变形段相同。
卸载至零后再次加载,应力应变关系相当于原应力应变关系曲线在应变轴方向作了一个平移,平移量为残余塑性应变。
数学表达:Eε(0 ε εs)σ σ(ε)σ(ε ε)s s Eε( εs ε 0)σ σ(ε)(ε εs) σs(2)线性强化材料的弹塑性行为σσs主要特点:屈服后加载,材料仍有进一步承载的能力,但应力应变增量的比例较弹性段小;屈服后卸载,应力应变增量大致与弹性变形段相同。
卸载至零后再次加载,屈服应力为卸载前的应力值(较先前的屈服应力大),应力应变关系相当于原应力应变关系曲线在应变轴方向作了一个平移,平移量为残余塑性应变,同时应力轴伸长。
两种常用的强化模型数学表达:Eε(0 ε εs)σ σ(ε)σ E(ε ε)(ε ε)ss sEε( εs ε 0)σ σ(ε)σs E(ε εs)(ε εs)上述描述弹塑性材料应力应变关系的数学模型称为全量型本构关系。
显然不能代表弹塑性变形规律的全貌。
它描述了单调应力-应变过程。
为了描述弹塑性力学行为的“过程相依”,需要建立增量型本构关系。
记当前应力为σ0,应力增量为dσ,应变增量为dε,分析弹塑性行为可以得出相应的增量变形法则。
理想塑性材料的增量型弹塑性关系(1)由dσ决定dε当σs σ0 σs时,dε dσ/E 当σ0 σs时,dεdλσ0ifdσ 0 dσ/Eifdσ 0dλσ0ifdσ 0当σ0 σs时,dεdσ/Eifdσ 0(2)由dε决定dσ当σs σ0 σs时,dσ Edε0ifdε 0当σ0 σs时,dσEdεifdε 0当σ0 σs时,dσ0ifdε 0 Edεifdε 0例:已经测得某理想弹塑性材料的细杆所经受的轴向应变过程如图所示,试求此杆中的应力过程。
§7.3 Mises 流动理论(2J 流动理论)1.各向同性硬化1.4 屈服面的形状在应力偏张量空间中讨论屈服面的形状为球体,随着硬化参数()p Y Y ε=的变化屈服面为不断均匀膨胀的球体。
在一般应力空间中讨论屈服面的形状比较复杂,下边我们讨论在在主应力空间中初始屈服面的形状。
在主应力空间中,Mises 屈服条件(7.57)可以表示为()()()2222232Y σσσσσσ1231−+−+−=习题已经证明:塑性变形无体积变化(即0p ii ε=&)的充分必要条件为在屈服条件0),,,(1=n Y Y f L σ中与应力张量的第一不变量1()J σ无关,即对于任意参数a ,都有:11(,,,)(,,,)n n f a Y Y f Y Y +=σI σL L 。
这意味着如果σ在屈服面上,对于任意参数a ,a σ也在屈服面上。
所以在主应力空间()123,,σσσ中Mises 屈服条件为一个柱面。
柱面的中心线通过应力零点,方向为(1,1,1),其方程为123σσσ==,通常称作等倾线。
通过应力零点与等倾线垂直的平面称作π平面,其方程为1230σσσ++=,三个主应力轴在该面上投影互相成120o 角。
根据上述分析,屈服面与π平面的交线为圆,圆的半径为Y ,见图7.11。
图7.11 π平面上的屈服条件所以在主应力空间中,Mises 屈服条件所表示的屈服面为以等倾线为中心线半径为Y 的圆柱面,随着硬化参数()p Y Y ε=的变化该圆柱面不断均匀向外膨胀。
2.混合硬化在初始状态为各向同性材料中,材料的拉伸曲线与压缩曲线形状相同。
拉伸屈服极限与压缩屈服极限的数值是相同的,记作s σ,见图7.12所示的单向拉伸(压缩)曲线的A 与A 点。
如果材料属于各向同性硬化,当拉伸到达屈服后的B 点(应力为B σ)时开始卸载并反向加压应力,在图7.12中表示应力与应变对应的点从B 沿一斜率为杨氏模量E 的直线BC 变化;当B σσ=−时出现反向屈服,这时材料的屈服限由初始值s σ增大至B σ,屈服面的大小由初始的2s σ增大为2B σ。