4.马尔科夫链
- 格式:ppt
- 大小:1.23 MB
- 文档页数:35
马尔科夫链计算过程1. 什么是马尔科夫链马尔科夫链(Markov Chain)是一种数学模型,它描述了在一定条件下状态之间的转移规律。
在马尔科夫链中,当前状态只取决于前一状态,而不受其它因素的影响。
这个前一状态就叫做“马尔科夫状态”,它是用来做预测的关键。
2. 马尔科夫链的基本性质马尔科夫链的基本性质有三个,分别是可数性、有限性和可逆性。
首先,可数性表示状态空间是可数的,即状态集合是有限的或可列的。
其次,有限性表示过渡概率矩阵中的元素都是有限的,即不存在无穷大的元素。
最后,可逆性表示马尔科夫链中每一状态都可以反向转移,即反向马尔科夫链也成立。
这些性质是理解和分析马尔科夫链的基础。
3. 马尔科夫链的状态转移矩阵马尔科夫链的转移规律可以用状态转移矩阵来描述。
状态转移矩阵P是一个方阵,大小为n×n(n为状态数),其中第i行第j列的元素pij表示从状态i到状态j的转移概率。
转移概率一般满足以下两个条件:1. 非负性:pij≥ 0。
2. 行和为1:∑ j pij= 1。
这两个条件保证了从任意状态出发都可以到达所有的状态,并且到达每个状态的概率之和为1。
4. 马尔科夫链的平稳分布在马尔科夫链中,如果从初始状态开始,经过很多次的状态转移后,所有状态的概率分布趋于稳定,那么我们称这个概率分布为平稳分布。
平稳分布是指一个向量p满足以下条件:1. 非负性:pj≥ 0。
2. 归一性:∑ j pj= 1。
3. 转移性质:p*= p*P(p*为平稳分布)。
平稳分布反映了在马尔科夫链中,每个状态出现的相对概率。
如果我们知道了一个马尔科夫链的状态转移矩阵和初始概率分布,那么就可以求出其平稳分布。
5. 马尔科夫链计算过程计算马尔科夫链的过程实际上是求解其平稳分布。
我们可以通过以下步骤完成计算:1. 确定状态数目和状态初始分布。
2. 确定状态转移矩阵。
3. 求解马尔科夫链的平稳分布。
平稳分布的计算可以使用迭代法、线性代数方法等多种方法。
马尔可夫链的基本概念马尔可夫链是一种特殊的随机过程,广泛应用于统计学、机器学习、经济学、计算机科学等多个领域。
为了深入理解马尔可夫链的概念,我们先从基本定义开始,再逐步探讨其性质、分类、应用及实例分析。
一、马尔可夫链的定义马尔可夫链是一种具有“无记忆”特性的随机过程,即在给定当前状态的前提下,未来状态与过去状态无关。
换句话说,系统的未来发展只依赖于当前的状态,而不依赖于以前的状态。
这一特性通常被称为“马尔可夫性”,是马尔可夫链最大的特点。
在形式上,我们可以定义一个离散时间的马尔可夫链为一个由状态集合 ( S ) 组成的序列,其中 ( S ) 可能是有限的也可能是无限的。
设 ( X_n ) 为在时间 ( n ) 时刻该过程所处的状态,若满足条件:[ P(X_{n+1} = j | X_n = i, X_{n-1} = k, , X_0 = m) =P(X_{n+1} = j | X_n = i) ]其中,( P ) 是条件概率,这就表明该过程符合马尔可夫性质。
二、马尔可夫链的基本组成要素状态空间:状态空间是指系统所有可能的状态集合,通常用集合 ( S ) 表示。
例如,一个简单天气模型可以将状态空间定义为 ( S = {晴天, 雨天} )。
转移概率:马尔可夫链中的转移概率是指从一个状态转移到另一个状态的概率。
对于有限状态空间,转移概率通常用转移矩阵表示,其元素 ( P_{ij} ) 表示从状态 ( i ) 转移到状态 ( j ) 的概率。
初始分布:初始分布描述了系统在时间 ( t=0 ) 时,各个状态出现的概率。
通常用一个向量表示,如 ( _0(i) ) 代表在初始时刻处于状态 ( i ) 的概率。
三、马尔可夫链的性质马尔可夫链具有许多重要的性质,其中最为关键的是遍历性和极限性。
遍历性:如果一个马尔可夫链在长期运行后,将以一种稳定的方式达到各个状态,并且这个稳态与初始选择无关,那么我们称它为遍历。
换句话说,一个遍历性的马尔可夫链在达到平稳分布后,各个状态出现的概率将保持不变。
马尔可夫链的基本概念马尔可夫链是一种数学模型,用于描述具有马尔可夫性质的随机过程。
马尔可夫性质指的是在给定当前状态的情况下,未来状态的概率只与当前状态有关,与过去状态无关。
马尔可夫链由一组状态和状态之间的转移概率组成,可以用于模拟和预测各种随机过程,如天气变化、股票价格波动等。
一、马尔可夫链的定义马尔可夫链由状态空间和转移概率矩阵组成。
状态空间是指所有可能的状态的集合,用S表示。
转移概率矩阵是一个n×n的矩阵,其中n 是状态空间的大小。
转移概率矩阵的元素表示从一个状态转移到另一个状态的概率。
二、马尔可夫链的性质1. 马尔可夫性质:在给定当前状态的情况下,未来状态的概率只与当前状态有关,与过去状态无关。
2. 遍历性:从任意一个状态出发,经过有限步骤后可以到达任意一个状态。
3. 周期性:一个状态可以分为周期为k的状态和非周期状态。
周期为k的状态在经过k步后才能返回原状态,非周期状态的周期为1。
4. 不可约性:如果一个马尔可夫链中的任意两个状态都是可达的,那么该马尔可夫链是不可约的。
5. 非周期马尔可夫链的收敛性:如果一个马尔可夫链是非周期的且不可约的,那么它具有收敛性,即在经过足够多的步骤后,状态分布会趋于稳定。
三、马尔可夫链的应用马尔可夫链在许多领域都有广泛的应用,包括自然语言处理、机器学习、金融市场分析等。
1. 自然语言处理:马尔可夫链可以用于语言模型的建立,通过分析文本中的词语之间的转移概率,可以预测下一个词语的出现概率,从而实现自动文本生成、机器翻译等任务。
2. 机器学习:马尔可夫链可以用于序列数据的建模和预测,如音频信号处理、图像处理等。
通过分析序列数据中的状态转移概率,可以预测下一个状态的出现概率,从而实现序列数据的预测和分类。
3. 金融市场分析:马尔可夫链可以用于分析金融市场的波动性和趋势。
通过分析股票价格的状态转移概率,可以预测未来股票价格的走势,从而指导投资决策。
四、马尔可夫链的改进和扩展马尔可夫链的基本概念可以通过改进和扩展来适应更复杂的问题。
2025高考数学专项复习马尔科夫链含答案马尔科夫链1.(2024·高三·广东·开学考试)马尔科夫链因俄国数学家安德烈・马尔科夫得名,其过程具备“无记忆”的性质,即第n+1次状态的概率分布只跟第n次的状态有关,与第n-1,n-2,n-3,⋯次状态无关.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.现有A,B两个盒子,各装有2个黑球和1个红球,现从A,B两个盒子中各任取一个球交换放入另一个盒子,重复进行n n∈N*次这样的操作后,记A盒子中红球的个数为X n,恰有1个红球的概率为p n.(1)求p1,p2的值;(2)求p n的值(用n表示);(3)求证:X n的数学期望E X n为定值.理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯⋯X t-2,X t-1,X t,X t+1,⋯,那么X t+1时刻的状态的条件概率仅依赖前一状态X t,即P X t+1⋯,X t-2,X t-1,X t=P X t+1X t.现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:记赌徒的本金为A A∈N*,A<B一种是赌金达到预期的B元,赌徒停止赌博;另一种是赌徒输光本金后,赌徒可以向赌场借钱,最多借A元,再次输光后赌场不再借钱给赌徒.赌博过程如图的数轴所示.当赌徒手中有n元-A≤n≤B,n∈Z时,最终欠债A元(可以记为该赌徒手中有-A元)概率为P(n),请回答下列问题:(1)请直接写出P(-A)与P(B)的数值.(2)证明{P(n)}是一个等差数列,并写出公差d.(3)当A=100时,分别计算B=300,B=1500时,P(A)的数值,论述当B持续增大时,P(A)的统计含义.状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n∈N*次这样的操作,记口袋甲中黑球的个数为X n,恰有1个黑球的概率为p n.(1)求p1,p2的值;(2)求p n的值(用n表示);(3)求证:X n的数学期望E X n为定值.4.(2024·高三·江西·开学考试)马尔科夫链是概率统计中的一个重要模型,其过程具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,即第n+1次状态的概率分布只与第n次的状态有关,与第n -1,n-2,n-3,⋯次的状态无关,即P(X n+1|X1,X2,⋯,X n-1,X n)=P(X n+1|X n).已知甲盒中装有1个白球和2个黑球,乙盒中装有2个白球,现从甲、乙两个盒中各任取1个球交换放入对方的盒中,重复n 次(n∈N∗)这样的操作,记此时甲盒中白球的个数为X n,甲盒中恰有2个白球的概率为a n,恰有1个白球的概率为b n.(1)求a1,b1和a2,b2.为等比数列.(2)证明:a n+2b n-65(3)求X n的数学期望(用n表示).5.在概率论中,马尔可夫不等式给出了随机变量的函数不小于某正数的概率的上界,它以俄国数学家安德雷·马尔可夫命名,由马尔可夫不等式知,若ξ是只取非负值的随机变量,则对∀a>0,都有Pξ≥a≤Eξa.某市去年的人均年收入为10万元,记“从该市任意选取3名市民,则恰有1名市民去年的年收入超过100万元”为事件A,其概率为P A.则P A的最大值为()A.271000B.2431000C.427D.496.(2024·广东肇庆·模拟预测)马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程,该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲口袋中各装有1个黑球和2个白球,乙口袋中装有2个黑球和1个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n(n∈N*)次这样的操作,记口袋甲中黑球的个数为X n,恰有1个黑球的概率为p n,则p1的值是;X n的数学期望E X n是.7.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲乙两个口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n∈N∗次这样的操作,记甲口袋中黑球个数为X n,恰有1个黑球的概率为p n,则p1=;p n=.8.马尔科夫链是机器学习和人工智能的基石,其数学定义为:假设序列状态是...,X t-2,X t-1,X t,X t+1,⋯,那么X t+1时刻的状态的条件概率仅依赖前一状态X t,即P X t+1∣⋯,X t-2,X t-1,X t=P X t+1∣X t.著名的赌徒模型就应用了马尔科夫链:假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率都为50%,每局赌赢可以赢得1金币,赌输就要输掉1金币.赌徒自以为理智地决定,遇到如下两种情况就会结束赌博游戏:一是输光了手中金币;二是手中金币达到预期的1000金币,出现这两种情况赌徒都会停止赌博.记赌徒的本金为70金币,求赌徒输光所有金币的概率.9.(2024·广东茂名·二模)马尔可夫链是因俄国数学家安德烈·马尔可夫得名,其过程具备“无记忆”的性质,即第n+1次状态的概率分布只跟第n次的状态有关,与第n-1,n-2,n-3,⋅⋅⋅次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行n n∈N*次操作后,记甲盒子中黑球个数为X n,甲盒中恰有1个黑球的概率为a n,恰有2个黑球的概率为b n.(1)求X1的分布列;(2)求数列a n的通项公式;(3)求X n的期望.10.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n∈N*次这样的操作,记口袋甲中黑球的个数为X n,恰有1个黑球的概率为p n,恰有2个黑球的概率为q n,恰有0个黑球的概率为r n.(1)求p1,p2的值;(2)根据马尔科夫链的知识知道p n=a⋅p n-1+b⋅q n-1+c⋅r n-1,其中a,b,c∈0,1为常数,同时p n+q n+ r n=1,请求出p n;(3)求证:X n的数学期望E X n为定值.11.(2024·云南·模拟预测)材料一:英国数学家贝叶斯1701∼1763在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.贝叶斯公式就是他的重大发现,它用来描述两个条件概率之间的关系.该公式为:设A1,A2,⋯,A n是一组两两互斥的事件,A1∪A2∪⋯∪A n=Ω,且P A i>0,i=1,2,⋯,n,则对任意的事件B⊆Ω,P B >0,有P A i∣B=P A iP B∣A iP(B)=P A iP B∣A i∑n k=1P A kP B∣A k,i=1,2,⋯,n.材料二:马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯,X t-2,X t-1,X t,X t+1,⋯,那么X t+1时刻的状态的条件概率仅依赖前一状态X t,即P X t+1∣⋯,X t-2,X t-1,X t=P X t+1∣X t.请根据以上材料,回答下列问题.(1)已知德国电车市场中,有10%的车电池性能很好.W公司出口的电动汽车,在德国汽车市场中占比3%,其中有25%的汽车电池性能很好.现有一名顾客在德国购买一辆电动汽车,已知他购买的汽车不是W公司的,求该汽车电池性能很好的概率;(结果精确到0.001)(2)为迅速抢占市场,W公司计划进行电动汽车推广活动.活动规则如下:有11个排成一行的格子,编号从左至右为0,1,⋯,10,有一个小球在格子中运动,每次小球有34的概率向左移动一格;有14的概率向右移动一格,规定小球移动到编号为0或者10的格子时,小球不再移动,一轮游戏结束.若小球最终停在10号格子,则赢得6百欧元的购车代金券;若小球最终停留在0号格子,则客户获得一个纪念品.记P i为以下事件发生的概率:小球开始位于第i个格子,且最终停留在第10个格子.一名顾客在一次游戏中,小球开始位于第5个格子,求他获得代金券的概率.马尔科夫链1.(2024·高三·广东·开学考试)马尔科夫链因俄国数学家安德烈・马尔科夫得名,其过程具备“无记忆”的性质,即第n +1次状态的概率分布只跟第n 次的状态有关,与第n -1,n -2,n -3,⋯次状态无关.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.现有A ,B 两个盒子,各装有2个黑球和1个红球,现从A ,B 两个盒子中各任取一个球交换放入另一个盒子,重复进行n n ∈N * 次这样的操作后,记A 盒子中红球的个数为X n ,恰有1个红球的概率为p n .(1)求p 1,p 2的值;(2)求p n 的值(用n 表示);(3)求证:X n 的数学期望E X n 为定值.【解析】(1)设第n n ∈N * 次操作后A 盒子中恰有2个红球的概率为q n ,则没有红球的概率为1-p n -q n .由题意知p 1=C 12C 12+C 11C 11C 13C 13=59,q 1=C 12C 11C 13C 13=29,p 2=p 1⋅C 12C 12+C 11C 11C 13C 13+q 1⋅C 12C 13C 13C 13+1-p 1-q 1 ⋅C 13C 12C 13C 13=4981.(2)因为p n =p n -1⋅C 12C 12+C 11C 11C 13C 13+q n -1⋅C 12C 13C 13C 13+1-p n -1-q n -1 ⋅C 13C 12C 13C 13=-19p n -1+23.所以p n -35=-19p n -1-35 .又因为p 1-35=-245≠0,所以p n -35 是以-245为首项,-19为公比的等比数列.所以p n -35=-245×-19 n -1,p n =-245×-19 n -1+35.(3)因为q n =C 12C 11C 13C 13p n -1+C 11C 13C 13C 13q n -1=29p n -1+13q n -1,①1-q n -p n =C 11C 12C 13C 13p n -1+C 13C 11C 13C 131-q n -1-p n -1 =29p n -1+131-q n -1-p n -1 ,②.所以①一②,得2q n +p n -1=132q n -1+p n -1-1 .又因为2q 1+p 1-1=0,所以2q n +p n -1=0,所以q n =1-p n 2.X n 的可能取值是0,1,2,P X n =0 =1-p n -q n =1-p n 2,P X n =1 =p n ,P X n =2 =q n =1-p n 2.所以X n 的概率分布列为X n012p 1-p n2p n 1-p n2所以E X n =0×1-p n 2+1×p n +2×1-p n 2=1.2.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯⋯X t -2,X t -1,X t ,X t +1,⋯,那么X t +1时刻的状态的条件概率仅依赖前一状态X t ,即P X t +1⋯,X t -2,X t -1,X t =P X t +1X t .现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:记赌徒的本金为A A ∈N *,A <B 一种是赌金达到预期的B 元,赌徒停止赌博;另一种是赌徒输光本金后,赌徒可以向赌场借钱,最多借A 元,再次输光后赌场不再借钱给赌徒.赌博过程如图的数轴所示.当赌徒手中有n 元-A ≤n ≤B ,n ∈Z 时,最终欠债A 元(可以记为该赌徒手中有-A 元)概率为P (n ),请回答下列问题:(1)请直接写出P (-A )与P (B )的数值.(2)证明{P (n )}是一个等差数列,并写出公差d .(3)当A =100时,分别计算B =300,B =1500时,P (A )的数值,论述当B 持续增大时,P (A )的统计含义.【解析】(1)当n =-A 时,赌徒已经欠债-A 元,因此P (-A )=1.当n =B 时,赌徒到了终止赌博的条件,不再赌了,因此输光的概率P (B )=0;(2)记M :赌徒有n 元最后输光的事件,N :赌徒有n 元上一场赢的事件,P M =P N P M N +P N P M N ,即P (n )=12P (n -1)+12P (n +1),所以P (n )-P (n -1)=P (n +1)-P (n ),所以{P (n )}是一个等差数列,设P (n )-P (n -1)=d ,则P (n -1)-P (n -2)=d ,⋯,P (-A +1)-P (-A )=d ,累加得P (n )-P (-A )=(n +A )d ,故P (B )-P (-A )=(A +B )d ,得d =-1A +B ;(3)A =100,由(2)P (n )-P (-A )=(n +A )d =-n +A A +B ,代入n =A 可得P (A )-P (-A )=-2A A +B ,即P (A )=1-2A A +B ,当B =300时,P A =12,当B =1500时,P (A )=78,当B 增大时,P (A )也会增大,即输光欠债的可能性越大,因此可知久赌无赢家,即便是一个这样看似公平的游戏,只要赌徒一直玩下去就会100%的概率输光并负债.3.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n∈N*次这样的操作,记口袋甲中黑球的个数为X n,恰有1个黑球的概率为p n.(1)求p1,p2的值;(2)求p n的值(用n表示);(3)求证:X n的数学期望E X n为定值.【解析】(1)设恰有2个黑球的概率为q n,则恰有0个黑球的概率为1-p n-q n.由题意知p1=C12C12+C11C11C13C13=59,q1=C12C11C13C13=29,所以p2=C12C12+C11C11C13C13p1+C12C13C13C13q1+C13C12C13C131-p1-q1=4981.(2)因为p n=C12C12+C11C11C13C13p n-1+C12C13C13C13q n-1+C13C12C13C131-p n-1-q n-1=-19p n-1+23,所以p n-35=-19p n-1-35.又因为p1-35=-245≠0,所以p n-35是以-245为首项,-19为公比的等比数列.所以p n-35=-245×-19n-1,p n=-245×-19n-1+35.(3)因为q n=C12C11C13C13p n-1+C11C13C13C13q n-1=29p n-1+13q n-1①,1-q n-p n=C11C12C13C13p n-1+C13C11C13C131-q n-1-p n-1=29p n-1+131-q n-1-p n-1②.所以①-②,得2q n+p n-1=132q n-1+p n-1-1.又因为2q1+p1-1=0,所以2q n+p n-1=0.所以q n=1-p n 2.所以X n的概率分布列为:X n012p1-p n-1-p n2p n1-p n2所以E X n=0×1-p n-1-p n 2+1×p n+2×1-p n2=1.所以X n的数学期望E X n为定值1.4.(2024·高三·江西·开学考试)马尔科夫链是概率统计中的一个重要模型,其过程具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,即第n+1次状态的概率分布只与第n次的状态有关,与第n -1,n-2,n-3,⋯次的状态无关,即P(X n+1|X1,X2,⋯,X n-1,X n)=P(X n+1|X n).已知甲盒中装有1个白球和2个黑球,乙盒中装有2个白球,现从甲、乙两个盒中各任取1个球交换放入对方的盒中,重复n 次(n∈N∗)这样的操作,记此时甲盒中白球的个数为X n,甲盒中恰有2个白球的概率为a n,恰有1个白球的概率为bn.(1)求a1,b1和a2,b2.(2)证明:a n+2b n-65为等比数列.(3)求X n的数学期望(用n表示).【解析】(1)若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率a1 =23;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为1白2黑,乙盒中的球仍为2白,概率b1=1 3,研究第2次交换球时的概率,根据第1次交换球的结果讨论如下:①当甲盒中的球为2白1黑,乙盒中的球为1白1黑时,对应概率为a1=2 3,此时,若甲盒取黑球、乙盒取黑球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a1×13×12=16a1;若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为3白,乙盒中的球变为2黑,概率为a1×13×12=16a1;若甲盒取白球、乙盒取黑球,互换,则甲盒中的球变为1白2黑,乙盒中的球变为2白,概率为a1×23×12=13a1;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a1×23×12=13a1,②当甲盒中的球为1白2黑,乙盒中的球为2白时,对应概率为b1=1 3,此时,若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率为b1×23=23b1若甲盒取白球,乙盒取白球,互换,则甲盒中的球仍为1白2黑,乙盒中的球仍为2白,概率为b1×13=13b1,综上,a2=16a1+13a1+23b1=59,b2=13a1+13b1=13.(2)依题意,经过n次这样的操作,甲盒中恰有2个白球的概率为a n,恰有1个白球的概率为b n,则甲盒中恰有3个白球的概率为1-a n-b n,研究第n+1次交换球时的概率,根据第n次交换球的结果讨论如下:①当甲盒中的球为2白1黑,乙盒中的球为1白1黑时,对应概率为a n,此时,若甲盒取黑球、乙盒取黑球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a n×13×12=16a n;若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为3白,乙盒中的球变为2黑,概率为a n×13×12=16a n;若甲盒取白球、乙盒取黑球,互换,则甲盒中的球变为1白2黑,乙盒中的球变为2白,概率为a n×23×12=13a n;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a n×23×12=13a n,②当甲盒中的球为1白2黑,乙盒中的球为2白时,对应概率为b n,此时,若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率为b n×2 3=23b n;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为1白2黑,乙盒中的球仍为2白,概率为b n ×13=13b n ,③当甲盒中的球为3白,乙盒中的球为2黑时,对应概率为1-a n -b n ,此时,甲盒只能取白球、乙盒只能取黑球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率为1-a n -b n ,综上,a n +1=13a n +16a n +23b n +1-a n -b n =1-12a n -13b n ,b n +1=13a n +13b n 则a n +1+2b n +1-65=1-12a n -13b n +23a n +23b n -65=16a n +13b n -15,整理得a n +1+2b n +1-65=16a n +2b n -65 ,又a 1+2b 1-65=215>0,所以数列a n +2b n -65 是公比为16的等比数列.(3)由(2)知a n +2b n -65=215×16 n -1,则a n +2b n =65+215×16n -1,随机变量X n 的分布列为X n123P b n a n 1-a n -b n所以E (X n )=b n +2a n +3-3b n -3a n =3-(a n +2b n )=95-215×16 n -1.5.在概率论中,马尔可夫不等式给出了随机变量的函数不小于某正数的概率的上界,它以俄国数学家安德雷·马尔可夫命名,由马尔可夫不等式知,若ξ是只取非负值的随机变量,则对∀a >0,都有P ξ≥a ≤E ξ a.某市去年的人均年收入为10万元,记“从该市任意选取3名市民,则恰有1名市民去年的年收入超过100万元”为事件A ,其概率为P A .则P A 的最大值为()A.271000 B.2431000 C.427 D.49【答案】B【解析】记该市去年人均收入为X 万元,从该市任意选取3名市民,年收入超过100万元的人数为Y .设从该市任选1名市民,年收入超过100万元的概率为p ,则根据马尔可夫不等式可得p =P X ≥100 ≤E X 100=10100=110,∴0≤p ≤110,因为Y ~B (3,p ),所以P A =P Y =1 =C 13p 1-p 2=3p 1-p 2=3p 3-6p 2+3p ,令f (p )=3p 3-6p 2+3p ,则f (p )=9p 2-12p +3=3(3p -1)(p -1),∵0≤p ≤110,∴3p -1<0,p -1<0,即f (p )>0,∴f (p )在0,110上单调递增.∴f (p )max =f 110 =3×110×1-110 2=2431000,即P (A )max =2431000.故选:B6.(2024·广东肇庆·模拟预测)马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲口袋中各装有1个黑球和2个白球,乙口袋中装有2个黑球和1个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n (n ∈N *)次这样的操作,记口袋甲中黑球的个数为X n ,恰有1个黑球的概率为p n ,则p 1的值是;X n 的数学期望E X n 是.【答案】4932-1213 n【解析】考虑到乙袋中拿出的球可能是黑的也可能是白的,由全概率公式可得p 1=13×23+23×13=49;记X n -1取0,1,2,3的概率分别为p 0,p 1,p 2,p 3,推导X n 的分布列:P X n =1 =p 0+49p 1+49p 2,P X n =2 =49p 1+49p 2+p 3,P X n =3 =19p 2,则E X n =0⋅P X n =0 +1⋅P X n =1 +2⋅P X n =2 +3⋅P X n =3 =p 0+43p 1+53p 2+2p 3=1+13p 1+2p 2+3p 3 =1+13E X n -1 ,则E X n -32=13E X n -1 -32,故E X n -32=E X 1 -32 ×13n -1给合E X 1 =43,可知E X n =32-1213 n .故答案为:49;32-1213n .7.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲乙两个口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n ∈N ∗ 次这样的操作,记甲口袋中黑球个数为X n ,恰有1个黑球的概率为p n ,则p 1=;p n =.【答案】5925⋅-19 n +35【解析】由题意,p 1=C 12C 12+C 11C 11C 13C 13=59;当n ≥2n ∈N ∗ 时,p n =C 12C 12+C 11C 11C 13C 13p n -1+C 12C 13C 13C 13P X n -1=0 +C 13C 12C 13C 13P X n -1=2 =59p n -1+23P X n -1=0 +P X n -1=2 =59p n -1+231-p n -1 =-19p n -1+23,整理得p n -35=-19p n -1-35 ,p 1-35=59-35=-245,故可知p n -35 是以-245为首项,以-19为公比的等比数列,所以p n =25⋅-19 n +35.故答案为:59;25⋅-19 n +358.马尔科夫链是机器学习和人工智能的基石,其数学定义为:假设序列状态是...,X t -2,X t -1,X t ,X t +1,⋯,那么X t +1时刻的状态的条件概率仅依赖前一状态X t ,即P X t +1∣⋯,X t -2,X t -1,X t =P X t +1∣X t .著名的赌徒模型就应用了马尔科夫链:假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率都为50%,每局赌赢可以赢得1金币,赌输就要输掉1金币.赌徒自以为理智地决定,遇到如下两种情况就会结束赌博游戏:一是输光了手中金币;二是手中金币达到预期的1000金币,出现这两种情况赌徒都会停止赌博.记赌徒的本金为70金币,求赌徒输光所有金币的概率.【答案】93100/0.93【解析】设当赌徒手中有n 元0≤n ≤1000,n ∈N 时,最终输光的概率为P (n ),当n =0时,赌徒已经输光了,所以P (0)=1,当n =1000时,赌徒到了终止赌博的条件,不再赌了,因此输光的概率为P (1000)=0,记M :赌徒有n 元最后输光的事件,N :赌徒有n 元下一次赢的事件,所以P M =P N P (M |N )+P N P (M |N ),即P (n )=12P (n -1)+12P (n +1),所以P (n +1)-P (n )=P (n )-P (n -1),所以P (n ) 为等差数列,设P (n )-P (n -1)=d ,由于P (1000)=P (0)+1000d =1+1000d =0,所以d =-11000,所以P (n )=P (0)+nd =1-n 1000,故P (70)=1-701000=93100故答案为:931009.(2024·广东茂名·二模)马尔可夫链是因俄国数学家安德烈·马尔可夫得名,其过程具备“无记忆”的性质,即第n +1次状态的概率分布只跟第n 次的状态有关,与第n -1,n -2,n -3,⋅⋅⋅次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行n n ∈N * 次操作后,记甲盒子中黑球个数为X n ,甲盒中恰有1个黑球的概率为a n ,恰有2个黑球的概率为b n .(1)求X 1的分布列;(2)求数列a n 的通项公式;(3)求X n 的期望.【解析】(1)(1)由题可知,X 1的可能取值为0,1,2.由相互独立事件概率乘法公式可知:P X 1=0 =13×23=29;P X 1=1 =13×13+23×23=59;P X 1=2 =23×13=29,故X 1的分布列如下表:X 1012P 295929(2)由全概率公式可知:P X n +1=1=P X n =1 ⋅P X n +1=1X n =1 +P X n =2 ⋅P X n +1=1X n =2 +P X n =0 ⋅P X n +1=1X n =0=13×13+23×23 P X n =1 +23×1 P X n =2 +1×23 P X n =0 =59P X n =1 +23P X n =2 +23P X n =0 ,即:a n +1=59a n +23b n +231-a n -b n ,所以a n +1=-19a n +23,所以a n +1-35=-19a n -35 ,又a 1=P X 1=1 =59,所以,数列a n -35 为以a 1-35=-245为首项,以-19为公比的等比数列,所以a n -35=-245⋅-19 n -1=25⋅-19 n ,即:a n =35+25⋅-19n .(3)由全概率公式可得:P X n +1=2 =P X n =1 ⋅P X n +1=2X n =1 +P X n =2 ⋅P X n +1=2X n =2 +P X n =0 ⋅P X n +1=2X n =0=23×13 ⋅P X n =1 +13×1 ⋅P X n =2 +0⋅P X n =0 ,即:b n +1=29a n +13b n ,又a n =35+25⋅-19 n ,所以b n +1=13b n +2935+25-19 n ,所以b n +1-15+15-19 n +1=13b n -15+15-19 n,又b 1=P X 1=2 =29,所以b 1-15+15×-19 =29-15-145=0,所以b n -15+15-19 n =0,所以b n =15-15-19n ,所以E X n =a n +2b n +01-a n -b n =a n +2b n =1.10.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n ∈N * 次这样的操作,记口袋甲中黑球的个数为X n ,恰有1个黑球的概率为p n ,恰有2个黑球的概率为q n ,恰有0个黑球的概率为r n .(1)求p 1,p 2的值;(2)根据马尔科夫链的知识知道p n =a ⋅p n -1+b ⋅q n -1+c ⋅r n -1,其中a ,b ,c ∈0,1 为常数,同时p n +q n +r n =1,请求出p n ;(3)求证:X n 的数学期望E X n 为定值.【解析】(1)由题意恰有0个黑球的概率为1-p n -q n .由题意知p 1=C 12C 12+C 11C 11C 13C 13=59,q 1=C 12C 11C 13C 13=29,所以p2=C12C12+C11C11C13C13p1+C12C13C13C13q1+C13C12C13C131-p1-q1=4981.(2)因为p n=C12C12+C11C11C13C13p n-1+C12C13C13C13q n-1+C13C12C13C131-p n-1-q n-1=-19p n-1+23,所以p n-35=-19p n-1-35.又因为p1-35=-245≠0,所以p n-35是以-245为首项,-19为公比的等比数列.所以p n-35=-245×-19n-1,p n=-245×-19n-1+35.(3)因为q n=C12C11C13C13p n-1+C11C13C13C13q n-1=29p n-1+13q n-1①,1-q n-p n=C11C12C13C13p n-1+C13C11C13C131-q n-1-p n-1=29p n-1+131-q n-1-p n-1②所以①-②,得2q n+p n-1=132q n-1+p n-1-1 .又因为2q1+p1-1=0,所以2q n+p n-1=0.所以q n=1-p n 2.所以X n的概率分布列为:X n012p1-p n-1-p n2p n1-p n2所以E X n=0×1-p n-1-p n 2+1×p n+2×1-p n2=1.所以X n的数学期望E X n为定值1.11.(2024·云南·模拟预测)材料一:英国数学家贝叶斯1701∼1763在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.贝叶斯公式就是他的重大发现,它用来描述两个条件概率之间的关系.该公式为:设A1,A2,⋯,A n是一组两两互斥的事件,A1∪A2∪⋯∪A n=Ω,且P A i>0,i=1,2,⋯,n,则对任意的事件B⊆Ω,P B >0,有P A i∣B=P A iP B∣A iP(B)=P A iP B∣A i∑n k=1P A kP B∣A k,i=1,2,⋯,n.材料二:马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯,X t-2,X t-1,X t,X t+1,⋯,那么X t+1时刻的状态的条件概率仅依赖前一状态X t,即P X t+1∣⋯,X t-2,X t-1,X t=P X t+1∣X t.请根据以上材料,回答下列问题.(1)已知德国电车市场中,有10%的车电池性能很好.W公司出口的电动汽车,在德国汽车市场中占比3%,其中有25%的汽车电池性能很好.现有一名顾客在德国购买一辆电动汽车,已知他购买的汽车不是W公司的,求该汽车电池性能很好的概率;(结果精确到0.001)(2)为迅速抢占市场,W公司计划进行电动汽车推广活动.活动规则如下:有11个排成一行的格子,编号从左至右为0,1,⋯,10,有一个小球在格子中运动,每次小球有34的概率向左移动一格;有14的概率向右移动一格,规定小球移动到编号为0或者10的格子时,小球不再移动,一轮游戏结束.若小球最终停在10号格子,则赢得6百欧元的购车代金券;若小球最终停留在0号格子,则客户获得一个纪念品.记P i 为以下事件发生的概率:小球开始位于第i 个格子,且最终停留在第10个格子.一名顾客在一次游戏中,小球开始位于第5个格子,求他获得代金券的概率.【解析】(1)记事件A 为一辆德国市场的电车性能很好,事件B 为一辆德国市场的车来自W 公司.由全概率公式知:P A =P A |B P B +P A |B P B ,故:P A |B =P A -P A |B ⋅P B P B=10%-0.25×3%97%≈0.095.(2)记事件A i i =0,1,⋯,10 表示小球开始位于第i 个格子,且最终停留在第10个格子,事件C 表示小球向右走一格.小球开始于第i 格,此时的概率为P i ,则下一步小球向左或向右移动,当小球向右移动,即可理解为小球始于P i +1,当小球向左移动,即可理解为小球始于P i -1,即P i =14P i +1+34P i -1.由题知P 0=0,P 10=1,又4P i =3P i -1+P i +1,故P i +1-P i =3P i -P i -1 ,所以P i -P i -1 是以P 1-P 0为首项,3为公比的等比数列,即:P i -P i -1=3i -1P 1-P 0 ,即:P 10-P 9=39P 1-P 0 ,P 9-P 8=38P 1-P 0 ,⋯P 1-P 0=30P 1-P 0 ,故P 10=39+38+⋯+30P 1-P 0 =310-12P 1,P 5=34+33+⋯+30 P 1-P 0 =35-12P 1,则P 5=P 5P 10=35-1310-1=135+1=1244,故这名顾客获得代金券的概率为1244.。
第四章4.1 马尔可夫链的的概念与转移概率一、知识回忆二、马尔可夫链的的定义三、转移概率四、马尔可夫链的一些简单例子五、总结一、知识回忆1. 条件概率定义:设A,B为两个事件,且P(A)>0,称P(B|A)=P(PP) P(P)为事件A发生条件下B事件发生的条件概率。
将条件概率公式移项即得到所谓的乘法公式:P(AB)=P(A)P(B|A)2.全概率公式设试验E的样本空间为S,A为E的事件,假设P1,P2,⋯,PP为S的一个完备事件组,既满足条件:1).P1,P2,⋯,PP两两互不相容,即P P P P=P,i≠j,i,j=1,2,⋯,n2).P1∪P2∪⋯∪P P=P,且有P(P P)>0,i=1,2,⋯,n,那么P(A)=∑P(P P)P(P|PP )PP=1此式称为全概率公式。
3.矩阵乘法矩阵乘法的定义A=(P11P12P13P21P22P23),B=(P11P12P21P22P31P32)C=(P11P12P21P22)如果P11=P11×P11+P12×P21+P13×P31P12=P11×P12+P12×P22+P13×P32P21=P21×P11+P22×P21+P23×P31P22=P21×P12+P22×P22+P23×P32那么矩阵C叫做矩阵A和B的乘积,记作C=AB4.马尔可夫过程的分类马尔可夫过程按其状态和时间参数是连续的或离散的,可分为三类:(1)时间、状态都是离散的马尔科夫过程,称为马尔可夫链;(2)时间连续、状态离散的马尔科夫过程称为连续时间的马尔可夫链的;(3)时间、状态都连续的马尔科夫过程。
二、马尔科夫链的定义定义 4.1设有随机过程{P P,n∈T},假设对于任意的整数n∈T和任意的P0,P1,…,P P+1∈P,条件概率都满足P{P P+1=P P+1|P0=P0,P1=P1,…,P P=P P}=P{P P+1=P P+1|P P=P P}那么称{P P,n∈T}为马尔科夫链,简称马氏链。